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Abstract. Let l and p be distinct primes, let F be a local field with residue

field of characteristic p, and let X be the irreducible component of the moduli

space of Langlands parameters for GL3 over Zl corresponding to parameters
of Steinberg type. We show that X is Cohen–Macaulay and compute explicit

equations for it. We also compute the Weil divisor class group of the special

fibre of X, motivated by work of Manning for GL2. Our methods involve the
calculation of the cohomology of certain vector bundles on the flag variety, and

build on work of Snowden, Vilonen–Xue, and Ngo.

1. Introduction

Let F be a local field with residue field Fq of order q, a power of p. Let l be a
prime distinct from p, and let E/Ql be a finite extension with ring of integers O
and residue field F. The (framed) moduli space of Langlands parameters for GLn

over O parametrizes continuous homomorphisms

ρ : W 0
F → GLn(R)

for O-algebras R, where W 0
F is a certain choice of discretization of the Weil group of

F . It has been intensely studied in recent years due to its role in modularity lifting
theorems (for example, [Kis09] and [CHT08]) and, more recently, in geometrization
of the local Langlands conjecture as in [Zhu21], [FS21], [Hel23], and [BCHN24];
the analogous object for arbitrary reductive groups was constructed in [DHKM20],
[FS21], and [Zhu21].

There is a very explicit presentation for the clopen subscheme of tame parame-
ters: it is isomorphic to the O-scheme M = Mn,q whose R-points, for O-algebras
R, are given by

Mn,q(R) = {(Φ,Σ) ∈ GLn(R)×GLn(R) : ΦΣΦ−1 = Σq}.

This has a number of pleasant geometric properties: it is an affine complete inter-
section over O, equidimensional of relative dimension n2, it is flat over O, and it is
reduced (see [DHKM20] section 2).

The geometric irreducible components of M are in bijection with q-power stable
conjugacy classes in GLn(E). In applications of the Taylor–Wiles–Kisin method,
as well as in the analysis of the functors conjectured in [Zhu21] and [FS21], it is
natural to consider various unions of irreducible components of M obtained by
restricting the conjugacy class of Σ (the ‘type’). For n = 2, very explicit equations
for these fixed-type deformation rings were constructed by the second author in
[Sho16,HP19]. As a result, they were shown to be Cohen–Macaulay.
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In this article we consider the Steinberg component XSt defined to be the Zariski
closure of the open subset of M(E) on which Σ is a regular unipotent matrix:

XSt = {(Φ,Σ) ∈ M(E) : Σ regular unipotent}.
Our main theorem is then:

Theorem 1.1. Let n = 2 or 3 and suppose that l > n and that

q ≡ 1 mod l.

Then XSt is Cohen-Macaulay and XSt,F is normal and reduced.

Under the same hypotheses, we also obtain a complete set of equations for XSt

as a closed subscheme of GLn×GLn; a priori, it is defined only as a Zariski closure.
See Corollaries 5.4 and 5.8.

When n = 2 this theorem (except the very last part) was essentially proved
by the second author in [Sho16] by explicit methods, but we reprove it here more
geometrically. The calculations of [Sho16] were applied by Manning in [Man21]
to compute the Weil divisor class group of XSt,F. This was combined with the
Taylor–Wiles–Kisin patching method and a certain self-duality argument to identify
the ‘patched module’ as an element of the class group and deduce multiplicity 2k

results for the mod l cohomology of Shimura curves (and sets) associated to division
algebras ramified at p.

For GL3 we prove

Theorem 1.2. The Weil divisor class group of XSt,F is isomorphic to Z× Z/3Z.

Our methods also give a new method to calculate the Weil divisor class group
when n = 2, which Manning did using toric geometry; for n = 3 the variety is no
longer toric.

Unfortunately, and unlike for n = 2, the expected self-duality property does not
specify a unique element of the class group (rather, there are three possibilities).
We therefore do not make a precise conjecture for what the patched module should
be, nor a multiplicity conjecture. We also note that there are a number of other
obstructions to carrying out Manning’s argument in the case n = 3; see section 6.3
for further discussion.

The Steinberg component was previously considered by the first author [Fun23],
in which he showed that XSt is smooth when l is a banal prime, meaning that
qi ̸≡ 1 mod l for 1 ≤ i ≤ n. In fact he proved an analogous result for general G
when q is “considerate” towards l, a notion related to (but not identical with) the
generalisations of “banal” considered in [DHKM20]. This paper in some sense deals
with the other extreme, when q ≡ 1 mod l, sometimes called the quasi-banal case
(if l > n).

