Generic local deformation rings when [ # p.

Jack Shotton

ABSTRACT

We determine the local deformation rings of sufficiently generic mod [ representations
of the Galois group of a p-adic field, when [ # p, relating them to the space of g-power-
stable semisimple conjugacy classes in the dual group. As a consequence we give a local
proof of the [ # p Breuil-Mézard conjecture of the author, in the tame case.

1. Introduction

We study the moduli space X of n-dimensional l-adic representations of the tame Weil group
of a p-adic field F', when [ # p are primes and n > 1 is an integer. The main geometric result,
Theorem 2.16, is a simple description of the completion of X at a sufficiently general point of its
special fibre. We then apply this to give a purely local proof of the author’s | # p analogue of
the Breuil-Mézard conjecture in the tame case — see Theorem 4.2. This was formulated, and
proved for [ > 3 by global automorphic methods, in [Sho18]. This result links congruences between
representations of GL,,(k), where k is the residue field of F', and ‘congruences’ between irreducible
components of X; for more background and motivation, see the introduction to [Shol§].

We give a more precise description of our results and methods in the most critical case. Let W}
be the tame Weil group and I; be the tame inertia group of F, and let (O, E,F) be a sufficiently
large [-adic coefficient system. Let ¢ be the order of k, the residue field of F', and let o be a choice
of topological generator of I;. Suppose that p: Wy — GL,,(F) is a representation such that p(co)
is regular unipotent.

Let 7' be a maximal split torus in GL, o and let W be the Weyl group. We have a ‘charac-
teristic polynomial’ map

ch:GL,o — T/W.
We consider the ¢-fixed subscheme of T/ W, which we denote by
(T/w),
and its localisation at the point € of its special fibre corresponding to the identity in T(IF)
THEOREM A Theorem 2.23. The morphism
A .
x5 = (T/W)i
defined by p + ch(p(c)) is formally smooth, where X7 is the completion of X at the point
corresponding to p.

Note that the completion %%\ is simply the framed deformation ring of p. The proof of Theo-
rem A is an elaboration of the proof of Proposition 7.10 in [Shol8].
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More generally, to each irreducible component C of the special fibre of X we associate a Levi
subgroup M C GL, .0 containing T, with Weyl group Wy, € W, and an F-point s of (T/ W)

Roughly, M is minimal such that there is p on C, and on no other component, such that p factors
through a map to M and p(o) is regular in M. By choosing p carefully we can make sure that
all its deformations can be conjugated (canonically) to land in M. Thus for sufficiently general
points p on C we obtain a morphism

“chM(p(a))" : f{%\ — (T/WM)g
and show that it is formally smooth. See Theorem 2.16. The proof proceeds by reducing first

to the case that p(g) is unipotent for all g € I; (see Section 2.9), and then to the situation of
Theorem A (see Corollary 2.22).

We explain the application to the [ # p “Breuil-Mézard conjecture” of [Shol8] in the tame
case, whose statement we briefly recall. Set G = GL; . Let Z(X) (resp. Z(Xr)) be the free
abelian group on the irreducible components of X (resp. Xr). Let Kg(G(k)) (resp. Kr(G(k))) be
the Grothendieck groups of representations of G(k) over E (resp. F). There is a ‘cycle map’

cyc: Kp(G(k)) —» Z(X)
motivated by the local Langlands correspondence (see Section 4), and natural ‘reduction maps’
red : Kp(G(k)) — Kr(G(k)) and red : Z(X) — Z(Xp). We then have
THEOREM B Theorem 4.2. There is a unique map ¢yc : Kp(G(k)) — Z(Xp) such that the
diagram

Kp(G(k) —— Z(X)

red l red l

Er(G(K)) = Z(x¥)

commutes.

If I > 2 then Theorem B follows from the main theorem of [Shol8], but we provide a purely
local proof here (in the tame case). If [ = 2 then Theorem B is new.

It is enough to prove Theorem B after formally completing at some p on each component.
We explain how to do this for p as in Theorem A. Let I' be the (integral) Gelfand-Graev
representation of G(k) over O — it is a projective O[G(k)] representation. Let B, be the
coordinate ring of (T'/W)4. Via the ‘Curtis homomorphisms’ we define a homomorphism

By;n — End(I') @ E (1)
which restricts to a homomorphism
Byne— End(el') @ E

for a certain idempotent e € O[G(k)]. (For this, we need a result of Broué-Michel in [BM89]
on the blocks of O-representations of G(k)). The special fibre of .’f% has a unique irreducible
component C and we may define

¢yc(o) = dimp Hom(T', 0)[C].
That this works is essentially a consequence of the projectivity of I', together with Theorem A.

The proof of Theorem B is carried out in Sections 3 and 4 — in Section 3 we recall the
necessary material on Gelfand—Graev and Deligne-Lusztig representations, and this is applied
to Theorem B in Section 4.
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The functor Hom(T', -) plays the role in this proof that the functor M. (-) plays in the global
proof via patching, and so one could see the relationship between this article and [Shol8| as
being parallel to that between [Pasl5] and [Kis09].

Helm and Moss have proved in [Hel] and [HM18] that the local Langlands correspondence in
families, conjectured in [EH14], exists. As a consequence, or byproduct, of their proof, it follows
that the map (1) actually defines an isomorphism

Byn = End(T). (2)

This is a result purely in the representation theory of finite groups, and it would be interesting
to have an elementary proof. For [ > n, one has been given by Li in [Li21]; we come back to
this below. Results on the endomorphism rings of integral Gelfand—Graev representations (for
general reductive groups) were obtained by Bonnafé and Kessar in [BKO08|, under the assumption
that [ does not divide the order of the Weyl group (and is distinct from p). Their description of
the endomorphism ring is quite different, not involving (T/ W4, and can genuinely fail if [ | [IW].

The idea of using the Gelfand—Graev representations came from [Hel]. Having proved Theo-
rem A, I asked David Helm whether the map (2) could be an isomorphism and our correspondence
turned up an error in an earlier version of [Hel|, which was corrected by him using, among other
things, the map (2) and the idea behind the proof of Theorem A. He was then able to show
that the map (2) was indeed an isomorphism, as a consequence of his work with Moss. There
are other ways to deduce Theorem B from Theorem A; my original method was a complicated
combinatorial induction.

We take some care to write things in a way that is independent of a choice of topological
generator of I;. Thus instead of (T/ W)? we actually use the space of g-stable W-orbits of ho-
momorphisms I; — 7'. Points of this space over E then canonically parametrize Deligne—Lusztig
representations of GL, (k) over E, a construction we learned from [DR09].

1.1 Generalizations

It is clear that much of section 3 would go through for a general reductive group. Since the writing
of the first version of this paper, Li [Li21] has done this and, much more, has given a local proof
of the isomorphism (2) for G a connected reductive group over F, with connected centre, again
under the assumption that [ does not divide the order of the Weyl group. Remarkably, his proof
uses the mod p representation theory of G(F,), despite the fact that the theorem is a result in
the mod [ representation theory.

Extending the geometric results of 2 to the case of general groups seems to be more difficult.
In forthcoming work, we hope to partially generalize the main geometric result, Theorem 2.16,
to this setting. However, this will not cover points on every irreducible component of the moduli
space of tame parameters, and will therefore not be enough for a Breuil-Mézard type conjecture.

In another direction, one could hope to remove the restrictions to tamely ramified parame-
ters and to representations of GL,,(Of) with K(1)-fixed vectors. The geometric results should
generalize straightforwardly to the full moduli space of Langlands parameters. It seems likely
that this could be combined with Bushnell-Kutzko type theory to prove the [ # p Breuil-Mézard
conjecture in the form that only involves Schneider-Zink types (see [Shol8] Remark 4.7). It is
not clear how to extend this to all representations of GL,,(OF), even when only considering the
moduli space of tame parameters as in the present paper. See Remark 4.3 for further discussion
of this point.
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1.2 Notation

An [-adic coefficient system is a triple (E, O,F) where: F is a finite extension of Q;, O is its ring
of integers, and [ is its residue field. We then define Cp to be the category of Artinian local O-
algebras with residue field F, and C/3 be the category of complete Artinian local O-algebras that
are inverse limits of objects of Con. We also consider affine formal schemes of the form Spf(R) for R
an object of Co or C}5 (taken with respect to the mp-adic topology); these form categories which
we denote by FSo or FSp) respectively (and which are canonically isomorphic to the opposite
categories of Co and Cj). For X € FSg and A € Cj5 we write X (A) = Homzgy (Spf(A), X). If
X/0O is a scheme locally of finite type, and € X (F), then we let X, = Spf (@ OX,r/mT)L(,x)
be its formal completion, an object of FS3).

