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Abstract

We determine the local deformation rings of sufficiently generic mod l representations
of the Galois group of a p-adic field, when l 6= p, relating them to the space of q-power-
stable semisimple conjugacy classes in the dual group. As a consequence we give a local
proof of the l 6= p Breuil–Mézard conjecture of the author, in the tame case.

1. Introduction

We study the moduli space X of n-dimensional l-adic representations of the tame Weil group
of a p-adic field F , when l 6= p are primes and n > 1 is an integer. The main geometric result,
Theorem 2.16, is a simple description of the completion of X at a sufficiently general point of its
special fibre. We then apply this to give a purely local proof of the author’s l 6= p analogue of
the Breuil–Mézard conjecture in the tame case — see Theorem 4.2. This was formulated, and
proved for l > 3 by global automorphic methods, in [Sho18]. This result links congruences between
representations of GLn(k), where k is the residue field of F , and ‘congruences’ between irreducible
components of X; for more background and motivation, see the introduction to [Sho18].

We give a more precise description of our results and methods in the most critical case. Let Wt

be the tame Weil group and It be the tame inertia group of F , and let (O, E,F) be a sufficiently
large l-adic coefficient system. Let q be the order of k, the residue field of F , and let σ be a choice
of topological generator of It. Suppose that ρ : Wt → GLn(F) is a representation such that ρ(σ)
is regular unipotent.

Let T̂ be a maximal split torus in GLn,O and let W be the Weyl group. We have a ‘charac-
teristic polynomial’ map

ch : GLn,O → T̂ /W.

We consider the q-fixed subscheme of T̂ /W , which we denote by

(T̂ /W )q,

and its localisation at the point e of its special fibre corresponding to the identity in T̂ (F).

Theorem A Theorem 2.23. The morphism

X∧ρ → (T̂ /W )qe

defined by ρ 7→ ch(ρ(σ)) is formally smooth, where X∧ρ is the completion of X at the point
corresponding to ρ.

Note that the completion X∧ρ is simply the framed deformation ring of ρ. The proof of Theo-
rem A is an elaboration of the proof of Proposition 7.10 in [Sho18].
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More generally, to each irreducible component C of the special fibre of X we associate a Levi
subgroup M̂ ⊂ GLn,O containing T̂ , with Weyl group WM̂ ⊂W , and an F-point s of (T̂ /WM̂ )q.

Roughly, M̂ is minimal such that there is ρ on C, and on no other component, such that ρ factors
through a map to M̂ and ρ(σ) is regular in M̂ . By choosing ρ carefully we can make sure that
all its deformations can be conjugated (canonically) to land in M̂ . Thus for sufficiently general
points ρ on C we obtain a morphism

“chM̂ (ρ(σ))′′ : X∧ρ → (T̂ /WM̂ )qs

and show that it is formally smooth. See Theorem 2.16. The proof proceeds by reducing first
to the case that ρ(g) is unipotent for all g ∈ It (see Section 2.9), and then to the situation of
Theorem A (see Corollary 2.22).

We explain the application to the l 6= p “Breuil–Mézard conjecture” of [Sho18] in the tame
case, whose statement we briefly recall. Set G = GLn,k. Let Z(X) (resp. Z(XF)) be the free
abelian group on the irreducible components of X (resp. XF). Let KE(G(k)) (resp. KF(G(k))) be
the Grothendieck groups of representations of G(k) over E (resp. F). There is a ‘cycle map’

cyc : KE(G(k))→ Z(X)

motivated by the local Langlands correspondence (see Section 4), and natural ‘reduction maps’
red : KE(G(k))→ KF(G(k)) and red : Z(X)→ Z(XF). We then have

Theorem B Theorem 4.2. There is a unique map cyc : KF(G(k)) → Z(XF) such that the
diagram

KE(G(k))
cyc−−−−→ Z(X)

red

y red

y
KF(G(k))

cyc−−−−→ Z(XF)
commutes.

If l > 2 then Theorem B follows from the main theorem of [Sho18], but we provide a purely
local proof here (in the tame case). If l = 2 then Theorem B is new.

It is enough to prove Theorem B after formally completing at some ρ on each component.
We explain how to do this for ρ as in Theorem A. Let Γ be the (integral) Gelfand–Graev
representation of G(k) over O — it is a projective O[G(k)] representation. Let Bq,n be the
coordinate ring of (T̂ /W )q. Via the ‘Curtis homomorphisms’ we define a homomorphism

Bq,n → End(Γ)⊗ E (1)

which restricts to a homomorphism

Bq,n,e → End(eΓ)⊗ E

for a certain idempotent e ∈ O[G(k)]. (For this, we need a result of Broué–Michel in [BM89]
on the blocks of O-representations of G(k)). The special fibre of X∧ρ has a unique irreducible
component C and we may define

cyc(σ) = dimF Hom(Γ, σ)[C].

That this works is essentially a consequence of the projectivity of Γ, together with Theorem A.

The proof of Theorem B is carried out in Sections 3 and 4 — in Section 3 we recall the
necessary material on Gelfand–Graev and Deligne–Lusztig representations, and this is applied
to Theorem B in Section 4.
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The functor Hom(Γ, ·) plays the role in this proof that the functor M∞(·) plays in the global
proof via patching, and so one could see the relationship between this article and [Sho18] as
being parallel to that between [Paš15] and [Kis09].

Helm and Moss have proved in [Hel] and [HM18] that the local Langlands correspondence in
families, conjectured in [EH14], exists. As a consequence, or byproduct, of their proof, it follows
that the map (1) actually defines an isomorphism

Bq,n
∼−→ End(Γ). (2)

This is a result purely in the representation theory of finite groups, and it would be interesting
to have an elementary proof. For l > n, one has been given by Li in [Li21]; we come back to
this below. Results on the endomorphism rings of integral Gelfand–Graev representations (for
general reductive groups) were obtained by Bonnafé and Kessar in [BK08], under the assumption
that l does not divide the order of the Weyl group (and is distinct from p). Their description of
the endomorphism ring is quite different, not involving (T̂ /W )q, and can genuinely fail if l | |W |.

The idea of using the Gelfand–Graev representations came from [Hel]. Having proved Theo-
rem A, I asked David Helm whether the map (2) could be an isomorphism and our correspondence
turned up an error in an earlier version of [Hel], which was corrected by him using, among other
things, the map (2) and the idea behind the proof of Theorem A. He was then able to show
that the map (2) was indeed an isomorphism, as a consequence of his work with Moss. There
are other ways to deduce Theorem B from Theorem A; my original method was a complicated
combinatorial induction.

We take some care to write things in a way that is independent of a choice of topological
generator of It. Thus instead of (T̂ /W )q we actually use the space of q-stable W -orbits of ho-
momorphisms It → T̂ . Points of this space over E then canonically parametrize Deligne–Lusztig
representations of GLn(k) over E, a construction we learned from [DR09].

1.1 Generalizations

It is clear that much of section 3 would go through for a general reductive group. Since the writing
of the first version of this paper, Li [Li21] has done this and, much more, has given a local proof
of the isomorphism (2) for G a connected reductive group over Fq with connected centre, again
under the assumption that l does not divide the order of the Weyl group. Remarkably, his proof
uses the mod p representation theory of G(Fq), despite the fact that the theorem is a result in
the mod l representation theory.

Extending the geometric results of 2 to the case of general groups seems to be more difficult.
In forthcoming work, we hope to partially generalize the main geometric result, Theorem 2.16,
to this setting. However, this will not cover points on every irreducible component of the moduli
space of tame parameters, and will therefore not be enough for a Breuil–Mézard type conjecture.

In another direction, one could hope to remove the restrictions to tamely ramified parame-
ters and to representations of GLn(OF ) with K(1)-fixed vectors. The geometric results should
generalize straightforwardly to the full moduli space of Langlands parameters. It seems likely
that this could be combined with Bushnell–Kutzko type theory to prove the l 6= p Breuil–Mézard
conjecture in the form that only involves Schneider–Zink types (see [Sho18] Remark 4.7). It is
not clear how to extend this to all representations of GLn(OF ), even when only considering the
moduli space of tame parameters as in the present paper. See Remark 4.3 for further discussion
of this point.
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1.2 Notation

An l-adic coefficient system is a triple (E,O,F) where: E is a finite extension of Ql, O is its ring
of integers, and F is its residue field. We then define CO to be the category of Artinian local O-
algebras with residue field F, and C∧O be the category of complete Artinian local O-algebras that
are inverse limits of objects of CO. We also consider affine formal schemes of the form Spf(R) for R
an object of CO or C∧O (taken with respect to the mR-adic topology); these form categories which
we denote by FSO or FS∧O respectively (and which are canonically isomorphic to the opposite
categories of CO and C∧O). For X ∈ FS∧O and A ∈ C∧O we write X(A) = HomFS∧O(Spf(A), X). If

X/O is a scheme locally of finite type, and x ∈ X(F), then we let X∧x = Spf
(

lim←−OX,x/m
n
X,x

)
be its formal completion, an object of FS∧O.

If A is a ring, we write diag(x1, . . . , xn) for the diagonal matrix with entries x1, . . . , xn. If
ζ ∈ A and n ∈ N, then we write Jn(ζ) for the n× n Jordan block matrix with ζ on the diagonal
and 1 on the superdiagonal.