We use the method developed by Snowden [Sno18] to study ordinary deformation
rings. The idea is to consider a projective resolution of XSt by the variety obtained
by adding a choice of Borel subgroup containing Φ and Σ. This variety fibres over
the flag variety for GL3, and the desired properties of XSt can then be proved by
computing (enough of) the cohomology of certain vector bundles on the flag variety.
The methods for computing these cohomology groups are mostly due to Vilonen
and Xue [VX16] and Ngo [Ngo18], who were motivated by generalising Snowden’s
work in [Sno18] on ordinary deformation rings; however, we have to go beyond their
calculations due to the subtleties of working in positive characteristic and also to
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obtain our results on explicit equations and multiplicities. The idea of applying
this method in the l ̸= p setting is also original to this paper.

Similar resolutions play a role in the “generalised Springer theory” of [Zhu21] and
[BCHN24] and it would be interesting to compare our results with Conjecture 4.5.1
of [Zhu21]; however, we will not do this here.

Here is an outline of the paper. In section 2 we define the resolution we need
and explain how Theorem 1.1 follows from properties that hold for its special fibre.
In section 3 we prove these properties modulo calculations of the cohomology of
vector bundles on the flag variety; we carry out these calculations in section 4. In
section 5 we obtain explicit equations for XSt. In section 6 we use our resolution
to compute the Weil divisor class group of XSt,F and identify the canonical class
inside it. We identify the divisorial sheaves satisfying the expected self-duality, and
compute their multiplicities.

1.1. Acknowledgements. We thank Jeffrey Manning for helpful correspondence
about this research.

Much of this work was carried our during the first author’s PhD, funded by the
Engineering and Physical Sciences Research Council.

2. Resolution of Steinberg deformation rings

We let p, q, l, O, E and F be as in the introduction, let n ≥ 1 be an integer, and
consider the Steinberg component XSt as defined in the introduction; equivalently,
XSt is the Zariski closure of

{(Φ,Σ) ∈ GLn(E)×GLn(E) : ΦΣΦ−1 = Σq,Σ regular unipotent}.

inside GLn,O ×GLn,O.
From now on, we assume:

Assumption 2.1. We have l > n and q ≡ 1 mod l.

On XSt, the eigenvalues of Φ are in the ratio 1 : q : . . . : qn−1. Since q ≡ 1 mod l
and l ∤ n, there is then an isomorphism Gm ×X ∼−→ XSt where

X = {(Φ,Σ) ∈ XSt : tr(Φ) = 1 + q + . . .+ qn−1.}

= {(Φ,Σ ∈ XSt : charΦ(T ) =

n−1∏
i=1

(T − qi))}.

It will be technically more convenient to work with X . Here charΦ(T ) is the char-
acteristic polynomial of Φ.

As l > n, the logarithm map Σ 7→ log(Σ− 1) is well defined for unipotent Σ and
hence on X we may write Σ = exp(N) for a nilpotent matrix N ∈ g, where g is the
Lie algebra of GLn; the defining equation then becomes ΦNΦ−1 = qN . In what
follows we will describe points on X in the form (Φ, N).

We let X = X red
F ; it will follow from our work below that

X = {(Φ,Σ) ∈ X (F) : Σ regular nilpotent},

which is irreducible. This fact also follows from the results of [Sho18] Section 7.
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2.1. Resolution of X . Let B ⊂ GLn be the standard Borel subgroup with Lie
algebra b; let N be its unipotent radical, with Lie algebra n. Let F ∼= G/B be
the flag variety; for an O-algebra R, we can write a point F ∈ F(R) as a flag
0 ⊂ Fn−1 ⊂ . . . ⊂ F0 = Rn with the Fi projective R-modules such that gri(F•)
are all projective. We define Z to be the closed subscheme of G× g×F given (on
R-points) as the set of triples (Φ, N, F ) such that

(Φ− qi)Fi ⊂ Fi+1

and

NFi ⊂ Fi+1

for i = 0, . . . , n− 1. We define Y ⊂ Z as the closed subscheme with

Y(R) = {(Φ, N, F ) ∈ Z(R) : ΦNΦ−1 = qN}.
We thus have a closed embedding Y ↪→ Z fitting into the diagram below:

Z Y X

F

πZ π

f

Lemma 2.2. The morphism f : Y → X given by forgetting F is a projective
morphism. It is an isomorphism over the open subset of X on which N is regular
or l is invertible.

Proof. The scheme Y is a closed subscheme of X × F and F is projective, thus
Y → X is projective. Let U denote the open subset of X on which N is regular or
l is invertible. We write down an inverse to f on U by writing down the required
flag for each R-point (Φ, N) of U :

• When N is regular (that is, its value at each point of SpecR is regular),
take Fi = ker(Nn−i);

• When l is invertible, take Fi =
⊕n−1

j=i ker(Φ− qi).

The relation ΦNΦ−1 = qN implies that these agree on the locus where N is regular
and l is invertible, and one can check that this defines a two-sided inverse U →
f−1(U) ⊂ Y of f |f−1(U). □

Lemma 2.3. (1) The scheme Z is an affine bundle over F ; in particular, it
is O-flat and ZF is reduced and irreducible.