If A is a ring, we write diag(z1,...,z,) for the diagonal matrix with entries z1,...,z,. If
¢ € A and n € N, then we write J,(¢) for the n x n Jordan block matrix with ¢ on the diagonal
and 1 on the superdiagonal.

2. Moduli of Weil group representations

2.1 Galois groups

Choose a maximal tamely ramified extension F! of F. This induces an algebraic closure k of k.
For n € N, let k, be the subextension of k/k having degree n over k. Let G; = Gal(F!/F). The
canonical homomorphism G; — G}, = Gal(k/k) = 7 has kernel the tame inertia subgroup I,
and the tame Weil group W; C G, is the preimage of Z under this homomorphism.

There is a canonical isomorphism
I = gn kX
where the inverse limit is under the norm maps k,, — ky, for m | n. The exact sequence
1> > G — G —1
splits, so that we have a canonical isomorphism
Gy = (m k) x Gy

where G, acts on each kS in the natural way. More concretely, if we choose a topological generator
o € I; and lift ¢ € G; of arithmetic Frobenius, then G; is isomorphic to the profinite completion
of

(¢,0|¢po9™" = o).
Note that, as a topological group, this only depends on the integer ¢q. A pair (o, ¢) as above will
be called (a choice of) standard (topological) generators of Gy (or Wy).

2.2 Moduli spaces

Fix an l-adic coefficient system (E,O,F). Let G be an algebraic group over O isomorphic to a
product of finitely many general linear groups (for the proofs of all the statements below, we can
and do immediately reduce to the case of GL, /O, but the slight extra generality will be useful

late}"). We assume throughout that F is sufficiently large in the following sense: if n is the rank
of GG, then

E contains the (¢" — 1)th roots of unity. (3)

This avoids rationality issues; we have not tried to optimize this assumption.
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PROPOSITION 2.1. The functor taking an O-algebra A to the set of continuous' homomorphisms
p: Wt — G(A)

is representable by an affine scheme %G(q) of finite type over O that is reduced, O-flat, and a
local complete intersection of dimension dimp(G) + 1.

REMARK 2.2. Work of Dat-Helm-Kurinczuk—Moss [DHKM20] shows that the analogous result
holds with G replaced by an arbitrary split connected reductive group over Z;. In fact, their
result is more general than this — on the one hand, there is no restriction to the tame Weil
group, and on the other, G may be replaced with the L-group of any connected reductive group
over F.

Proof. We may and do assume that G = GL, /O for some n. Choose standard topological
generators o and ¢ of Wy, and let W/ be the subgroup they generate. As W/ is finitely generated,
it is clear that the functor taking A to the set of homomorphisms p : W/ — G(A) is representable
by a finite-type affine scheme X over Z;. Moreover, [Hel, Proposition 6.2] implies that X enjoys

the geometric properties that we are claiming for X% (q).

LEMMA 2.3. Suppose that A is a Zj-algebra and that M is a finite A-module, free of rank n,
with an A-linear action p of W/. Then there is a unique continuous A-linear action p of Wy on
M extending that of W{.

Proof. First note that every finite image representation of W/ extends uniquely to a continuous
representation of W; (and even of Gy, since G is the profinite completion of WY).

Let A, M, and p be as in the lemma. I claim that (an!_l — 1)™ acts as zero on M. Indeed,
it suffices to check that this holds for the universal representation of W} over X. This in turn
can be checked at geometric points in characteristic zero, since X is of finite type, Z;-flat, and
reduced. But at such points the eigenvalues of ¢ are permuted by the ¢-power map, and so fixed
by the ¢™-power map. Thus they are all (¢™ — 1)th roots of unity. The result follows from the
Cayley—Hamilton theorem.

It follows that the Z;-subalgebra £ of Ends(M) generated by p(co) is a finitely generated
Z;-module. Thus there is a finitely generated Z;-submodule N of M that generates M as an
A-module and that is preserved by o, so that £ C End(N). I claim that the map k ~ p(o)¥ is
a continuous map from Z, equipped with the linear topology whose open ideals are mZ for m
coprime to p, to End(N). If k = k' mod ¢™ —1, then by the previous paragraph (p(c)F =¥ —1)" =
0. Tt follows that, for every s € N, there exists r € N such that p(c)*~¥ =1 in End(N/I*N) for
all k = k' mod (¢™ —1)I". This is the required continuity. We deduce that p extends to a unique
continuous map from the completion of (o) with respect to this topology to & C End(N). This
completion is canonically isomorphic to I;, and we therefore obtain a continuous homomorphism
I; — & C End(M). It follows from the unicity that this extends to a continuous homomorphism
W/ — End(M). O

Proposition 2.1 follows immediately, with %G(q) =X O

REMARK 2.4. The reason for formulating Proposition 2.1 with W} rather than the subgroup W}/
used in the proof is to get a moduli space whose definition does not require a choice of o.

'We topologise any Z;-algebra A as the direct limit of its finitely generated Z;-submodules, and give G(A) its
canonical topology as the points of an affine scheme over a topological ring, as in [Con12].
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2.3 Parameters

Let C be a field containing F or E, and let G be as above. In the following, we will usually omit
the word ‘tame’, since that is the only case we consider in this article.

DEFINITION 2.5. A (tame) G-parameter over C is a G(C)-conjugacy class of homomorphisms
p: Wy — G(C).

A homomorphism 7 : I; — G(C) is extendable if it extends to a homomorphism W; — G(C);
equivalently, if 7 is conjugate in G(C) to the homomorphism 79. It is semisimple /unipotent if
every element of its image is.

A (tame) inertial G-parameter over C' is a G(C)-conjugacy class of extendable homomor-
phisms 7: I; —» G (C). It is semisimple /unipotent if every homomorphism in its conjugacy class
is. Since Iy is pro-cyclic, any inertial @—parameter has a unique Jordan decomposition 7 = 747,
where 75 is a semisimple inertial G—parameter, Ty 18 a unipotent inertial G’—parameter, and the
images of 75, and 7, commute.

For every inertial G—parameter T over C, let %G(q, 7) be the Zariski closure of the C-points
p of X%(q) such that p|;, ~ 7. Then as in [Shol8, Proposition 2.6], we have:

PROPOSITION 2.6. The assignment 7 +— %é(q, T) is a bijection between semisimple inertial G-
parameters over C' and irreducible components of %G(q)c.

2.4 Moduli of semisimple parameters

Let 7' be a maximal split torus in G‘, and let W be its Weyl group. Then the quotient T/ W is
a smooth affine scheme over O of relative dimension the rank of G. If G = GL,, and T is the

standard torus, then we write an element of 7" as diag(z1,...,2,). Then T = Spec O[xfl, o

and
T/W = Spec O[x?l, e ,xfl]S" = Spec Oley, ..., en, eﬂ]

n

where e; is the ith elementary symmetric polynomial in the x;.

LEMMA 2.7. There is a unique O-morphism ch : G — T/W that extends the quotient map
T — T /W and is invariant under conjugation.

Proof. We can reduce to the case G = GL, and T is the standard torus. Then the map takes g
to the point of 7'/W at which e; is the X*-coefficient in the characteristic polynomial of g. [

DEFINITION 2.8. The g-power morphism ¢ : T — T takes t to 4. It descends to a morphism
q:T/W —T/W.
We write (T'/W)4 for the fixed-point scheme of ¢ : /W — T /W.

If G = GL, and T is standard, we write q*e; for the polynomial in the z; such that
q*ei(x1, ... zn) = ei(zd, ... zl), and let

Ion < Oleq,... ,en,egl]
be the ideal generated by (¢*e; — €;)!_ ;. Then
(T /W)4 = Spec By
for By = Olex, ... en, 5t/ Ign.
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LEMMA 2.9. The fixed-point scheme (T'/W)? is finite flat over Spec @ and reduced.