2. Moduli of Weil group representations

2.1 Galois groups

Choose a maximal tamely ramified extension F t of F . This induces an algebraic closure k of k.
For n ∈ N, let kn be the subextension of k/k having degree n over k. Let Gt = Gal(F t/F ). The
canonical homomorphism Gt → Gk = Gal(k/k) ∼= Ẑ has kernel the tame inertia subgroup It,
and the tame Weil group Wt ⊂ Gt is the preimage of Z under this homomorphism.

There is a canonical isomorphism

It
∼−→ lim←− k

×
n

where the inverse limit is under the norm maps kn → km for m | n. The exact sequence

1→ It → Gt → Gk → 1

splits, so that we have a canonical isomorphism

Gt ∼= (lim←− k
×
n ) oGk

where Gk acts on each k×n in the natural way. More concretely, if we choose a topological generator
σ ∈ It and lift φ ∈ Gt of arithmetic Frobenius, then Gt is isomorphic to the profinite completion
of 〈

φ, σ|φσφ−1 = σq
〉
.

Note that, as a topological group, this only depends on the integer q. A pair (σ, φ) as above will
be called (a choice of) standard (topological) generators of Gt (or Wt).

2.2 Moduli spaces

Fix an l-adic coefficient system (E,O,F). Let Ĝ be an algebraic group over O isomorphic to a
product of finitely many general linear groups (for the proofs of all the statements below, we can
and do immediately reduce to the case of GLn/O, but the slight extra generality will be useful
later). We assume throughout that E is sufficiently large in the following sense: if n is the rank
of Ĝ, then

E contains the (qn! − 1)th roots of unity. (3)

This avoids rationality issues; we have not tried to optimize this assumption.
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Proposition 2.1. The functor taking an O-algebra A to the set of continuous1 homomorphisms

ρ : Wt → Ĝ(A)

is representable by an affine scheme XĜ(q) of finite type over O that is reduced, O-flat, and a
local complete intersection of dimension dimO(Ĝ) + 1.

Remark 2.2. Work of Dat–Helm–Kurinczuk–Moss [DHKM20] shows that the analogous result
holds with Ĝ replaced by an arbitrary split connected reductive group over Zl. In fact, their
result is more general than this — on the one hand, there is no restriction to the tame Weil
group, and on the other, Ĝ may be replaced with the L-group of any connected reductive group
over F .

Proof. We may and do assume that Ĝ = GLn/O for some n. Choose standard topological
generators σ and φ of Wt, and let W ′t be the subgroup they generate. As W ′t is finitely generated,
it is clear that the functor taking A to the set of homomorphisms ρ : W ′t → Ĝ(A) is representable
by a finite-type affine scheme X over Zl. Moreover, [Hel, Proposition 6.2] implies that X enjoys

the geometric properties that we are claiming for XĜ(q).

Lemma 2.3. Suppose that A is a Zl-algebra and that M is a finite A-module, free of rank n,
with an A-linear action ρ of W ′t . Then there is a unique continuous A-linear action ρ̃ of Wt on
M extending that of W ′t .

Proof. First note that every finite image representation of W ′t extends uniquely to a continuous
representation of Wt (and even of Gt, since Gt is the profinite completion of W ′t).

Let A, M , and ρ be as in the lemma. I claim that (σq
n!−1 − 1)n acts as zero on M . Indeed,

it suffices to check that this holds for the universal representation of W ′t over X. This in turn
can be checked at geometric points in characteristic zero, since X is of finite type, Zl-flat, and
reduced. But at such points the eigenvalues of σ are permuted by the q-power map, and so fixed
by the qn!-power map. Thus they are all (qn! − 1)th roots of unity. The result follows from the
Cayley–Hamilton theorem.

It follows that the Zl-subalgebra E of EndA(M) generated by ρ(σ) is a finitely generated
Zl-module. Thus there is a finitely generated Zl-submodule N of M that generates M as an
A-module and that is preserved by σ, so that E ⊂ End(N). I claim that the map k 7→ ρ(σ)k is
a continuous map from Z, equipped with the linear topology whose open ideals are mZ for m
coprime to p, to End(N). If k ≡ k′ mod qn!−1, then by the previous paragraph (ρ(σ)k−k

′−1)n =
0. It follows that, for every s ∈ N, there exists r ∈ N such that ρ(σ)k−k

′ ≡ 1 in End(N/lsN) for
all k ≡ k′ mod (qn!−1)lr. This is the required continuity. We deduce that ρ extends to a unique
continuous map from the completion of 〈σ〉 with respect to this topology to E ⊂ End(N). This
completion is canonically isomorphic to It, and we therefore obtain a continuous homomorphism
It → E ⊂ End(M). It follows from the unicity that this extends to a continuous homomorphism
W ′t → End(M).

Proposition 2.1 follows immediately, with XĜ(q) = X.

Remark 2.4. The reason for formulating Proposition 2.1 with Wt rather than the subgroup W ′t
used in the proof is to get a moduli space whose definition does not require a choice of σ.

1We topologise any Zl-algebra A as the direct limit of its finitely generated Zl-submodules, and give Ĝ(A) its
canonical topology as the points of an affine scheme over a topological ring, as in [Con12].
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2.3 Parameters

Let C be a field containing F or E, and let Ĝ be as above. In the following, we will usually omit
the word ‘tame’, since that is the only case we consider in this article.

Definition 2.5. A (tame) Ĝ-parameter over C is a Ĝ(C)-conjugacy class of homomorphisms
ρ : Wt → Ĝ(C).

A homomorphism τ : It → Ĝ(C) is extendable if it extends to a homomorphism Wt → Ĝ(C);
equivalently, if τ is conjugate in Ĝ(C) to the homomorphism τ q. It is semisimple/unipotent if
every element of its image is.

A (tame) inertial Ĝ-parameter over C is a Ĝ(C)-conjugacy class of extendable homomor-
phisms τ : It → Ĝ(C). It is semisimple/unipotent if every homomorphism in its conjugacy class
is. Since It is pro-cyclic, any inertial Ĝ-parameter has a unique Jordan decomposition τ = τsτu
where τs is a semisimple inertial Ĝ-parameter, τu is a unipotent inertial Ĝ-parameter, and the
images of τs and τu commute.

For every inertial Ĝ-parameter τ over C, let XĜ(q, τ) be the Zariski closure of the C-points

ρ of XĜ(q) such that ρ|It ∼ τ . Then as in [Sho18, Proposition 2.6], we have:

Proposition 2.6. The assignment τ 7→ XĜ(q, τ) is a bijection between semisimple inertial Ĝ-

parameters over C and irreducible components of XĜ(q)C .

2.4 Moduli of semisimple parameters

Let T̂ be a maximal split torus in Ĝ, and let W be its Weyl group. Then the quotient T̂ /W is
a smooth affine scheme over O of relative dimension the rank of Ĝ. If Ĝ = GLn and T̂ is the
standard torus, then we write an element of T̂ as diag(x1, . . . , xn). Then T̂ = SpecO[x±1

1 , . . . , x±1
n ]

and

T̂ /W = SpecO[x±1
1 , . . . , x±1

n ]Sn = SpecO[e1, . . . , en, e
±1
n ]

where ei is the ith elementary symmetric polynomial in the xi.

Lemma 2.7. There is a unique O-morphism ch : Ĝ → T̂ /W that extends the quotient map
T̂ → T̂ /W and is invariant under conjugation.

Proof. We can reduce to the case Ĝ = GLn and T̂ is the standard torus. Then the map takes g
to the point of T̂ /W at which ei is the Xi-coefficient in the characteristic polynomial of g.

Definition 2.8. The q-power morphism q : T̂ → T̂ takes t to tq. It descends to a morphism

q : T̂ /W → T̂ /W.

We write (T̂ /W )q for the fixed-point scheme of q : T̂ /W → T̂ /W .

If Ĝ = GLn and T̂ is standard, we write q∗ei for the polynomial in the xi such that
q∗ei(x1, . . . , xn) = ei(x

q
1, . . . , x

q
n), and let

Iq,n �O[e1, . . . , en, e
−1
n ]

be the ideal generated by (q∗ei − ei)ni=1. Then

(T̂ /W )q = SpecBq,n

for Bq,n = O[e1, . . . , en, e
−1
n ]/Iq,n.
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Lemma 2.9. The fixed-point scheme (T̂ /W )q is finite flat over SpecO and reduced.

Proof. Again, we assume that Ĝ = GLn and T̂ is the standard torus. I claim that Bq,n =
O[e1, . . . , en, e

−1
n ]/Iq is generated as an O-module by monomials of the form ea11 e

a2
2 . . . eann where

0 6 ai 6 q − 1 for all i, and an < q − 1. Granted this, we see that Bq,n is a finitely generated
O-module and that

dimE Bq,n ⊗O E 6 q
n−1(q − 1).

However, the number of E-points of Bq,n is the number of tuples (z1, . . . , zn) of elements of

E
×

that are permuted by the q-power map. This number is the same if E
×

is replaced by k
×

;
but then it is simply the number of semisimple conjugacy classes of GLn(k), which is seen to be
qn−1(q−1) by considering the characteristic polynomial. This shows that the number of E-points
of Bq,n is equal to dimE Bq,n ⊗E which is in turn equal to the minimal number of generators of
Bq,n as an O-module, whence the result.