Proof. Again, we assume that G = GL, and T is the standard torus. I claim that Byn =
Olei, ..., en, e, /1, is generated as an O-module by monomials of the form e{*e3?...e%" where
0 <a; <qg—1foralli and a, < g — 1. Granted this, we see that B, is a finitely generated

O-module and that
dimz Byn ®0 E < ¢" g —1).

However, the number of E-points of B, is the number of tuples (zi,...,z,) of elements of
E” that are permuted by the g-power map. This number is the same if E” is replaced by EX;
but then it is simply the number of semisimple conjugacy classes of GL,,(k), which is seen to be
q"'(g—1) by considering the characteristic polynomial. This shows that the number of E-points
of By, is equal to dimy By, ® E which is in turn equal to the minimal number of generators of
By, as an O-module, whence the result.

To prove the claim, we make an elementary argument with symmetric functions. If A =
(A1, A2, ...) is a partition of a nonnegative integer |A| in which each positive integer j appears
a; = a;j(M) times, we let ey = [[72, en, = [[[Z, e;j (setting e; = 0 for j > n, and 0 = 1). Let m,
be the homogeneous symmetric polynomial in the x; of type A (that is, the sum of all monomials
of the form [, x;\rl(z) for m € S,,), regarded as an element of the ring Oley,...,ey]. Let M be
the O-submodule of Oley,...,e,] spanned by the set

S={ex:aj(A) <gforalll<i<n}

and the ideal I,. Suppose that M # Oley,...,e,]. Then we may choose ey & M such that ||
is minimal and such that, subject to this, A is maximal with respect to the dominance order >
on partitions. By assumption, there is some j such that a;(A\) > ¢. Let \* be the partition such
that e)\*e? =e).
Now, we have
Mgy = ¢"e; =e; mod 1.

By [Sta99, Theorem 7.4.4], m iy = €(ja) + Zu>(i‘1) cuey for some coeflicients ¢, € Z. Therefore

el = e =€ — Z cuey mod I,
p-(i9)
and so
e\ = €;exx — Z cueper mod I,.
p- (i)
As g > 2, ejex- € M by minimality of |A|. Each term e, ey« has the form e, for a partition x > X
(depending on ), and is therefore in M by maximality of X\. Therefore ey € M, a contradiction.
Thus Oley,. .., e,]/1, is spanned by those ey with all a;j(A) < ¢. In Oley, ..., en, e, ']/, we
may replace g*e, — e, = e, — e, in I, by ed™! — 1. It follows that Olex, ..., en]/1, is spanned by
those ey with all a;(\) < ¢ and with a,(\) < ¢ — 1, as required. O

REMARK 2.10. We do not actually need this result, and in fact it follows from Theorem 2.16
below and the corresponding facts for X¢.

Let 7 be the functor taking an (J-algebra A to the set of continuous homomorphisms s : I; —
T(A) such that s(c?" ) = s(o) (where n is the rank of G). By the same argument as in the proof
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of Proposition 2.1, this functor is representable by an affine scheme, 7. We define
S%(a) = (T/W)™.
Choosing a generator of I; shows that Sé(q) is isomorphic to (7'/W)4 (the isomorphism depend-

ing on the choice of generator). Recalling that C' is a field containing F or F, the C-points of

Sé(q) are in canonical bijection with the semisimple inertial G—parameters over C. Restriction
to inertia gives a morphism

chy : X6(q) — S%q).

2.5 Discrete parameters

DEFINITION 2.11. Let 7 : I; = G(C) be an extendable homomorphism. We say that 7 is discrete
if there is no proper Levi subgroup M c G such that 7 factors through an extendable homomor-
phism to M (C). We say that an inertial G-parameter is discrete if every homomorphism in its
conjugacy class is.

LEMMA 2.12. If 7 is a representative of an inertial G- -parameter, then there is a Levi subgroup
M, such that T factors through a discrete inertial M,-parameter T : I; — M, (O).

Proof. Indeed, simply take M. to be a Levi subgroup that is minimal subject to the condition
that M, (C) contains 7(I;) and that 7 : I; — M(C') is extendable.

Concretely, if [¢] = {¢,9,. .., qul} is a g-power orbit of prime-to-p order roots of unity in
C and m > 1 is an integer, let

= @ Jm(gq")
i=1

(recall from Section 1.2 that J,,, (¢?') denotes a Jordan matrix). Fix a topological generator o € I;.
Then there is some k > 1 and, for 1 < i < k, prime-to-g roots of unity (; € C' and integers m;,
such that (o) is conjugate to

k
D (16

We may then take M, to be the standard Levi corresponding to the partition (rymq,...,rxmg)
where r; = |[(;]]. O

2.6 Deformation rings
Let p be an F-point of X%(g). Then the formal completion of X%(q) at p is

= Spf RS

where Rg is the universal framed deformation ring of p. The morphism Z{é(q) — Sé(q) gives
an F-point 3 € S%(q), and we let S be the formal completion of S¥(g) at 5. Then we have a
morphism

chy : X§ — §€.

REMARK 2.13. Any continuous representation p : Wy — G L, (A) for a finite ring A has a unique
extension to a continuous representation of G;. The deformation ring of p is therefore the same as
the deformation ring of its unique extension to Gy, which is the object more usually considered.
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We will compute the local deformation rings at specially chosen points of the special fibre.

DEFINITION 2.14. Let f > 1 be an integer. We say that a G-parameter p : Wy — G( ) is f-
dzstmgmshed if there is a Levi subgroup M c G such that p factors through an M- parameter
P Wi — M (F) with the following properties:

(i) Pyl1, is a discrete inertial parameter;
(ii) ZG]F(ﬁ(¢f>s> - MF
where Zg, (p(¢f)s) is the centralizer of the semisimple part p(¢f)s of p(¢f).
We say that M is an f-allowable Levi subgroup for p.

It is useful to rewrite this in coordinates: If M isAa standard Levi supgroup GLp, x...xXGLy,
then p is f-distinguished with f-allowable Levi M if p(o),p(¢) € M(F), if p(o) is a regular
element of M (F), and if

Aq
p(e!) =
Ay
with A; € GL,,(F) such that the A; have pairwise disjoint sets of eigenvalues.

The utility of this definition is roughly that we may canonically conjugate lifts of p(¢f) to lie
in M. For f large enough, this will force the entire lift of 7 to land in M as well, and so we can
reduce to calculating deformation rings for discrete parameters.

DEFINITION 2.15. If G has rank n, then an integer f > 1 is large enough for G if
ulgh —1) > u(nl).
The purpose of the next three sections is to prove the following theorem.

THEOREM 2.16. Let f > 1 be large enough for G, and suppose that p : Wy — G(F) is f-
distinguished. Let M be an allowable Levi subgroup for p. Then there is a formally smooth
morphism

T Xﬁé — Sé‘”
such that the triangle

ﬁc—>XG

\l

commutes.

The following lemma will be used later to deduce a Breuil-Mézard-type result. It is not used
in the proof of Theorem 2.16.

LEMMA 2.17. Let f be large enough for G. Every irreducible component of %é(q)]p contains an
f-distinguished F’'-point p that lies on no other component, for some finite extension F'/F.

Proof. Consider an irreducible component labelled by the inertial G-parameter 7. Let M be
a Levi subgroup such that 7 factors through a discrete inertial G-parameter 7,; (one exists,
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by Lemma 2.12). We may extend 7 to an M -parameter p,;, and so a G—parameter p. Then p
satisfies the first part of definition 2.14, with M as the allowable Levi. It may not be the case
that Z4(p(¢’)) C M, but by twisting Py by a sufficiently general element of Z (M)(F"), for some
extension F'/FF, this will hold. Then, after this twist, p is f-distinguished with allowable Levi M.

That p lies on a unique irreducible component can be seen directly, but it is easier to appeal to
Theorem 2.16, which implies that the special fibre of X%F, has a unique irreducible component
since the same is true for ng , whose special fibre is local Artinian. As the completion map
Oxe (e Rg ® [ is faithfully flat, it follows that .’{G(q)F has a unique irreducible component
containing p as required. O

REMARK 2.18. Tt follows that Theorem 2.16 describes the local structure of X%(g) at a general
point of its special fibre. By combining this with the Clifford theory arguments of [CHTOS]
section 2.4.4, it would be possible to obtain a similar result for the entire moduli space of
Langlands parameters (as constructed in [DHKM20]).