To prove the claim, we make an elementary argument with symmetric functions. If λ =
(λ1, λ2, . . .) is a partition of a nonnegative integer |λ| in which each positive integer j appears
aj = aj(λ) times, we let eλ =

∏∞
i=1 eλi =

∏∞
j=1 e

aj
j (setting ej = 0 for j > n, and 00 = 1). Let mλ

be the homogeneous symmetric polynomial in the xi of type λ (that is, the sum of all monomials
of the form

∏n
i=1 x

λi
π(i) for π ∈ Sn), regarded as an element of the ring O[e1, . . . , en]. Let M be

the O-submodule of O[e1, . . . , en] spanned by the set

S = {eλ : aj(λ) 6 q for all 1 6 i 6 n}

and the ideal Iq. Suppose that M 6= O[e1, . . . , en]. Then we may choose eλ 6∈ M such that |λ|
is minimal and such that, subject to this, λ is maximal with respect to the dominance order �
on partitions. By assumption, there is some j such that aj(λ) > q. Let λ∗ be the partition such
that eλ∗e

q
j = eλ.

Now, we have

m(qi) = q∗ei ≡ ei mod Iq.

By [Sta99, Theorem 7.4.4], m(qi) = e(iq) +
∑

µ�(iq) cµeµ for some coefficients cµ ∈ Z. Therefore

eqi = e(iq) ≡ ei −
∑
µ�(iq)

cµeµ mod Iq

and so

eλ ≡ eieλ∗ −
∑
µ�(iq)

cµeµeλ∗ mod Iq.

As q > 2, eieλ∗ ∈M by minimality of |λ|. Each term eµeλ∗ has the form eκ for a partition κ � λ
(depending on µ), and is therefore in M by maximality of λ. Therefore eλ ∈M , a contradiction.

Thus O[e1, . . . , en]/Iq is spanned by those eλ with all aj(λ) < q. In O[e1, . . . , en, e
−1
n ]/Iq we

may replace q∗en − en = eqn − en in Iq by eq−1
n − 1. It follows that O[e1, . . . , en]/Iq is spanned by

those eλ with all aj(λ) < q and with an(λ) < q − 1, as required.

Remark 2.10. We do not actually need this result, and in fact it follows from Theorem 2.16

below and the corresponding facts for XĜ.

Let T be the functor taking an O-algebra A to the set of continuous homomorphisms s : It →
T̂ (A) such that s(σq

n!
) = s(σ) (where n is the rank of G). By the same argument as in the proof
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of Proposition 2.1, this functor is representable by an affine scheme, T . We define

SĜ(q) = (T /W )q.

Choosing a generator of It shows that SĜ(q) is isomorphic to (T̂ /W )q (the isomorphism depend-
ing on the choice of generator). Recalling that C is a field containing F or E, the C-points of

SĜ(q) are in canonical bijection with the semisimple inertial Ĝ-parameters over C. Restriction
to inertia gives a morphism

chI : XĜ(q)→ SĜ(q).

2.5 Discrete parameters

Definition 2.11. Let τ : It → Ĝ(C) be an extendable homomorphism. We say that τ is discrete
if there is no proper Levi subgroup M̂ ⊂ Ĝ such that τ factors through an extendable homomor-
phism to M̂(C). We say that an inertial Ĝ-parameter is discrete if every homomorphism in its
conjugacy class is.

Lemma 2.12. If τ is a representative of an inertial Ĝ-parameter, then there is a Levi subgroup
M̂τ such that τ factors through a discrete inertial M̂τ -parameter τ : It → M̂τ (C).

Proof. Indeed, simply take M̂τ to be a Levi subgroup that is minimal subject to the condition
that M̂τ (C) contains τ(It) and that τ : It → M̂(C) is extendable.

Concretely, if [ζ] = {ζ, ζq, . . . , ζqr−1} is a q-power orbit of prime-to-p order roots of unity in
C and m > 1 is an integer, let

Jm([ζ]) =

m⊕
i=1

Jm(ζq
i
)

(recall from Section 1.2 that Jm(ζq
i
) denotes a Jordan matrix). Fix a topological generator σ ∈ It.

Then there is some k > 1 and, for 1 6 i 6 k, prime-to-q roots of unity ζi ∈ C and integers mi,
such that τ(σ) is conjugate to

k⊕
i=1

Jmi([ζi]).

We may then take M̂τ to be the standard Levi corresponding to the partition (r1m1, . . . , rkmk)
where ri = |[ζi]|.

2.6 Deformation rings

Let ρ be an F-point of XĜ(q). Then the formal completion of XĜ(q) at ρ is

XĜ
ρ = Spf RĜρ

where RĜρ is the universal framed deformation ring of ρ. The morphism XĜ(q) → SĜ(q) gives

an F-point s ∈ SĜ(q), and we let SĜs be the formal completion of SĜ(q) at s. Then we have a
morphism

chI : XĜ
ρ → SĜs .

Remark 2.13. Any continuous representation ρ : Wt → GLn(A) for a finite ring A has a unique
extension to a continuous representation of Gt. The deformation ring of ρ is therefore the same as
the deformation ring of its unique extension to Gt, which is the object more usually considered.
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We will compute the local deformation rings at specially chosen points of the special fibre.

Definition 2.14. Let f > 1 be an integer. We say that a Ĝ-parameter ρ : Wt → Ĝ(F) is f -
distinguished if there is a Levi subgroup M̂ ⊂ Ĝ such that ρ factors through an M̂ -parameter
ρM̂ : Wt → M̂(F) with the following properties:

(i) ρM̂ |It is a discrete inertial parameter;

(ii) ZGF(ρ(φf )s) ⊂ M̂F

where ZGF(ρ(φf )s) is the centralizer of the semisimple part ρ(φf )s of ρ(φf ).

We say that M̂ is an f -allowable Levi subgroup for ρ.

It is useful to rewrite this in coordinates: If M̂ is a standard Levi subgroup GLn1× . . .×GLnr

then ρ is f -distinguished with f -allowable Levi M̂ if ρ(σ), ρ(φ) ∈ M̂(F), if ρ(σ) is a regular
element of M̂(F), and if

ρ(φf ) =

A1

. . .

Ar


with Ai ∈ GLni(F) such that the Ai have pairwise disjoint sets of eigenvalues.

The utility of this definition is roughly that we may canonically conjugate lifts of ρ(φf ) to lie
in M̂ . For f large enough, this will force the entire lift of ρ to land in M̂ as well, and so we can
reduce to calculating deformation rings for discrete parameters.

Definition 2.15. If Ĝ has rank n, then an integer f > 1 is large enough for Ĝ if

vl(q
f − 1) > vl(n!).

The purpose of the next three sections is to prove the following theorem.

Theorem 2.16. Let f > 1 be large enough for Ĝ, and suppose that ρ : Wt → Ĝ(F) is f -
distinguished. Let M̂ be an allowable Levi subgroup for ρ. Then there is a formally smooth
morphism

π : XĜ
ρ → SM̂s

such that the triangle

XM̂
ρ XĜ

ρ

SM̂s

chI

π

commutes.

The following lemma will be used later to deduce a Breuil–Mézard-type result. It is not used
in the proof of Theorem 2.16.

Lemma 2.17. Let f be large enough for Ĝ. Every irreducible component of XĜ(q)F contains an
f -distinguished F′-point ρ that lies on no other component, for some finite extension F′/F.

Proof. Consider an irreducible component labelled by the inertial Ĝ-parameter τ . Let M̂ be
a Levi subgroup such that τ factors through a discrete inertial Ĝ-parameter τM̂ (one exists,
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by Lemma 2.12). We may extend τ to an M̂ -parameter ρM̂ , and so a Ĝ-parameter ρ. Then ρ

satisfies the first part of definition 2.14, with M̂ as the allowable Levi. It may not be the case
that ZĜ(ρ(φf )) ⊂ M̂ , but by twisting ρM̂ by a sufficiently general element of Z(M̂)(F′), for some

extension F′/F, this will hold. Then, after this twist, ρ is f -distinguished with allowable Levi M̂ .

That ρ lies on a unique irreducible component can be seen directly, but it is easier to appeal to

Theorem 2.16, which implies that the special fibre of XĜ
ρ,F′ has a unique irreducible component

since the same is true for SM̂s , whose special fibre is local Artinian. As the completion map

O
XĜ(q)F,ρ

→ RĜρ ⊗ F is faithfully flat, it follows that XĜ(q)F has a unique irreducible component

containing ρ as required.

Remark 2.18. It follows that Theorem 2.16 describes the local structure of XĜ(q) at a general
point of its special fibre. By combining this with the Clifford theory arguments of [CHT08]
section 2.4.4, it would be possible to obtain a similar result for the entire moduli space of
Langlands parameters (as constructed in [DHKM20]).

2.7 Diagonalization

Lemma 2.19. Suppose that X, S and F are objects of FSO and that we have morphisms
j : F → S, p : F → X and s : X → F such that:

(i) p ◦ s = idX ; and

(ii) j ◦ s ◦ p is formally smooth.

Then i = j ◦ s is formally smooth.

F X

S

p

j

s

i=j◦s

Proof. Define j′ : F → S by j′ = i ◦ p = j ◦ s ◦ p. If F and X are made into formal schemes over
S via j′ and i respectively, then p and s are maps of formal schemes over S. Indeed, i ◦ p = j′ by
definition, and j′ ◦ s = i ◦ p ◦ s = i by the hypothesis that p ◦ s = idX .

Now, as j′ is formally smooth by hypothesis, we are (after converting to objects of C∧O and
reversing all arrows) in the situation of [SPA17, Lemma 00TL], taking into account the remark
following that lemma. The result follows.