2.7 Diagonalization
LEMMA 2.19. Suppose that X, S and F are objects of FSo» and that we have morphisms
j:F—=8 p:F— X ands: X — F such that:
(i) pos=idy; and
(ii) j o sop is formally smooth.

Then i = j o s is formally smooth.

S

F*>X

Tl

Proof. Define j' : F — S by j' =iop=josop. If F and X are made into formal schemes over
S via j' and i respectively, then p and s are maps of formal schemes over S. Indeed, iop = j' by
definition, and 7' o s = i0po s =1 by the hypothesis that po s = idy.

Now, as j' is formally smooth by hypothesis, we are (after converting to objects of /3 and
reversing all arrows) in the situation of [SPA17, Lemma 00TL], taking into account the remark
following that lemma. The result follows. O

LEMMA 2.20 Diagonalization Lemma. Let g € G‘(]F) have semisimple part s, and let M be a
Levi subgroup of G such that My = Zq,(3); note that g € M(F). Let L C G be a Levi subgroup
containing M. Let ¢ : L x G — G be the conjugation map c(8,7) = vy~ !

(i) There is a section
a=0xv:Gy— LY x Gl
to the completion of ¢ such that the map ¢ : G — I%\ is formally smooth.

(i) Suppose that A € C/5 and that g € ﬁ(A) is a lift of . Suppose that q is an integer such that
57 and 5 are conjugate as elements of L(F). Then

{h e G(A) : hgh™ = g7} C L(A).

10
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Proof. (i) We may suppose that G = GL, and that L = GLy, X ... %X GLy,, for some natural

numbers n;. Let
X1
g =
Xy

for some matrices X; € GLy,(F) with characteristic polynomials P;. By the assumption

that M C L, the polynomials P; are pairwise coprime. Let A € Co and let g € G(A) be

a lift of g. Let P be the characteristic polynomial of g. By Hensel’s lemma, P factorises

uniquely as a product P = P ... P, with each P; a monic lift of P;. It follows that for each

1 we may find a monic polynomial R; such that

~ Tl Py | R and

- R;=1,, mod P,

The matrices R;(g) are then an orthogonal system of idempotents, and define a direct sum
(1) (1 2

decomposition of A" lying above the decomposition of F™ associated to L.1f € .,y ..

is the standard basis of A™ then set f]@ =R; (g)eg.i). The basis (f](i))m is then a basis of A"
lifting the standard basis of F" and with respect to which the action of g is a block diagonal.
Letting v be the change of basis matrix from eg-l) to f]@, we have that v € 1+ M, (my4) and
~v~1gy € L(A). This construction is functorial and we obtain the morphism

i Gh s ED % G

9= =7"9717)
that is evidently a section of c.
Let 7 : L} x GLy, , — L be the projection so that
S=mnoa:Gl— L2

We will apply Lemma 2.19 to the diagram

L

L) x GL), —— G

el
Ly
and deduce that § is formally smooth, as required. To apply Lemma 2.19 we must show

that ¢ o ¢ is formally smooth. Following carefully through the construction of «, one finds
that this map is

§oc:(g7) =977
where 7; is the truncation of v obtained by setting all of the matrix entries outside of L
equal to zero. This is formally smooth: we can write it as a composite
(9,7) = (971) = (p9v; ) = 12977

in which the first and third maps are formally smooth, and the second map is an isomor-
phism.

In the notation of proof of the previous part, the assumption on s implies that R;(¢g9) = R;(g)
for each 4. Then any element h € G/(A) such that h~'gh = ¢g¢ commutes with the projectors

11
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R;(g). Tt follows that h preserves the direct sum decomposition of A™ associated to the
R;i(g); since g € L, this is exactly the direct sum composition corresponding to L, whence
h € L(A). O

2.8 Inertially unipotent deformation rings

Fix standard topological generators o, ¢ of W;. We say that a representation p : W; — G (F) is

inertially unipotent if p(o) is unipotent — this is independent of the choice of . For this section,
we suppose that p: Wy — G( ) is inertially unipotent, and that it is f-distinguished with M an
f-allowable subgroup.

If G = GL, 0 and M is an f-allowable Levi subgroup for p, then after conjugating, we may
assume that

plo) = (4)
Jnr(]‘)
where r,ny,...,n, € N, and that the standard Levi subgroup M= [[;_; GL,, is an f-allowable
subgroup for p.
LEMMA 2.21. Suppose that A € Co and that p : W, — G(A) is a lift of p such that p(¢) € M(A).
Then p(o) € M(A).

Proof. This is similar to Lemma 7.9 of [Sho18]. We may and do assume that G = GL, and that p
and M have the form given by equation (4). Write ¥ = p(0) and ® = p(¢). By our assumptions,

we have
O
ol =
D,
is block diagonal with ®; € GL,,(A) for each i. We write
Y11 X2
Yo1 Moo
Y = :
Er(r—l) X

for X5 € My, xn, (A). Let I C my be the ideal generated by all the entries of all ¥;; with i # j.
We write ¥ =1+ N for N € M,,(A) a lift of a nilpotent matrix. Then we have

54 = (14 N)
1+¢'N o~ (7 N
=1+4q +Z§:;<Z> .

By the assumption that f is large enough for G, we have ¢f =1 mod my and ( ) € my for
1 < i < n; by the assumption that p(o) is unipotent we have

N"=(p(c)—1)"=0 mod myu.

12
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We therefore obtain, for each 1 < 4,5 < r, that
(EQf)ij = Eij mod mAI.
However, from the equation ®/% = ne' of , we get
£
;X = (57 )i ®;
=2%;;®; mod mul.
It follows that
P((I)l)E” = EUP((I)]) mod mAI
for any polynomial P € A[X]. If P; is the characteristic polynomial of ®; then, by the assumption
that p is f-distinguished and M is an f-allowable Levi, P; and P; are coprime modulo m4. Thus
there are polynomials Q1,Q2 € A[X] such that Q1 P; + Q2P; = 1, and P;(®;) is invertible with
inverse Q2(®;). But
Pj(®i)Xi5 = Xij Pj(P;)
=0 mod myl
by the Cayley-Hamilton theorem and so X;; = 0 mod mal. As this holds for all i # j, we see

that I C my/. By Nakayama’s lemma, I = 0, so that ¥;; = 0 for all ¢ # j. Thus ¥ € M(A), as
required. O

COROLLARY 2.22. There is a formally smooth retraction
€ M
X5 = X5
By a retraction, we mean a left inverse to the natural inclusion.
Proof. Let Xg) eM Xﬁé be the closed sub-formal scheme on which p(¢) € M. It follows from
Lemma 2.20 part (1), and the assumption that p is f-distinguished with M an f-allowable
subgroup, that there is a retraction XﬁG — Xg’ €M But Lemma 2.21 shows that the inclusion

ng - X%D €M g actually an equality, and the corollary follows. ]

In what follows, we denote by € the identity point of T(F), and use the same notation for the
corresponding points of T/WM, SMand so on. Let SM be the completion of S™(q) at €, and
for Z any of T, T/WM or (T/WM)‘] let Zz be the completion of Z at e.

THEOREM 2.23. Recall our running assumptions that p is inertially unipotent and f-distinguished
with f-allowable subgroup M.
The map
Ch] : ng — S{w
is formally smooth.
Proof. This is an elaboration of the proof of [Shol8, Proposition 7.10], an argument which is
also used in [Hel, Section 5.

We can and do immediately reduce to the case that M = GL,. Then 5(0) is a regular

unipotent element of M (F) and we conjugate so that it is equal to the Jordan block .J,,(1).

Let T be a split maximal torus in M. Our chosen generator o € I; identifies SEM with the
g-fixed points (T'/W,)Z. Let

~

Z ="1Tg X(T/ng{)a (T/WM)g

13
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For A € Cp, an A-point of Z is the same as a tuple (¢1,...,t,) of elements of 1 + my4 such that

n n

[Tx —6) =[x —tD.

i=1 i=1
Let Y be the closed formal subscheme of X%\;[ whose A-points are lifts p of p for which

al 1 0 0
- 0 ag 1 0
pPe)=10 0 a5 1

for some aq,...,a, € 1 + my4. Then there is a morphism
Y T
taking p to (ai,...,a,). Since p(o) is conjugate to p(o)?, we see that this map actually factors

through a map 6 : ¥ — Z. The diagram

Y—>X§

Lo

Z————)Sé‘%

commutes and so we have a morphism f:Y — Z X a Xé\z . Now I claim:

/W)
(i) There is a formally smooth morphism of Z-formal schemes
5 Xé\;[

XpwrZ Y

(ii) The morphism ¢ : Y — Z is formally smooth.
It follows from these claims, proved below, that the map chy : Xé\}[ — (T/ W2 is formally

smooth after base change to Z. Since Z — (T/WM)g is finite flat, this implies (by [DG61,
Corollaire 0.19.4.6]) that Xéw — (T W2 is formally smooth as required. O

=

Proof of claim 1. Let P be the completion at the identity of the subgroup P of M = GL,
consisting of matrices whose first column is (1,0, ...,0)!. We have a morphism

defined by

a:(p,7) = (v~ 8(p))-
We show now that it is an isomorphism. Define a morphism

6 : Xﬁ X(T/W]ﬁ{)g Z =Y xP
on A-points as follows: suppose given an A-point (p, (t1,...,t,)) of (X5 X (T Wy )2 Z); then (T —

a1)(-. (T — an) = chy)(T). Let e, ..., e, be the standard basis for A” and let f1,..., f, be
defined recursively by:

(i) f1=e;
(i) fit1 = (p(o) — ai)fi.

14
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Let v be the matrix (with respect to the standard basis) such that v(e;) = f;. Then 7 defines a
point of P(A), as fi = e; and, by assumption on p, f; = e; mod my4. Note that

p(0)(fi) = fir1 +aifi

for1<i<n-—1, and

p(0) frn = an fn + (P(U) —an)fn
= anfn+ [[(p(0) = an) fa
=1

= anfn

by the Cayley-Hamilton theorem and the assumption on (ag,...,ay). It follows that v~ !py
defines an A-point of Y lying above the A-point (aq,...,a,) of Z.

We therefore define

B (p’ (alv s ’an)) = (V_IP’% ’7)'
We evidently have oo 8 = id, and one checks directly from the constructions that 5o a = id. So
a and [ are isomorphisms, as required. The map s of claim (1) is then just the composition of
B with projection to Y. O

Proof of claim 2. Let Y — Z x (A™)2 be the morphism p — (6(p), p(¢)(e1)). I claim that this is
an isomorphism. To see injectivity (at the level of A-points), note that for ¢ > 2 we can recover
p(#)(e;) inductively from the formula

p(®)(eir1) = p(9)(p(o) — ai)(es)
= (p(0)? = a;)p(¢)(ei)-

For surjectivity, note that the above inductive formula certainly determines a lift ® of p(¢) with
given ®(ep), and we have only to check that ®p(o) = p(0)?® holds. For i < n, we have

Dp(o)(ei) = P(aiei + eira)
= ®(aie;) + (p(0)" — ai)®(ei)
= p(0)"®(e:)
as required. For ¢ = n, note that (writing ¥ = p(0))
(0(07) — a)B(en) = (59— ) (59 — a_1)B(en 1)

= (37— an) (BT —ap—1)(...)(XT—a1)P(er)
= chy(X9)P(e1)
= chyq (X9)P(e1)
(by our assumption on (ai,...,a,))
=0.
It follows that
DX (ey) = Paney,) = X1®(ey),

as required. 0

15
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COROLLARY 2.24. Let p and M be as above. Then there is a formally smooth morphism
€ M
X5 — 5%
whose composition with the inclusion X%V[ — Xﬁé is chy.

Proof. Immediate from Corollary 2.22 and Theorem 2.23. 0

2.9 Reduction to the unipotent case
We explain how to deduce Theorem 2.16 from the inertially unipotent case (Corollary 2.24).
The argument is essentially that of [CHT08] Corollary 2.13 and [Chol7] Proposition 2.6, albeit
phrased slightly differently.

Fix standard topological generators o, ¢ of W;. Suppose that G is as above, that M is a Levi
subgroup containing a split maximal torus T and that f is large enough for G. Let n = rk(G)

Suppose that p : Wy — G( ) is f-distinguished with f-allowable subgroup M. Write o, =
TsTy With 75 semisimple and 7, unipotent. Up to conjugation, using the assumption (3), we may
and do assume that 7, has image in T(F). Let 7, be the unique lift of 7, to T(0) having order
coprime to [.

First, we reduce to the case that the eigenvalues of 75(o) form a single orbit under the g-power
map. Let
-1

Lo={geG:grg = %gifor some i € N},

so that Ly = Z 4 (Ts) % (w) for some element w of the Weyl group W. Finally, let
L = 74(2(Lo)),

a Levi subgroup of G. Then certainly Ze(Ts) C L. By Lemma 2.20 (1), there is a morphism
v C;'%(U) — G’ such that conjugating by v(p(c)) defines a formally smooth morphism

X¢ — X9k
p = (p(a)) " py(plo))

where the space on the right is the closed formal subscheme of Xg on which p(0) € L (which is
clearly independent of the choice of o). By part (2) of the same Lemma,

oei _ l:
Xﬁ _Xﬁ.

It is therefore enough to prove Theorem 2.13 with G replaced by L; note that 7 is still f-
distinguished as a representation valued in L. Since L is a product of general linear groups, it in
fact suffices to prove Theorem 2.13 in the case that G = L = GL,, for some n. Then we have that
Z(Lo) = Z(G), which happens if and only if the eigenvalues of 7(o) form a single orbit under
the g-power map. So, up to conjugating p, we may assume that n = rd for some integers r and
d
d, where d is the smallest natural number with 7¢ = 7,, and that
. d—1

T = diag(m, 70, ..., 7Y ) (5)
for some homomorphism 7, : Iy — GL,(F) with scalar semisimplification. From now on we
assume 7 has this form. We also regard GL, as being embedded in GL,, in the ‘top left corner’.

Let Wt(d) be the subgroup of W; generated by I; and ¢% Our next step is to show that
(d)

deforming p is the same as deforming the ‘top-left part’ of the restriction to W,

16
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Let
N = Z4(7).
Then N is the standard Levi subgroup with block sizes (ryry...,r). Let m: N — GL, be the
map that forgets the entries outside of the first copy of GL, C N. Choose w € W such that
7d = wryw™! and such that w? = e. Specifically, with the above form of 7 we can take w to be

the block matrix (with r x r blocks)

0 I 0 0
0 0 I 0
w = Do :
0 00 1
I 00 0

Then ﬁ(Wt(d)) C N(F). Let XgGN C Xﬁé be the closed formal subscheme on which p(c) C N.
Then Lemma 2.20 implies that there is a formally smooth retraction

€ enN
X5 = Xg
to the natural inclusion, and that p(¢) € wN for all p on XgeN. If p: Wy = N(A) x (w) is a
continuous representation, then we write p(d) for the representation

w5 GL,(A).

7o p

W
LEMMA 2.25. The map
pr pl?
defines a formally smooth morphism X%'GN — XﬁG(ff.

Proof. Let A € Co. For g € N(A) any element, let g; be the projection onto the ith factor of N
(so gi € GL.(A)). If p is an A-point of XgGN, we write ¥ and ® for p(o) and p(¢). Any point of

XgeN(A) has the form (2, ® = w¥) for ¥, ¥ € N(A) such that U, 35,0 = %7 | for all i (with
indices taken modulo d). Note that (®%); = ¥y... ¥,4¥;. Define a morphism

d

oeN GL, H A

X7 —>Xp<d) X GLT,%
=2

(= w®) = (S, (W), o, ., W)
This is in fact an isomorphism; we may write down the inverse
(ECH2),Ty,...,0,) — (X, 0l)
where ¥/ is defined by ¥} = ¥ and ¥, = ¥; }(X,_|)90; for i > 2, and ¥’ is defined by ¥, = ¥,
for i > 2 and ¥} = (¥y...¥,) " 1®. The lemma follows. O
We therefore have a formally smooth map
G GLy
X5 = Xp(d) .