Lemma 2.20 Diagonalization Lemma. Let g ∈ Ĝ(F) have semisimple part s, and let M̂ be a
Levi subgroup of Ĝ such that M̂F = ZGF(s); note that g ∈ M̂(F). Let L̂ ⊂ Ĝ be a Levi subgroup
containing M̂ . Let c : L̂× Ĝ→ Ĝ be the conjugation map c(δ, γ) = γδγ−1.

(i) There is a section

α = δ × γ : Ĝ∧g → L̂∧g × Ĝ∧e
to the completion of c such that the map δ : G∧g → L̂∧g is formally smooth.

(ii) Suppose that A ∈ C∧O and that g ∈ L̂(A) is a lift of g. Suppose that q is an integer such that

sq and s are conjugate as elements of L̂(F). Then

{h ∈ Ĝ(A) : hgh−1 = gq} ⊂ L̂(A).

10
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Proof. (i) We may suppose that Ĝ = GLn and that L̂ = GLn1 × . . .×GLnr for some natural
numbers ni. Let

g =

X1

. . .

Xr


for some matrices Xi ∈ GLni(F) with characteristic polynomials P i. By the assumption
that M̂ ⊂ L̂, the polynomials P i are pairwise coprime. Let A ∈ CO and let g ∈ Ĝ(A) be
a lift of g. Let P be the characteristic polynomial of g. By Hensel’s lemma, P factorises
uniquely as a product P = P1 . . . Pr with each Pi a monic lift of P i. It follows that for each
i we may find a monic polynomial Ri such that

–
∏
j 6=i Pj | Ri and

– Ri ≡ Ini mod Pi.

The matrices Ri(g) are then an orthogonal system of idempotents, and define a direct sum

decomposition ofAn lying above the decomposition of Fn associated to L̂. If e
(1)
1 , . . . , e

(1)
n1 , e

(2)
1 , . . . , e

(2)
n2 , . . . , e

(r)
1 , . . . e

(r)
nr

is the standard basis of An then set f
(i)
j = Ri(g)e

(i)
j . The basis (f

(i)
j )i,j is then a basis of An

lifting the standard basis of Fn and with respect to which the action of g is a block diagonal.

Letting γ be the change of basis matrix from e
(i)
j to f

(i)
j , we have that γ ∈ 1 +Mn(mA) and

γ−1gγ ∈ L̂(A). This construction is functorial and we obtain the morphism

α : Ĝ∧s → L̂∧s × Ĝ∧e
g 7→ (δ = γ−1gγ, γ)

that is evidently a section of c.
Let π : L̂∧s ×GL∧n,e → L̂∧s be the projection so that

δ = π ◦ α : Ĝ∧s → L̂∧s .

We will apply Lemma 2.19 to the diagram

L̂∧s ×GL∧n,e Ĝ∧s

L̂∧s

c

π

α

δ

and deduce that δ is formally smooth, as required. To apply Lemma 2.19 we must show
that δ ◦ c is formally smooth. Following carefully through the construction of α, one finds
that this map is

δ ◦ c : (g, γ) 7→ γL̂gγ
−1

L̂

where γL̂ is the truncation of γ obtained by setting all of the matrix entries outside of L̂
equal to zero. This is formally smooth: we can write it as a composite

(g, γ) 7→ (g, γL̂) 7→ (γL̂gγ
−1

L̂
, γL̂) 7→ γL̂gγ

−1

L̂

in which the first and third maps are formally smooth, and the second map is an isomor-
phism.

(ii) In the notation of proof of the previous part, the assumption on s implies thatRi(g
q) = Ri(g)

for each i. Then any element h ∈ Ĝ(A) such that h−1gh = gq commutes with the projectors

11
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Ri(g). It follows that h preserves the direct sum decomposition of An associated to the
Ri(g); since g ∈ L̂, this is exactly the direct sum composition corresponding to L̂, whence
h ∈ L̂(A).

2.8 Inertially unipotent deformation rings

Fix standard topological generators σ, φ of Wt. We say that a representation ρ : Wt → Ĝ(F) is
inertially unipotent if ρ(σ) is unipotent — this is independent of the choice of σ. For this section,
we suppose that ρ : Wt → Ĝ(F) is inertially unipotent, and that it is f -distinguished with M̂ an
f -allowable subgroup.

If Ĝ = GLn,O and M̂ is an f -allowable Levi subgroup for ρ, then after conjugating, we may
assume that

ρ(σ) =

Jn1(1)
. . .

Jnr(1)

 (4)

where r, n1, . . . , nr ∈ N, and that the standard Levi subgroup M̂ =
∏r
i=1GLni is an f -allowable

subgroup for ρ.

Lemma 2.21. Suppose that A ∈ CO and that ρ : Wt → Ĝ(A) is a lift of ρ such that ρ(φ) ∈ M̂(A).

Then ρ(σ) ∈ M̂(A).

Proof. This is similar to Lemma 7.9 of [Sho18]. We may and do assume that Ĝ = GLn and that ρ
and M̂ have the form given by equation (4). Write Σ = ρ(σ) and Φ = ρ(φ). By our assumptions,
we have

Φf =

Φ1

. . .

Φr


is block diagonal with Φi ∈ GLni(A) for each i. We write

Σ =


Σ11 Σ12 . . .
Σ21 Σ22 . . .

...
...

. . .

. . . Σr(r−1) Σrr


for Σij ∈Mni×nj (A). Let I ⊂ mA be the ideal generated by all the entries of all Σij with i 6= j.

We write Σ = 1 +N for N ∈Mn(A) a lift of a nilpotent matrix. Then we have

Σqf = (1 +N)q
f

= 1 + qfN +

qf∑
i=2

(
qf

i

)
N i.

By the assumption that f is large enough for Ĝ, we have qf ≡ 1 mod mA and
(
qf

i

)
∈ mA for

1 6 i 6 n; by the assumption that ρ(σ) is unipotent we have

Nn ≡ (ρ(σ)− 1)n = 0 mod mA.

12
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We therefore obtain, for each 1 6 i, j 6 r, that

(Σqf )ij ≡ Σij mod mAI.

However, from the equation ΦfΣ = Σqf Φf , we get

ΦiΣij = (Σqf )ijΦj

≡ ΣijΦj mod mAI.

It follows that

P (Φi)Σij ≡ ΣijP (Φj) mod mAI

for any polynomial P ∈ A[X]. If Pi is the characteristic polynomial of Φi then, by the assumption
that ρ is f -distinguished and M̂ is an f -allowable Levi, Pi and Pj are coprime modulo mA. Thus
there are polynomials Q1, Q2 ∈ A[X] such that Q1Pi + Q2Pj = 1, and Pj(Φi) is invertible with
inverse Q2(Φi). But

Pj(Φi)Σij ≡ ΣijPj(Φj)

= 0 mod mAI

by the Cayley–Hamilton theorem and so Σij ≡ 0 mod mAI. As this holds for all i 6= j, we see
that I ⊂ mAI. By Nakayama’s lemma, I = 0, so that Σij = 0 for all i 6= j. Thus Σ ∈ M̂(A), as
required.

Corollary 2.22. There is a formally smooth retraction

XĜ
ρ → XM̂

ρ .

By a retraction, we mean a left inverse to the natural inclusion.

Proof. Let XΦ∈M̂
ρ ⊂ XĜ

ρ be the closed sub-formal scheme on which ρ(φ) ∈ M̂ . It follows from

Lemma 2.20 part (1), and the assumption that ρ is f -distinguished with M̂ an f -allowable

subgroup, that there is a retraction XĜ
ρ → XΦ∈M̂

ρ . But Lemma 2.21 shows that the inclusion

XM̂
ρ ⊂ XΦ∈M̂

ρ is actually an equality, and the corollary follows.

In what follows, we denote by e the identity point of T̂ (F), and use the same notation for the

corresponding points of T̂ /WM̂ , SM̂ , and so on. Let SM̂e be the completion of SM̂ (q) at e, and

for Z any of T̂ , T̂ /WM̂ or (T̂ /WM̂ )q let Ze be the completion of Z at e.

Theorem 2.23. Recall our running assumptions that ρ is inertially unipotent and f -distinguished
with f -allowable subgroup M̂ .

The map

chI : XM̂
ρ → SM̂1

is formally smooth.

Proof. This is an elaboration of the proof of [Sho18, Proposition 7.10], an argument which is
also used in [Hel, Section 5].

We can and do immediately reduce to the case that M̂ = GLn. Then ρ(σ) is a regular
unipotent element of M̂(F) and we conjugate so that it is equal to the Jordan block Jn(1).

Let T̂ be a split maximal torus in M̂ . Our chosen generator σ ∈ It identifies SM̂e with the
q-fixed points (T̂ /WM̂ )qe. Let

Z = T̂e ×(T̂ /WM̂ )e
(T̂ /WM̂ )qe.

13
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For A ∈ CO, an A-point of Z is the same as a tuple (t1, . . . , tn) of elements of 1 + mA such that

n∏
i=1

(X − ti) =
n∏
i=1

(X − tqi ).

Let Y be the closed formal subscheme of XM̂
ρ whose A-points are lifts ρ of ρ for which

ρ(σ) =


a1 1 0 0 . . .
0 a2 1 0 . . .
0 0 a3 1 . . .
...

...
. . .

. . .
. . .


for some a1, . . . , an ∈ 1 + mA. Then there is a morphism

Y → T̂

taking ρ to (a1, . . . , an). Since ρ(σ) is conjugate to ρ(σ)q, we see that this map actually factors
through a map δ : Y → Z. The diagram

Y −−−−→ XĜ
ρy y

Z −−−−→ SM̂e

commutes and so we have a morphism f : Y → Z ×(T̂ /WM̂ )qe
XM̂
ρ . Now I claim:

(i) There is a formally smooth morphism of Z-formal schemes

s : XM̂
ρ ×(T̂ /WM̂ )qe

Z → Y.