If we let M/ = M N GL,, then we may redo the above arguments with G replaced by M and

17
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GL, replaced by M’ and obtain a commuting diagram
M M
X5 — Xﬁ(d)

[ L

€ GLy
Xﬁ —_— Xf(d)

in which the horizontal morphisms are formally smooth.
The representation (@ : Wt(d) — GL,(F) has the property that 5(¥|I, has semisimplifi-
cation given by a scalar t : It(d) — Z(GL,(F)). Choose an extension of  to Wt(d) and let

0 : Wt(d) — Z(GL,(0)) be its Teichmiiller lift. Twisting by 6 gives a bijection between de-
formations of 5 and deformations of (¥ ® #~1, which is unipotent on inertia. We can therefore

apply Corollary 2.24, which shows that there is a formally smooth morphism X (de)T — SM’ (g7

such that the triangle

XM’
[ ¢

GL, M’ d
X S T S" (¢%);

commutes.

We may choose an inclusion M’ x ... x M’ < M, where there are d copies of M’, such that
conjugation by p(¢) € M permutes these copies cyclically. Take T to be a split maximal torus
of M" and T =T’ x ... x T the split maximal torus of M obtained from it. The map

- _pd—1 ~ ~ ~
&t .. .10 ) L — Z(M' x ... x M')(F) < T(F)
defines a point s of SM (¢)(IF) which is exactly the point corresponding to 7|y, .
LEMMA 2.26. There is an isomorphism
SM = 8M(q)s = SM'(¢%);
such that the diagram
chy

eI TR

|

o ch Tt
Xty S g g,

commutes.

Proof. We write down the map on A-points. This sends the W,-orbit of (s, s2,...,s;), where
each s; : I, — 1" (A) is a lift of 5, to the Wy,-orbit of s1. This is an isomorphism; its inverse is
the map taking the W ,-orbit of s; to the W,-orbit of

(s1,8%,...,sT ). O

Proof of Theorem 2.16. Putting the commuting diagrams (6), (7) and (8) together, we obtain a

18
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commuting triangle

<1

in which the right hand vertical morphism is formally smooth, as required. O

3. Representations of finite general linear groups

3.1 Dual groups, tori and parameters

We follow [DR09] section 4.3 and give a formulation of Deligne-Lusztig theory that is adapted
for our purposes.

Recall that k is the residue field of F', of order ¢. Let G be a product of general linear groups
over k, and let T be a split maximal torus of G defined over k. We fix an [-adic coefficient
system (E,O,F). We take T and G to be a dual torus of T and dual group of GG, defined over
O. We assume that E is sufficiently large; precisely, we impose the assumption (3). We write
X = X(T) = Hom(T,G,,), Y = Y(T) = Hom(G,,,T), X(T) = Hom(T,G,,), and Y (T) =
Hom(G,,, T).

By definition, we have fixed isomorphisms
and

respecting the natural pairings.

We write W = W (G, T) for the Weyl group of T. It acts on the left on T. We thus obtain left
actions on X (T) and Y (T): the former is defined by wa = aow™! and the latter by wf = wop3, for
all € X(T), 8 € Y(T), w € W. Thus W acts on the left on Y () and X (7). Let W = W(G, T).
Then there is an isomorphism d : W Z W such that the action of w on X (T) agrees with the
action of d(w) on Y (T). We identify W with W along this isomorphism. Note that this differs
from the anti-isomorphism of [DR09] by an inverse; we find it more convenient to work with a
group isomorphism.

Now let T' C G be another maximal torus, not necessarily split. Choose g € G(k) such that
T; = gTgg~'. Then g~ 'F(g) € N(Ty); write w for its image in W. This induces a bijection
between G(k)-conjugacy classes of maximal tori in G, and conjugacy classes in W. If w is any
element of W, we write T, for a choice of torus in the corresponding conjugacy class. If F' is the
geometric Frobenius morphism over k, then the diagram

d
Ty — T

el
T, 2, T

=

=

commutes. Consequently, ady induces an isomorphism T(k)*? = T(k). Choose n such that
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w" = e and write N = 1 + wq + (wq)? + ... + (wq)"~! € Z[W]. Then there is an isomorphism
N T(kn)/(1 —wq) = T(k)™. (9)

Recall that E satisfies assumption (3). Then we have isomorphisms

Hom(T(ky), E*) 2 Hom(Y ® kS, E™) (10)
= Hom(k, , Hom(Y, E*)) (11)
=~ Hom(k, T(E)), (12)

the first isomorphism coming from T(k,) =Y ® k,* and the last from
T(E) = Hom(X (1), EX) = Hom(Y, EX).

The composite of the isomorphisms (10)-(12) takes ¢ € Hom(T(k,), £*)) to the element s €
Hom(k,\,T(E)) such that

y(s(a)) = 0(y(a))
for all y € Y(T) = X(T) and « € k7. Combining with the isomorphism N from equation (9),
we obtain an isomorphism

Hom(T(k)%?, EX) = Hom(k,, T(E)"~%).

Finally, we compose with the natural surjection I; — k, and note that every homomorphism
I, — T(E)"=1 factors through this surjection, so that we have an isomorphism

Hom (T (k,)"?, E) = Hom(I,, T(E)*=1) (13)

that is independent of any choices (of generators for Iy, k,, or groups of roots of unity in E). If
we choose, additionally, n to be large enough that g € G(k,,), and compose the isomorphism (13)
with the isomorphism ady : Ty, — T}, , we get

Hom(T'(k), EX) = Hom(I,, T(E)“=7).

REMARK 3.1. This isomorphism is exactly the restriction to tame inertia of the local Langlands
correspondence for unramified tori constructed in [DR09, section 4.3] (over the complex numbers,
but the construction works equally well over any field of characteristic zero containing enough
roots of unity).

We therefore obtain, for every T and every § € Hom(T'(k), E*), a W-conjugacy class of pairs
(w,s) where w € W and s : I; — T(E)*=%. Then it is easy to check the following lemma.

LEMMA 3.2. The above map taking (T,0) to (w,s) gives a bijection between
{conjugacy classes of pairs (T,0) : T maximal torus in G, § € Hom(T'(k), E™)}

and

~

{W-conjugacy classes of (w,s) : w € W and s € Hom(I;, T(E)"~9)}.

Recall (see for example [DM91] Definition 13.2) that two pairs (7, 6) and (7”,6') are geomet-
rically conjugate if there is some n > 1 and h € G(k;,) such that Tlgn = hT, h~! and
0 ONkn/k = 0, ONkn/k oadh

as characters of T'(ky), where Ny, /; is the norm.
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LEMMA 3.3. The above map (T,0) — s induces a bijection between
{geometric conjugacy classes of pairs (T, 0)}

and
{gq-power stable W-orbits of s € Hom(I;, T(E))}.

Proof. Let n be such that w™ =1 for all w € W. If T' is a maximal torus of G and g € G(ky,) is
such that T = gTg~ ' and if w is the class of g7 'F(g) in W, and N = 1+qw+...+ (qw)"! €
Z[W], then we have a commuting diagram

Hom(T'(k), EX) oy, Hom(T(k,)*4, EX) ——  Hom(I;, T(E)*=9)

o | | |

Hom(T (ky,), EX) AN Hom(T(ky), EX) —— Hom(l;, T(E)[¢" —1]).
The rightmost horizontal arrows are as above, while the rightmost vertical arrow is the obvious
inclusion. Hence geometric conjugacy classes of pairs (7, 6) are in bijection with g-power stable
W-orbits of s € Hom(I;, T(E)) (note that such s automatically have image in T'(E)[¢" — 1]). We
see that two pairs (T, 0) and (T",0') are geometrically conjugate if and only if the corresponding
homorphisms s and s" are in the same W-orbit. Thus the map taking the geometric conjugacy
class of (T, 6) to the W-orbit of s is well-defined and injective. It is surjective by Lemma 3.2. [

3.2 Representations of G(k)

A

If s € Hom(I;,T'(E)) is W-conjugate to its g-th power, we write W (s) for the stabiliser of s and
W(s,s?) ={weW:%s=s}

Thus W (s, s?) is a left coset of W(s) in W. Note also that W(s) = W (s?), so that W (s) acts
on W(s,s?) by conjugation. Let € : W — {£1} be the sign character. For a field C' we write
Kc(G(k)) for the Grothendieck group of representations of G(k) over C.

DEFINITION 3.4 Deligne-Lusztig representations. Let (w,s) be a pair comprising an element

w of W and a homomorphism s € Hom(l;, T'(E)"=9). Then we define a virtual representation
R(w, s) of G(k) by

R(w,s) = RY.

where (T,6) corresponds to (w,s) as in Lemma 3.2. Here R is the Deligne-Lusztig virtual
representation constructed in [DL76].

A

DEFINITION 3.5 generalized Steinberg representations. Let s be an element of Hom(I;, T'(E)),
W-conjugate to its qth power. Define an element

Ta(s) € Kp(G(k) ® Q
by
ma(s) = [W(s)| ™' D e(w)R(w,s).

weW (s,s9)

PROPOSITION 3.6. The element g (s) = Kp(G(k)) ® Q is (the class of) an irreducible represen-
tation.

21



JACK SHOTTON

Proof. This follows from [DL76] Theorem 10.7 (i). The formula there states that that

Z (—1)kk(G) =tk (T)

RS (14)
(T,0) mod G(k) <R%’ R%>

is the class of an irreducible representation, where the sum is over all G(k)-conjugacy classes of
(T, 0) in the geometric conjugacy class of s (under the correspondence of Lemma 3.3).

We claim first that, if T' is a maximal torus of G corresponding to w € W, then

(_1)rkk(G)*rkk(T) = e(w).

Indeed, rki(T") is the dimension of the (+1)-eigenspace of w acting on X(T) ® C. Since the
eigenvalues of w occur in conjugate pairs, this has the same parity as the difference of rky(G) =
dim X (T) ® C and the dimension d of the (—1)-eigenspace. As e(w) = det(w|X(T)) = (=1)%, we
obtain the claim.

We claim next that (RS, RS.) = | Zy (w) N W (s')| if (T, 6) corresponds to (w, s'). Indeed, we
have the formula ( [DL76] Theorem 6.8)

<R%,R%> = [{v e W(T)F : %0 = 6}

The identification of W(T) with W(T) = W via ad, identifies W (T)" with Zy (w) and the
stabiliser of § with the stabiliser of s’, and we have

(RY RY) = v € Zi(w) : "s' = '} = | Zw(w) N W(s)]

as required.

We now can rewrite the expression (14) as

e(w) -
2 e nw He )

(w,s’) mod W

where the sum runs over W-conjugacy classes of pairs (w, s’) such that s’ is W-conjugate to s
and w € W(s',(s')?). We can conjugate each term (w,s’) in this sum so that s’ = s and rewrite
it as

weW (s,s9) mod W (s)

e(w) w s
2 () (e )

where the sum is over W (s)-conjugacy classes in W (s, s?). Finally, we rewrite this as

1 ‘W(S ’ elw w, s
\W(snwew(sgw Zow () 0w (s R 2)

which on application of the orbit-stabiliser theorem (to the conjugation action of W (s) on
W (s, s?)) becomes

1
W Z e(w)R(w, s),

as required. O

DEFINITION 3.7. Suppose that 7 : [; — G(F) is an inertial G-parameter, and assume that its
semlslmphﬁcatlon s has image in T( ). Then there is a spht Levi subgroup L C G, with dual
Levi L D T, such that 7 factors through a discrete inertial L- parameter. Define a representation

22



GENERIC LOCAL DEFORMATION RINGS WHEN [ # p.

7w (1) of G by

e (T) = Indf((]]:)) 7r(s)

and note that this is (up to isomorphism) independent of the choice of L.

Next we recall some facts about the Gelfand—Graev representation. Let B be a Borel subgroup
of G containing the split maximal torus T, and let U be its unipotent radical. Let ¢ : U(k) —
W(F)* be a character in general position (i.e. whose stabiliser in B/U is ZU/U).

DEFINITION 3.8. The (integral) Gelfand-Graev representation is
Tg = Indg()) o.
Up to isomorphism, it is independent of the choices of T', B, and 1.
If Ais a W(IF)-algebra then we set I'g a4 = I'c Qwx) A.
LEMMA 3.9. For any W (FF)-algebra A, the representation I'g a is a projective A[G(k)]-module.

Proof. By Frobenius reciprocity, it suffices to show that A, with the action of U(k) via v, is a
projective A[U(k)]-module. This is true as |U (k)| is invertible in W (IF). O

THEOREM 3.10. The representation I'q g is multiplicity-free, and

Tap = @ rals)
[s]

~

where [s| runs over the g-power stable W-orbits of Hom(I;, G(E)).
Proof. This is [DL76] Theorem 10.7 (ii). O
The final lemma of this section is only needed to compare this article with [Shol§].

LEMMA 3.11. Suppose that G is a product of general linear groups over O, that 7 : I, — G’(E)
is as in Definition 3.7 and that p : W; — G(E) extends . Write K(1) = ker(G(Or) — G(k)).
Let TI(p) be the representation of G(F) associated to p by the local Langlands correspondence?,
and assume that I1(p) is generic. Then, as G(k)-representations,

()" = ().

Proof. We immediately reduce to the case G = GLy. If L and L are as in Definition 3.7, and
L/OF is a Levi subgroup of G/OF extending L/k, then for any p as in the lemma we can
conjugate p to have image in L(E). We then have
T(p) = Ind(3{7) Tz (p)

where Il is the local Langlands correspondence for L and P is a parabolic subgroup with Levi
L. Taking K (1)-invariants we see that it suffices to prove the lemma in the case that 7 is discrete.

Let M/Op be a split Levi subgroup, with dual M , such that the semisimple part of 7 factors
through a discrete parameter s : I; — M (E). Then there is wg € Wy C W such that wys = s9,
and associated to the pair (wp, s) we have a representation e(wg)Ras(wo, s) of M (k) which will be
cuspidal by [DL76] Theorem 8.3. We claim that 7(s) is the (unique) nondegenerate irreducible
representation of G(k) with cuspidal support given by the pair (M (k), e(wg) R(wp, s)). Since wg(s)

*Precisely, p > II(p) is the inverse of the map rec; in [HTO01] Section VII.2.
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is nondegenerate by Theorem 3.10, it suffices to show that it has the given cuspidal support. If
M C P is a parabolic subgroup defined over k, then

Indif((klz) Ry (wo, s) = R(wo, s)

by [DL76] Proposition 8.2, where wy is regarded as an element of both Wj; and W. We have to
show that

(ma(s), e(wo) R(wo, s)) # 0.
But, by [DL76] Theorem 6.8, we have

<7TG(S)76(wO)R(w07S)> = ‘;E/u(}z;’ €(w> (R(w,s),R(wo,s))
weW (s,s?)
= E(MO) e(w)|ix S) rxwxr T = w
- ‘W(S)’ wevvz(&sq) ( )|{ € W( ) 0}|
= e(wO) eE(rTWwoxr
S 2 )
=1

as required. Now, the semisimplification of p has the form pj; for some ppr : Wy — M (F)
with pas|r, = s. Then II(p) will be a discrete series representation with supercuspidal support
(M, v) for some supercuspidal representation v = I/ (par). It follows from [Shol8] Corollary 6.21
parts (1) and (2) that II(p)X() is the unique nondegenerate irreducible representation of G(k)
with cuspidal support (M (k),?KMM) and we have to show that vXMOM — ¢(wy)R(wp, 5).
Thus we have reduced to the cuspidal case, which boils down to comparing the construction
of [DR09] with the known local Langlands correspondence for general linear groups. This is
implicit in the remarks following Theorem 1.1 of [Yos10]: we spell out the argument.

We may suppose that M = GL,, and s : I; — T (E) is a semisimple parameter. Then

sgx@xd’@...@x(f’nfl
for some x : Iy — ’_]A’(E)7 where x? is the twist of ¥ by ¢ € Wy, and wg = (12...n) € Wiy = S,,.
Let W/ be the tame Weil group of the unramified extension F,,/F of degree n. Then x extends
to a character x of W/ and s = (Ind%ﬁ )2) |7,- By [HT01] Lemma 12.7 part (6),
t

Il (Ind% x) = Indg, (I1(Y)).