(ii) The morphism δ : Y → Z is formally smooth.

It follows from these claims, proved below, that the map chI : XM̂
ρ → (T̂ /WM̂ )qe is formally

smooth after base change to Z. Since Z → (T̂ /WM̂ )qe is finite flat, this implies (by [DG61,

Corollaire 0.19.4.6]) that XM̂
ρ → (T̂ /WM̂ )qe is formally smooth as required.

Proof of claim 1. Let P be the completion at the identity of the subgroup P of M̂ = GLn
consisting of matrices whose first column is (1, 0, . . . , 0)t. We have a morphism

α : Y × P → Xρ ×(T̂ /WM̂ )qe
Z

defined by

α : (ρ, γ) 7→ (γργ−1, δ(ρ)).

We show now that it is an isomorphism. Define a morphism

β : Xρ ×(T/WM̂ )qe
Z → Y × P

on A-points as follows: suppose given an A-point (ρ, (t1, . . . , tn)) of (Xρ ×(T/WM̂ )qe
Z); then (T −

a1)(. . .)(T − an) = chρ(σ)(T ). Let e1, . . . , en be the standard basis for An and let f1, . . . , fn be
defined recursively by:

(i) f1 = e1;

(ii) fi+1 = (ρ(σ)− ai)fi.

14
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Let γ be the matrix (with respect to the standard basis) such that γ(ei) = fi. Then γ defines a
point of P(A), as f1 = e1 and, by assumption on ρ, fi ≡ ei mod mA. Note that

ρ(σ)(fi) = fi+1 + aifi

for 1 6 i 6 n− 1, and

ρ(σ)fn = anfn + (ρ(σ)− an)fn

= anfn +
n∏
i=1

(ρ(σ)− an)fn

= anfn

by the Cayley–Hamilton theorem and the assumption on (a1, . . . , an). It follows that γ−1ργ
defines an A-point of Y lying above the A-point (a1, . . . , an) of Z.

We therefore define

β (ρ, (a1, . . . , an)) = (γ−1ργ, γ).

We evidently have α ◦ β = id, and one checks directly from the constructions that β ◦α = id. So
α and β are isomorphisms, as required. The map s of claim (1) is then just the composition of
β with projection to Y .

Proof of claim 2. Let Y → Z× (An)∧e1 be the morphism ρ 7→ (δ(ρ), ρ(φ)(e1)). I claim that this is
an isomorphism. To see injectivity (at the level of A-points), note that for i > 2 we can recover
ρ(φ)(ei) inductively from the formula

ρ(φ)(ei+1) = ρ(φ)(ρ(σ)− ai)(ei)
= (ρ(σ)q − ai)ρ(φ)(ei).

For surjectivity, note that the above inductive formula certainly determines a lift Φ of ρ(φ) with
given Φ(e1), and we have only to check that Φρ(σ) = ρ(σ)qΦ holds. For i < n, we have

Φρ(σ)(ei) = Φ(aiei + ei+1)

= Φ(aiei) + (ρ(σ)q − ai)Φ(ei)

= ρ(σ)qΦ(ei)

as required. For i = n, note that (writing Σ = ρ(σ))

(ρ(σq)− an)Φ(en) = (Σq − an)(Σq − an−1)Φ(en−1)

= . . .

= (Σq − an)(Σq − an−1)(. . .)(Σq − a1)Φ(e1)

= chΣ(Σq)Φ(e1)

= chΣq(Σq)Φ(e1)

(by our assumption on (a1, . . . , an))

= 0.

It follows that

ΦΣ(en) = Φ(anen) = ΣqΦ(en),

as required.

15
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Corollary 2.24. Let ρ and M̂ be as above. Then there is a formally smooth morphism

XĜ
ρ → SM̂e

whose composition with the inclusion XM̂
ρ ↪→ XĜ

ρ is chI .

Proof. Immediate from Corollary 2.22 and Theorem 2.23.

2.9 Reduction to the unipotent case

We explain how to deduce Theorem 2.16 from the inertially unipotent case (Corollary 2.24).
The argument is essentially that of [CHT08] Corollary 2.13 and [Cho17] Proposition 2.6, albeit
phrased slightly differently.

Fix standard topological generators σ, φ of Wt. Suppose that Ĝ is as above, that M̂ is a Levi
subgroup containing a split maximal torus T̂ , and that f is large enough for Ĝ. Let n = rk(Ĝ).

Suppose that ρ : Wt → Ĝ(F) is f -distinguished with f -allowable subgroup M̂ . Write ρ|It =
τsτu with τs semisimple and τu unipotent. Up to conjugation, using the assumption (3), we may
and do assume that τs has image in T̂ (F). Let τ̃s be the unique lift of τs to T̂ (O) having order
coprime to l.

First, we reduce to the case that the eigenvalues of τs(σ) form a single orbit under the q-power
map. Let

L̂0 = {g ∈ Ĝ : gτ̃sg
−1 = τ̃ q

i

s for some i ∈ N},
so that L̂0 = ZĜ(τ̃s) o 〈w〉 for some element w of the Weyl group W . Finally, let

L̂ = ZĜ(Z(L̂0)),

a Levi subgroup of Ĝ. Then certainly ZĜ(τ̃s) ⊂ L̂. By Lemma 2.20 (1), there is a morphism

γ : Ĝ∧ρ(σ) → Ĝ∧e such that conjugating by γ(ρ(σ)) defines a formally smooth morphism

XĜ
ρ → Xσ∈L̂

ρ

ρ 7→ γ(ρ(σ))−1ργ(ρ(σ))

where the space on the right is the closed formal subscheme of XĜ
ρ on which ρ(σ) ∈ L̂ (which is

clearly independent of the choice of σ). By part (2) of the same Lemma,

Xσ∈L̂
ρ = XL̂

ρ .

It is therefore enough to prove Theorem 2.13 with Ĝ replaced by L̂; note that ρ is still f -
distinguished as a representation valued in L̂. Since L̂ is a product of general linear groups, it in
fact suffices to prove Theorem 2.13 in the case that Ĝ = L̂ = GLn for some n. Then we have that
Z(L̂0) = Z(Ĝ), which happens if and only if the eigenvalues of τ(σ) form a single orbit under
the q-power map. So, up to conjugating ρ, we may assume that n = rd for some integers r and

d, where d is the smallest natural number with τ q
d

s = τs, and that

τ = diag(τr, τ
q
r , . . . , τ

qd−1

r ) (5)

for some homomorphism τr : It → GLr(F) with scalar semisimplification. From now on we
assume τ has this form. We also regard GLr as being embedded in GLn in the ‘top left corner’.

Let W
(d)
t be the subgroup of Wt generated by It and φd. Our next step is to show that

deforming ρ is the same as deforming the ‘top-left part’ of the restriction to W
(d)
t .

16



Generic local deformation rings when l 6= p.

Let

N̂ = ZĜ(τ̃s).

Then N̂ is the standard Levi subgroup with block sizes (r, r, . . . , r). Let π : N̂ → GLr be the
map that forgets the entries outside of the first copy of GLr ⊂ N̂ . Choose w ∈ W such that
τ qs = wτsw

−1 and such that wd = e. Specifically, with the above form of τ we can take w to be
the block matrix (with r × r blocks)

w =


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
I 0 0 . . . 0

 .

Then ρ(W
(d)
t ) ⊂ N̂(F). Let Xσ∈N̂

ρ ⊂ XĜ
ρ be the closed formal subscheme on which ρ(σ) ⊂ N̂ .

Then Lemma 2.20 implies that there is a formally smooth retraction

XĜ
ρ → Xσ∈N̂

ρ

to the natural inclusion, and that ρ(φ) ∈ wN̂ for all ρ on Xσ∈N̂
ρ . If ρ : Wt → N̂(A) o 〈w〉 is a

continuous representation, then we write ρ(d) for the representation

π ◦ ρ|
W

(d)
t

: W
(d)
t → GLr(A).

Lemma 2.25. The map

ρ 7→ ρ(d)

defines a formally smooth morphism Xσ∈N̂
ρ → XGLr

ρ(d)
.

Proof. Let A ∈ CO. For g ∈ N̂(A) any element, let gi be the projection onto the ith factor of N̂

(so gi ∈ GLr(A)). If ρ is an A-point of Xσ∈N̂
ρ , we write Σ and Φ for ρ(σ) and ρ(φ). Any point of

Xσ∈N̂
ρ (A) has the form (Σ,Φ = wΨ) for Σ,Ψ ∈ N̂(A) such that ΨiΣiΨ

−1
i = Σq

i−1 for all i (with

indices taken modulo d). Note that (Φd)1 = Ψ2 . . .ΨdΨ1. Define a morphism

Xσ∈N̂
ρ → XGLr

ρ(d)
×

d∏
i=2

GL∧
r,Ψi

(Σ, wΨ) 7→
(

(Σ1, (wΨ)d1),Ψ2, . . . ,Ψd

)
.

This is in fact an isomorphism; we may write down the inverse(
(Σζ−1,Φ),Ψ2, . . . ,Ψd

)
7→ (Σ′, wΨ′)

where Σ′ is defined by Σ′1 = Σ and Σ′i = Ψ−1
i (Σ′i−1)qΨi for i > 2, and Ψ′ is defined by Ψ′i = Ψi

for i > 2 and Ψ′1 = (Ψ2 . . .Ψd)
−1Φ. The lemma follows.

We therefore have a formally smooth map

XĜ
ρ → XGLr

ρ(d)
.

If we let M̂ ′ = M̂ ∩ GLr, then we may redo the above arguments with Ĝ replaced by M̂ and
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GLr replaced by M̂ ′ and obtain a commuting diagram

XM̂
ρ XM̂ ′

ρ(d)

XĜ
ρ XGLr

ρ(d)

(6)

in which the horizontal morphisms are formally smooth.

The representation ρ(d) : W
(d)
t → GLr(F) has the property that ρ(d)|It has semisimplifi-

cation given by a scalar t : I
(d)
t → Z(GLr(F)). Choose an extension of t to W

(d)
t and let

θ : W
(d)
t → Z(GLr(O)) be its Teichmüller lift. Twisting by θ gives a bijection between de-

formations of ρ(d) and deformations of ρ(d)⊗θ−1, which is unipotent on inertia. We can therefore

apply Corollary 2.24, which shows that there is a formally smooth morphism XGLr

ρ(d)
→ SM̂ ′(qd)t

such that the triangle

XM̂ ′

ρ(d)

XGLr

ρ(d)
SM̂ ′(qd)t.

chI (7)

commutes.

We may choose an inclusion M̂ ′ × . . .× M̂ ′ ↪→ M̂ , where there are d copies of M̂ ′, such that
conjugation by ρ(φ) ∈ M̂ permutes these copies cyclically. Take T̂ ′ to be a split maximal torus
of M̂ ′ and T̂ = T̂ ′ × . . .× T̂ ′ the split maximal torus of M̂ obtained from it. The map

(t, t
q
, . . . , t

qd−1

) : It → Z(M̂ ′ × . . .× M̂ ′)(F) ↪→ T̂ (F)

defines a point s of SM̂ (q)(F) which is exactly the point corresponding to ρ|It .

Lemma 2.26. There is an isomorphism

SM̂s = SM̂ (q)s
∼−→ SM̂ ′(qd)t

such that the diagram

XM̂
ρ SM̂s

XM̂ ′

ρ(d)
SM̂ ′(qd)t

chI

chI

(8)

commutes.

Proof. We write down the map on A-points. This sends the WM̂ -orbit of (s1, s2, . . . , sr), where

each si : It → T̂ ′(A) is a lift of s, to the WM̂ ′-orbit of s1. This is an isomorphism; its inverse is
the map taking the WM̂ ′-orbit of s1 to the WM̂ -orbit of

(s1, s
q
1, . . . , s

qd−1

1 ).

Proof of Theorem 2.16. Putting the commuting diagrams (6), (7) and (8) together, we obtain a
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commuting triangle

XM̂
ρ XĜ

ρ

SM̂s

chI

in which the right hand vertical morphism is formally smooth, as required.

3. Representations of finite general linear groups

3.1 Dual groups, tori and parameters

We follow [DR09] section 4.3 and give a formulation of Deligne–Lusztig theory that is adapted
for our purposes.

Recall that k is the residue field of F , of order q. Let G be a product of general linear groups
over k, and let T be a split maximal torus of G defined over k. We fix an l-adic coefficient
system (E,O,F). We take T̂ and Ĝ to be a dual torus of T and dual group of G, defined over
O. We assume that E is sufficiently large; precisely, we impose the assumption (3). We write
X = X(T) = Hom(T,Gm), Y = Y (T) = Hom(Gm,T), X(T̂ ) = Hom(T̂ ,Gm), and Y (T̂ ) =
Hom(Gm, T̂ ).

By definition, we have fixed isomorphisms

X(T) = Y (T̂ )

and

Y (T) = X(T̂ )

respecting the natural pairings.

We write W = W (G,T) for the Weyl group of T. It acts on the left on T. We thus obtain left
actions on X(T) and Y (T): the former is defined by wα = α◦w−1 and the latter by wβ = w◦β, for
all α ∈ X(T), β ∈ Y (T), w ∈W . Thus W acts on the left on Y (T̂ ) and X(T̂ ). Let Ŵ = W (Ĝ, T̂ ).
Then there is an isomorphism δ : W

∼−→ Ŵ such that the action of w on X(T) agrees with the
action of δ(w) on Y (T̂ ). We identify W with Ŵ along this isomorphism. Note that this differs
from the anti-isomorphism of [DR09] by an inverse; we find it more convenient to work with a
group isomorphism.

Now let T ⊂ G be another maximal torus, not necessarily split. Choose g ∈ G(k) such that
Tk = gTkg

−1. Then g−1F (g) ∈ N(Tk); write w for its image in W . This induces a bijection
between G(k)-conjugacy classes of maximal tori in G, and conjugacy classes in W . If w is any
element of W , we write Tw for a choice of torus in the corresponding conjugacy class. If F is the
geometric Frobenius morphism over k, then the diagram

Tk
adg−−−−→ Tk

wq

y F

y
Tk

adg−−−−→ Tk

commutes. Consequently, adg induces an isomorphism T(k)wq
∼−→ T (k). Choose n such that
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wn = e and write N = 1 + wq + (wq)2 + . . .+ (wq)n−1 ∈ Z[W ]. Then there is an isomorphism

N : T(kn)/(1− wq) ∼−→ T(k)wq. (9)

Recall that E satisfies assumption (3). Then we have isomorphisms

Hom(T(kn), E×) ∼= Hom(Y ⊗ k×n , E×) (10)
∼= Hom(k×n ,Hom(Y,E×)) (11)

∼= Hom(k×n , T̂ (E)), (12)

the first isomorphism coming from T(kn) = Y ⊗ k×n and the last from

T̂ (E) ∼= Hom(X(T̂ ), E×) = Hom(Y,E×).

The composite of the isomorphisms (10)–(12) takes θ ∈ Hom(T(kn), E×)) to the element s ∈
Hom(k×n , T̂ (E)) such that

y(s(α)) = θ(y(α))

for all y ∈ Y (T) = X(T̂ ) and α ∈ k×n . Combining with the isomorphism N from equation (9),
we obtain an isomorphism

Hom(T(k)wq, E×) ∼= Hom(kn, T̂ (E)w=q).

Finally, we compose with the natural surjection It � kn and note that every homomorphism
It → T̂ (E)w=q factors through this surjection, so that we have an isomorphism

Hom(T(kn)wq, E×) ∼= Hom(It, T̂ (E)w=q) (13)

that is independent of any choices (of generators for It, k
×
n , or groups of roots of unity in E). If

we choose, additionally, n to be large enough that g ∈ G(kn), and compose the isomorphism (13)
with the isomorphism adg : Tkn → Tkn , we get

Hom(T (k), E×) ∼= Hom(It, T̂ (E)w=q).

Remark 3.1. This isomorphism is exactly the restriction to tame inertia of the local Langlands
correspondence for unramified tori constructed in [DR09, section 4.3] (over the complex numbers,
but the construction works equally well over any field of characteristic zero containing enough
roots of unity).

We therefore obtain, for every T and every θ ∈ Hom(T (k), E×), a W -conjugacy class of pairs
(w, s) where w ∈W and s : It → T̂ (E)w=q. Then it is easy to check the following lemma.

Lemma 3.2. The above map taking (T, θ) to (w, s) gives a bijection between

{conjugacy classes of pairs (T, θ) : T maximal torus in G, θ ∈ Hom(T (k), E×)}

and

{W -conjugacy classes of (w, s) : w ∈W and s ∈ Hom(It, T̂ (E)w=q)}.

Recall (see for example [DM91] Definition 13.2) that two pairs (T, θ) and (T ′, θ′) are geomet-
rically conjugate if there is some n > 1 and h ∈ G(kn) such that T ′kn = hTknh

−1 and

θ ◦Nkn/k = θ′ ◦Nkn/k ◦ adh

as characters of T (kn), where Nkn/k is the norm.
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Lemma 3.3. The above map (T, θ) 7→ s induces a bijection between

{geometric conjugacy classes of pairs (T, θ)}

and

{q-power stable W -orbits of s ∈ Hom(It, T̂ (E))}.

Proof. Let n be such that wn = 1 for all w ∈W . If T is a maximal torus of G and g ∈ G(kn) is
such that Tk = gTkg

−1 and if w is the class of g−1F (g) in W , and N = 1 + qw+ . . .+ (qw)n−1 ∈
Z[W ], then we have a commuting diagram

Hom(T (k), E×)
◦ adg−−−−→ Hom(T(kn)wq, E×) −−−−→ Hom(It, T̂ (E)w=q)

◦Nkn/k

y ◦N
y y

Hom(T (kn), E×)
◦ adg−−−−→ Hom(T(kn), E×) −−−−→ Hom(It, T̂ (E)[qn − 1]).

The rightmost horizontal arrows are as above, while the rightmost vertical arrow is the obvious
inclusion. Hence geometric conjugacy classes of pairs (T, θ) are in bijection with q-power stable
W -orbits of s ∈ Hom(It, T̂ (E)) (note that such s automatically have image in T̂ (E)[qn− 1]). We
see that two pairs (T, θ) and (T ′, θ′) are geometrically conjugate if and only if the corresponding
homorphisms s and s′ are in the same W -orbit. Thus the map taking the geometric conjugacy
class of (T, θ) to the W -orbit of s is well-defined and injective. It is surjective by Lemma 3.2.