Here Indgn denotes the cyclic automorphic induction of [HH95], which in this case agrees with
the construction of [Hen92]. We have that II(Y)|p, is inflated from the character 6 of k

corresponding to x via the canonical surjection I; — k. If we take T" C M to be a maximal
torus of type wy, then there is an isomorphism T'(k) = k. It follows from the main theorem

and Paragraph 3.4 of [Hen92| that (Indgn (H()Z)))K(l) is, as a representation of K/K (1) = G(k),
precisely (—1)" "1 RY = e(wo) R(wo, s), as required. O

3.3 Endomorphisms of Gelfand—Graev representations

Notice that the g-power stable W-orbits of Hom(I;, G(F)) are exactly the E-points of the affine
scheme S%(¢) introduced previously. We write B, é for its ring of functions.
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PROPOSITION 3.12. There are canonical isomorphisms

Endg(k) (FG,E) = HE = Bq,@ RQF
(]

where [s| runs over the g-power stable W-orbits of Hom(I;, G(E)).

Proof. The first isomorphism is the product of the “Curtis homomorphisms”
Endg(k) (FG,E) — EndE(W(;(S>) =F.

The second takes the copy of E labelled by [s] to the copy of E corresponding to the point s of
Selq)- O
G

REMARK 3.13. The problem of determining the integral endomorphism ring Endg)(I'g) (for
general connected reductive groups G) was considered by Bonnafé—Kessar [BK08], who obtained
a description (not involving B, ) when [ { [W]. In the case G = GLy, it is in fact true that
the map Bq,é — Endg) (F'e) ® E that we have obtained restricts to an integral isomorphism of
B, & onto Endg()(I'e). This is proved in [Hel] and [HM18] as a byproduct of their proof of the
local Langlands correspondence in families.?

An elementary proof (i.e. one not involving the p-adic group G(F)) of this integral isomor-
phism has been found by Li [Li21] when [ > n, and in fact he proves an analogous result for G
any connected reductive group with connected centre. A third ring plays an important role: the
Grothendieck ring of mod p representations of G*(k), where G* is the Deligne-Lusztig dual of
G.

If L C G is a Levi subgroup and s : I} — ﬁ(E) is a semisimple parameter, let 7;(s) : I; —
Ii(E) be a discrete inertial parameter with semisimple part s. Its isomorphism class depends only
on the W, conjugacy class [s] of s.

k)

ProproSITION 3.14. Let L C G be a Levi subgroup. Regard Indf((k)

via the homomorphism

(T'z.r) as a module over Bq,L

~ G(k
B,; = B,; ®E = End(I',p) — End (IndL((k)) (FLE)) :

Then, for each [s] € SL(q)(E), we have an isomorphism of G(k)-representations

" g B2ty (s).

G
IndL(k)) (FL,E) ®Bq

7["/7[

Proof. By the definition of wg(7), this immediately reduces to the case L = G, in which case it

follows from the definition of the isomorphism B, &— Endg ) (I'z,£) via Curtis homomorphisms.
O

3.4 Blocks and localisation

Let 5 be an F-point of S(g), that is, a g-power stable semisimple conjugacy class in Hom(I;, G (F)).
Then [BM89, Theorem 2.2] implies that the set of isomorphism classes of irreducible representa-
tions that occur in some R(w, s) is a union of blocks for O[G(k)]. In particular, there is a central
idempotent es € O[G(k)] which acts as the identity on these irreducible representations and as
zero on the others.

3See the introduction for further remarks on this.
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Let B_ 4 5 be the localisation of B, e at 5, and consider the projective O[G(k)]-module esI'¢
(a direct summand of I'¢). Then, again via the product of Curtis homomorphisms, we have a
homomorphism

Bq,é‘,g — End(egFG’E).
Similarly, if L C G is a Levi subgroup we have a map

B, ;. — End(Indf{y) e<T'r )

and we obtain a corresponding version of Proposition 3.14.

4. The Breuil-Mézard conjecture

If X is any finite-dimensional scheme, let Z(X) be the free abelian group on the irreducible
components of X of maximal dimension. If X = Spf A for A € CJ, then we write Z(X) =
Z(Spec(A)).

Let G and G be as in Section 3, and suppose that (E, O,F) is sufficiently large in the sense
of assumption (3). Define a map

cye: Kp(G(k)) = Z(X%(q))
as follows. By Proposition 2.6, for each isomorphism class of inertial G—parameter r:1; » G(E (E),

there is an irreducible — in fact, geometrically irreducible — component %G(q, 7) of %G( ) such

that p;|I; = 7 for a Zariski dense (open) set of = € %G(q, 7)(E). Then for o an irreducible
E-representation of G(k) we define

cyc(o Zm o, T ¢, 7)),

where m(o, 7) = dim Homg ) (7 (7), o), and we extend this linearly to Kg(G(k)).

REMARK 4.1. It follows from Lemma 3.11 that cyc(o) = cyc’(6*) where cyc’ is the cycle map
defined in [Shol8] 4.2 and ¢* is the dual of 0. The dual makes no difference to the following
result.

There are reduction maps red : Kg(G(k)) — Kp(G(k)) and red : Z(X%(q)) — Z(X%(q)r),
the first defined by ‘choose a lattice, apply ®oF, and take the image in the Grothendieck group’
and the second defined by intersection with the special fibre, as in [Shol8] Section 2.3.

THEOREM 4.2. There exists a homomorphism ¢yc : Kp(G(k)) — Z(Z{G(q)ﬂr) such that the
diagram
Kp(G(k)) —— Z(X%(q))
redl redl (15)
Ka(G() —— Z(x%()e).

Proof. Let f be an integer large enough for G (see Definition 2.15). By Lemma 2.10 of [Sho18], it is
enough prove the theorem after enlarging O. Then, by [Sh018 Proposition 7.1] and Lemma 2.17,
it suffices to prove the theorem with Z{G( ) replaced by Xf for p an f-distinguished F-point of

Z{G(q). (The idea is that, for each point p € %é(q), the natural homomorphism
2(x%q)) = Z2(X7)
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commutes with the cycle map and with reduction modulo I. To get the result for %G(q) it is then
enough to consider XﬁG for a p on each irreducible component.) Let p be such an f-distinguished
point and let L be an f-allowable Levi subgroup for p. By Theorem 2.16, there is a formally
smooth morphism
€ L
X5 — 55
We have that SL = Spec B, ;5 and that B ; - is a finite flat local O-algebra.
It follows from this that Z (Xg ® F) = Z is generated by the class of the unique irreducible

component, and Z (%G) is the free abelian group on the E-points [s] of ng. With these identifi-
cations, by Theorem 2.16 the reduction map on the right is simply

Do aglsl = Y agy),

and we seek a map cyc : Ky(G(k)) — Z such that

cye(@) = Y m(o,7;(s))
[s]
for all 0 € Kg(G(k)).

Let © = Indf((]]:)) esI'r. Then O is a finitely generated projective O[G(k)]-module by Lemma 3.9,

the fact that ez is an idempotent, and the fact that Ind takes projectives to projectives. If
O = © ® E then we have a homomomorphism

qu/’g — EndG(k) (@E)

from Sections 3.3 and 3.4. For any O[G(k)]-representation o, define ©(c) to be Hompg1) (0, 7),
an exact functor of . I claim that ¢yc can be defined by setting

cyc(v) = dimp O(v)
for irreducible representations v of G(k) over IF, and extending linearly. Note that, since ©(-) is
exact, if w is any representation of G(k) over F with image [w] in Kr(G(k)), then
cyc([w]) = dimp O(w).
Now, for o an irreducible E-representation of G(k) admitting a lattice o°, the projectivity of
© gives that the natural map
Homo[G(k)] (@, 0°)®o F — HomO[G(k)](@, o) (16)
is an isomorphism. Therefore
> m(o,7;(s)) =Y _ dim Hompg) (O ®B, 405 £ 0)
[s] [s]
(by Proposition 3.14 and the discussion of section 3.4)

= dimg ©(0)
= rankp O(0°)
= dimy O(7)
(by the isomorphism (16))
= cyc(a)
as required. The theorem follows. O
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REMARK 4.3. Theorem 4.2 falls slightly short of the Breuil-Mézard conjecture as formulated
in [Shol8] since, in effect, only representations of G(Op) with K (1)-fixed vectors are considered.
It may be possible to adapt our methods to deal with all representations of G(Op), perhaps by
using the Gelfand—Graev representation to construct a projective representation of G(Op) that
interpolates the restrictions to G(Op) of the various generic irreducible admissible depth zero
representations of G(F'). However, we have not yet been able to carry this out.
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