3.2 Representations of G(k)

If s ∈ Hom(It, T̂ (E)) is W -conjugate to its q-th power, we write W (s) for the stabiliser of s and

W (s, sq) = {w ∈W : ws = sq}.

Thus W (s, sq) is a left coset of W (s) in W . Note also that W (s) = W (sq), so that W (s) acts
on W (s, sq) by conjugation. Let ε : W → {±1} be the sign character. For a field C we write
KC(G(k)) for the Grothendieck group of representations of G(k) over C.

Definition 3.4 Deligne–Lusztig representations. Let (w, s) be a pair comprising an element
w of W and a homomorphism s ∈ Hom(It, T̂ (E)w=q). Then we define a virtual representation
R(w, s) of G(k) by

R(w, s) = RθT

where (T, θ) corresponds to (w, s) as in Lemma 3.2. Here RθT is the Deligne–Lusztig virtual
representation constructed in [DL76].

Definition 3.5 generalized Steinberg representations. Let s be an element of Hom(It, T̂ (E)),
W -conjugate to its qth power. Define an element

πG(s) ∈ KE(G(k))⊗Q

by

πG(s) = |W (s)|−1
∑

w∈W (s,sq)

ε(w)R(w, s).

Proposition 3.6. The element πG(s) = KE(G(k))⊗Q is (the class of) an irreducible represen-
tation.
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Proof. This follows from [DL76] Theorem 10.7 (i). The formula there states that that∑
(T,θ) mod G(k)

(−1)rkk(G)−rkk(T )〈
RθT , R

θ
T

〉 RθT (14)

is the class of an irreducible representation, where the sum is over all G(k)-conjugacy classes of
(T, θ) in the geometric conjugacy class of s (under the correspondence of Lemma 3.3).

We claim first that, if T is a maximal torus of G corresponding to w ∈W , then

(−1)rkk(G)−rkk(T ) = ε(w).

Indeed, rkk(T ) is the dimension of the (+1)-eigenspace of w acting on X(T) ⊗ C. Since the
eigenvalues of w occur in conjugate pairs, this has the same parity as the difference of rkk(G) =
dimX(T)⊗C and the dimension d of the (−1)-eigenspace. As ε(w) = det(w|X(T)) = (−1)d, we
obtain the claim.

We claim next that
〈
RθT , R

θ
T

〉
= |ZW (w) ∩W (s′)| if (T, θ) corresponds to (w, s′). Indeed, we

have the formula ( [DL76] Theorem 6.8)〈
RθT , R

θ
T

〉
= |{v ∈W (T )F : vθ = θ}|.

The identification of W (T ) with W (T) = W via adg identifies W (T )F with ZW (w) and the
stabiliser of θ with the stabiliser of s′, and we have〈

RθT , R
θ
T

〉
= |{v ∈ ZW (w) : vs′ = s′}| = |ZW (w) ∩W (s′)|

as required.

We now can rewrite the expression (14) as∑
(w,s′) mod W

ε(w)

|ZW (w) ∩W (s′)|
R(w, s′)

where the sum runs over W -conjugacy classes of pairs (w, s′) such that s′ is W -conjugate to s
and w ∈ W (s′, (s′)q). We can conjugate each term (w, s′) in this sum so that s′ = s and rewrite
it as ∑

w∈W (s,sq) mod W (s)

ε(w)

|ZW (w) ∩W (s)|
R(w, s)

where the sum is over W (s)-conjugacy classes in W (s, sq). Finally, we rewrite this as

1

|W (s)|
∑

w∈W (s,sq) mod W (s)

|W (s)|
|ZW (w) ∩W (s)|

ε(w)R(w, s),

which on application of the orbit-stabiliser theorem (to the conjugation action of W (s) on
W (s, sq)) becomes

1

|W (s)|
∑

w∈W (s,sq)

ε(w)R(w, s),

as required.

Definition 3.7. Suppose that τ : It → Ĝ(E) is an inertial Ĝ-parameter, and assume that its
semisimplification s has image in T̂ (E). Then there is a split Levi subgroup L ⊂ G, with dual
Levi L̂ ⊃ T̂ , such that τ factors through a discrete inertial L̂-parameter. Define a representation
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πG(τ) of G by

πG(τ) = Ind
G(k)
L(k) πL(s)

and note that this is (up to isomorphism) independent of the choice of L.

Next we recall some facts about the Gelfand–Graev representation. Let B be a Borel subgroup
of G containing the split maximal torus T, and let U be its unipotent radical. Let ψ : U(k) →
W (F)× be a character in general position (i.e. whose stabiliser in B/U is ZU/U).

Definition 3.8. The (integral) Gelfand–Graev representation is

ΓG = Ind
G(k)
U(k) ψ.

Up to isomorphism, it is independent of the choices of T,B, and ψ.

If A is a W (F)-algebra then we set ΓG,A = ΓG ⊗W (F) A.

Lemma 3.9. For any W (F)-algebra A, the representation ΓG,A is a projective A[G(k)]-module.

Proof. By Frobenius reciprocity, it suffices to show that A, with the action of U(k) via ψ, is a
projective A[U(k)]-module. This is true as |U(k)| is invertible in W (F).

Theorem 3.10. The representation ΓG,E is multiplicity-free, and

ΓG,E ∼=
⊕
[s]

πG(s)

where [s] runs over the q-power stable W -orbits of Hom(It, Ĝ(E)).

Proof. This is [DL76] Theorem 10.7 (ii).

The final lemma of this section is only needed to compare this article with [Sho18].

Lemma 3.11. Suppose that G is a product of general linear groups over OF , that τ : It → Ĝ(E)
is as in Definition 3.7 and that ρ : Wt → Ĝ(E) extends τ . Write K(1) = ker(G(OF ) → G(k)).
Let Π(ρ) be the representation of G(F ) associated to ρ by the local Langlands correspondence2,
and assume that Π(ρ) is generic. Then, as G(k)-representations,

Π(ρ)K(1) = πG(τ).

Proof. We immediately reduce to the case G = GLn. If L̂ and L are as in Definition 3.7, and
L/OF is a Levi subgroup of G/OF extending L/k, then for any ρ as in the lemma we can
conjugate ρ to have image in L̂(E). We then have

Π(ρ) = Ind
G(F )
P (F ) ΠL(ρ)

where ΠL is the local Langlands correspondence for L and P is a parabolic subgroup with Levi
L. Taking K(1)-invariants we see that it suffices to prove the lemma in the case that τ is discrete.

Let M/OF be a split Levi subgroup, with dual M̂ , such that the semisimple part of τ factors
through a discrete parameter s : It → M̂(E). Then there is w0 ∈ WM ⊂ W such that w0s = sq,
and associated to the pair (w0, s) we have a representation ε(w0)RM (w0, s) of M(k) which will be
cuspidal by [DL76] Theorem 8.3. We claim that πG(s) is the (unique) nondegenerate irreducible
representation ofG(k) with cuspidal support given by the pair (M(k), ε(w0)R(w0, s)). Since πG(s)

2Precisely, ρ 7→ Π(ρ) is the inverse of the map recl in [HT01] Section VII.2.
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is nondegenerate by Theorem 3.10, it suffices to show that it has the given cuspidal support. If
M ⊂ P is a parabolic subgroup defined over k, then

Ind
G(k)
M(k)RM (w0, s) = R(w0, s)

by [DL76] Proposition 8.2, where w0 is regarded as an element of both WM and W . We have to
show that

〈πG(s), ε(w0)R(w0, s)〉 6= 0.

But, by [DL76] Theorem 6.8, we have

〈πG(s), ε(w0)R(w0, s)〉 =
ε(w0)

|W (s)|
∑

w∈W (s,sq)

ε(w) 〈R(w, s), R(w0, s)〉

=
ε(w0)

|W (s)|
∑

w∈W (s,sq)

ε(w)|{x ∈W (s) : xwx−1 = w0}|

=
ε(w0)

|W (s)|
∑

x∈W (s)

ε(xw0x
−1)

= 1

as required. Now, the semisimplification of ρ has the form ρM for some ρM : Wt → M̂(F )
with ρM |It = s. Then Π(ρ) will be a discrete series representation with supercuspidal support
(M,ν) for some supercuspidal representation ν = ΠM (ρM ). It follows from [Sho18] Corollary 6.21
parts (1) and (2) that Π(ρ)K(1) is the unique nondegenerate irreducible representation of G(k)
with cuspidal support (M(k), νK(1)∩M ), and we have to show that νK(1)∩M = ε(w0)R(w0, s).
Thus we have reduced to the cuspidal case, which boils down to comparing the construction
of [DR09] with the known local Langlands correspondence for general linear groups. This is
implicit in the remarks following Theorem 1.1 of [Yos10]: we spell out the argument.

We may suppose that M = GLn and s : It → T̂ (E) is a semisimple parameter. Then

s ∼= χ⊕ χφ ⊕ . . .⊕ χφn−1

for some χ : It → T̂ (E), where χφ is the twist of χ by φ ∈ Wt, and w0 = (12 . . . n) ∈ WM
∼= Sn.

Let W ′t be the tame Weil group of the unramified extension Fn/F of degree n. Then χ extends

to a character χ̃ of W ′t and s =
(

IndWt

W ′t
χ̃
)
|It . By [HT01] Lemma 12.7 part (6),

Π
(

IndWt

W ′t
χ̃
)

= IndFFn
(Π(χ̃)).

Here IndFFn
denotes the cyclic automorphic induction of [HH95], which in this case agrees with

the construction of [Hen92]. We have that Π(χ̃)|×OFn
is inflated from the character θ of k×n

corresponding to χ via the canonical surjection It � k×n . If we take T ⊂ M to be a maximal
torus of type w0, then there is an isomorphism T (k) ∼= k×n . It follows from the main theorem

and Paragraph 3.4 of [Hen92] that
(
IndFFn

(Π(χ̃))
)K(1)

is, as a representation of K/K(1) = G(k),
precisely (−1)n−1RθT = ε(w0)R(w0, s), as required.

3.3 Endomorphisms of Gelfand–Graev representations

Notice that the q-power stable W -orbits of Hom(It, Ĝ(E)) are exactly the E-points of the affine

scheme SĜ(q) introduced previously. We write Bq,Ĝ for its ring of functions.
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Proposition 3.12. There are canonical isomorphisms

EndG(k)(ΓG,E) ∼=
∏
[s]

E ∼= Bq,Ĝ ⊗ E

where [s] runs over the q-power stable W -orbits of Hom(It, Ĝ(E)).

Proof. The first isomorphism is the product of the “Curtis homomorphisms”

EndG(k)(ΓG,E)→ EndE(πG(s)) = E.

The second takes the copy of E labelled by [s] to the copy of E corresponding to the point s of
SĜ(q).

Remark 3.13. The problem of determining the integral endomorphism ring EndG(k)(ΓG) (for
general connected reductive groups G) was considered by Bonnafé–Kessar [BK08], who obtained
a description (not involving Bq,Ĝ) when l - |W |. In the case G = GLn, it is in fact true that
the map Bq,Ĝ → EndG(k)(ΓG)⊗E that we have obtained restricts to an integral isomorphism of
Bq,Ĝ onto EndG(k)(ΓG). This is proved in [Hel] and [HM18] as a byproduct of their proof of the

local Langlands correspondence in families.3

An elementary proof (i.e. one not involving the p-adic group G(F )) of this integral isomor-
phism has been found by Li [Li21] when l > n, and in fact he proves an analogous result for G
any connected reductive group with connected centre. A third ring plays an important role: the
Grothendieck ring of mod p representations of G∗(k), where G∗ is the Deligne–Lusztig dual of
G.

If L ⊂ G is a Levi subgroup and s : It → L̂(E) is a semisimple parameter, let τL̂(s) : It →
L̂(E) be a discrete inertial parameter with semisimple part s. Its isomorphism class depends only
on the WL conjugacy class [s] of s.

Proposition 3.14. Let L ⊂ G be a Levi subgroup. Regard Ind
G(k)
L(k) (ΓL,E) as a module over Bq,L̂

via the homomorphism

Bq,L̂ → Bq,L̂ ⊗ E
∼−→ End(ΓL,E)→ End

(
Ind

G(k)
L(k) (ΓL,E)

)
.

Then, for each [s] ∈ SL̂(q)(E), we have an isomorphism of G(k)-representations

Ind
G(k)
L(k) (ΓL,E)⊗Bq,L̂,[s]

E ∼= πG(τL̂(s)).

Proof. By the definition of πG(τ), this immediately reduces to the case L = G, in which case it
follows from the definition of the isomorphism Bq,Ĝ → EndG(k)(ΓL,E) via Curtis homomorphisms.

3.4 Blocks and localisation

Let s be an F-point of SĜ(q), that is, a q-power stable semisimple conjugacy class in Hom(It, Ĝ(F)).
Then [BM89, Theorem 2.2] implies that the set of isomorphism classes of irreducible representa-
tions that occur in some R(w, s) is a union of blocks for O[G(k)]. In particular, there is a central
idempotent es ∈ O[G(k)] which acts as the identity on these irreducible representations and as
zero on the others.

3See the introduction for further remarks on this.
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Let Bq,Ĝ,s be the localisation of Bq,Ĝ at s, and consider the projective O[G(k)]-module esΓG
(a direct summand of ΓG). Then, again via the product of Curtis homomorphisms, we have a
homomorphism

Bq,Ĝ,s → End(esΓG,E).

Similarly, if L ⊂ G is a Levi subgroup we have a map

Bq,L̂,s → End(Ind
G(k)
L(k) esΓL,E)

and we obtain a corresponding version of Proposition 3.14.

4. The Breuil–Mézard conjecture

If X is any finite-dimensional scheme, let Z(X) be the free abelian group on the irreducible
components of X of maximal dimension. If X = Spf A for A ∈ C∧O, then we write Z(X) =
Z(Spec(A)).

Let G and Ĝ be as in Section 3, and suppose that (E,O,F) is sufficiently large in the sense
of assumption (3). Define a map

cyc : KE(G(k))→ Z(XĜ(q))

as follows. By Proposition 2.6, for each isomorphism class of inertial Ĝ-parameter τ : It → Ĝ(E),

there is an irreducible — in fact, geometrically irreducible — component XĜ(q, τ) of XĜ(q) such

that ρx|It ∼= τ for a Zariski dense (open) set of x ∈ XĜ(q, τ)(E). Then for σ an irreducible
E-representation of G(k) we define

cyc(σ) =
∑
τ

m(σ, τ)[XĜ(q, τ)],

where m(σ, τ) = dim HomG(k)(πG(τ), σ), and we extend this linearly to KE(G(k)).

Remark 4.1. It follows from Lemma 3.11 that cyc(σ) = cyc′(σ∗) where cyc′ is the cycle map
defined in [Sho18] 4.2 and σ∗ is the dual of σ. The dual makes no difference to the following
result.

There are reduction maps red : KE(G(k)) → KF(G(k)) and red : Z(XĜ(q)) → Z(XĜ(q)F),
the first defined by ‘choose a lattice, apply ⊗OF, and take the image in the Grothendieck group’
and the second defined by intersection with the special fibre, as in [Sho18] Section 2.3.

Theorem 4.2. There exists a homomorphism cyc : KF(G(k)) → Z(XĜ(q)F) such that the
diagram

KE(G(k))
cyc−−−−→ Z(XĜ(q))

red

y red

y
KF(G(k))

cyc−−−−→ Z(XĜ(q)F).

(15)

Proof. Let f be an integer large enough for Ĝ (see Definition 2.15). By Lemma 2.10 of [Sho18], it is
enough prove the theorem after enlarging O. Then, by [Sho18, Proposition 7.1] and Lemma 2.17,

it suffices to prove the theorem with XĜ(q) replaced by XĜ
ρ for ρ an f -distinguished F-point of

XĜ(q). (The idea is that, for each point ρ ∈ XĜ(q), the natural homomorphism

Z(XĜ(q))→ Z(XĜ
ρ )
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commutes with the cycle map and with reduction modulo l. To get the result for XĜ(q) it is then

enough to consider XĜ
ρ for a ρ on each irreducible component.) Let ρ be such an f -distinguished

point and let L̂ be an f -allowable Levi subgroup for ρ. By Theorem 2.16, there is a formally
smooth morphism

XĜ
ρ → SL̂s .

We have that SL̂s = SpecBq,L̂,s and that Bq,L̂,s is a finite flat local O-algebra.

It follows from this that Z(XĜ
ρ ⊗ F) ∼= Z is generated by the class of the unique irreducible

component, and Z(XĜ) is the free abelian group on the E-points [s] of SL̂s . With these identifi-
cations, by Theorem 2.16 the reduction map on the right is simply∑

a[s][s] 7→
∑

a[s],

and we seek a map cyc : KF(G(k))→ Z such that

cyc(σ) =
∑
[s]

m(σ, τL̂(s))

for all σ ∈ KE(G(k)).

Let Θ = Ind
G(k)
L(k) esΓL. Then Θ is a finitely generated projectiveO[G(k)]-module by Lemma 3.9,

the fact that es is an idempotent, and the fact that Ind takes projectives to projectives. If
ΘE = Θ⊗ E then we have a homomomorphism

Bq,L̂,s → EndG(k)(ΘE)

from Sections 3.3 and 3.4. For any O[G(k)]-representation σ, define Θ(σ) to be HomO[G(k)](Θ, σ),
an exact functor of σ. I claim that cyc can be defined by setting

cyc(ν) = dimF Θ(ν)

for irreducible representations ν of G(k) over F, and extending linearly. Note that, since Θ(·) is
exact, if ω is any representation of G(k) over F with image [ω] in KF(G(k)), then

cyc([ω]) = dimF Θ(ω).

Now, for σ an irreducible E-representation of G(k) admitting a lattice σ◦, the projectivity of
Θ gives that the natural map

HomO[G(k)](Θ, σ
◦)⊗O F→ HomO[G(k)](Θ, σ) (16)

is an isomorphism. Therefore∑
[s]

m(σ, τL̂(s)) =
∑
[s]

dim HomE[G(k)](ΘE ⊗Bq,Ĝ,s,[s]
E, σ)

(by Proposition 3.14 and the discussion of section 3.4)

= dimE Θ(σ)

= rankO Θ(σ◦)

= dimF Θ(σ)

(by the isomorphism (16))

= cyc(σ)

as required. The theorem follows.
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Remark 4.3. Theorem 4.2 falls slightly short of the Breuil–Mézard conjecture as formulated
in [Sho18] since, in effect, only representations of G(OF ) with K(1)-fixed vectors are considered.
It may be possible to adapt our methods to deal with all representations of G(OF ), perhaps by
using the Gelfand–Graev representation to construct a projective representation of G(OF ) that
interpolates the restrictions to G(OF ) of the various generic irreducible admissible depth zero
representations of G(F ). However, we have not yet been able to carry this out.
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