(2) If n ≤ 3, Y is O-flat and YF is reduced and irreducible. It is a local complete
intersection, and hence Cohen–Macaulay.

Proof. (1) We may cover F by open affine subschemes U , with U = Spec(A),
such that the projection GLn → F has a section γ : U → GLn. Notice that
γ ∈ GLn(A), so the universal pair (Φ, N) on π−1

Z (U) takes the form

(γ(Φ0 +M)γ−1, γNγ−1)

with Φ0 = diag(qn−1, ..., q, 1) and M,N ∈ n. It is now easy to see that
π−1
Z (U) ∼= U × n2; examining the behaviour of M under conjugation by B

gives that Z is an affine bundle.
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(2) When n = 2, Y = Z, so we are done.
For n = 3, the argument of part 1 gives similarly that Y×FU ∼= U×C(n),

where

C(n) = {(M,N) ∈ n× n|(Φ0 +M)N − qN(Φ0 +M) = 0}
Let

M =

0 a b
0 0 c
0 0 0


and

N =

0 d e
0 0 f
0 0 0

 .

Then the equation defining C(n) is (q2 − 1)e+ af − dc = 0. This equation
is not divisible by a uniformiser of O, so C(n) and hence Y is O-flat. Now,
C(n)F is the affine hypersurface in SpecF[a, b, c, d, e, f ] defined by af−cd =
0. Since af − cd is irreducible, the rest of part (2) follows. □

Recall that X = X red
F , and define Y = YF. Since Y is reduced, the morphism

Y → XF factors through X. Abusing notation slightly, we also write f for this map
Y → X. The proof of the next theorem occupies most of the next two sections.

Theorem 2.4. Suppose that n ≤ 3 (and recall that Assumption 2.1 entails l > n).

(1) The morphism f : Y → X is birational,

Rif∗OY = Rif∗ωY = 0

for i > 0, and the induced map OX → f∗OY is an isomorphism.
(2) The variety X is Cohen-Macaulay, with X = Spec Γ(Y,OY ), and ωX

∼=
f∗ωY .

Proof. Part (2) of Theorem 2.4 follows from part (1) by Lemma 2.1.4 of [Sno18] and
the fact that Y is Cohen–Macaulay. We will prove part (1) in the next section. □

Remark 2.5. In fact Y has resolution-rational singularities — because of the
corresponding fact for the cone on a smooth quadric in P3 — and it follows that X
also has resolution-rational singularities, the strongest of various possible notions
of rational singularity in positive characteristic discussed in [Kov22].

2.2. Proof of Theorem 1.1. In this section, we explain how to deduce Theo-
rem 1.1 from Theorem 2.4. As XSt

∼= X ×Gm, we need only prove the theorem for
X . Let B = Γ(Y,OY) and A = Γ(X ,OX ). Thus we have a morphism f∗ : A → B
that we would like to show is an isomorphism.

By flat base change, B⊗OE = Γ(YE ,OYE
) = Γ(XE ,OXE

) = A⊗OE. Moreover,
as f : Y → X is proper, B is a finite A-algebra.

Lemma 2.6. We have B ⊗O F = Γ(Y,OY ).

Proof. Using the short exact sequence 0 → OY
×ϖ−−→ OY → OY → 0 it suffices to

show that H1(Y,OY) = 0. Using that X is affine, this is equivalent to showing
that R1f∗(OY) = 0. By Theorem 2.4, Rif∗(OY ) = 0 for i ≥ 1 and, in particular,
(R1f∗OY) ⊗ F = 0 (using the short exact sequence again). But we also have
R1f∗OY ⊗ E = 0 by flat base change and the fact that f is an isomorphism after
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inverting l. Now R1f∗OY is a finitely-generated A-module M (as f is proper) such
that M ⊗O F = M ⊗O E = 0, from which it follows that M = 0. □

Proposition 2.7. The map A → B is an isomorphism.

Proof. We know the proposition after inverting l. We claim that A → B is sur-
jective. After ⊗F, this follows as, by the previous lemma and Theorem 1.1 (2),
B ⊗O F = Γ(Y,OY ) = (A ⊗O F)red. But then the cokernel, a finite A-module,
vanishes after ⊗E and ⊗F and so must be zero, as at the end of the previous proof.

Now, A → B is a surjective map of flat O-algebras that is an isomorphism after
inverting l, and is therefore an isomorphism, as required. □

Proof of Theorem 1.1. Since A is ϖ-torsion free, ϖ is a regular element of A. By
Proposition 2.7, A ⊗O F = B ⊗O F = Γ(Y,OY ). This algebra is reduced since Y
is reduced, and so X = Spec(A ⊗O F). By Theorem 2.4, X is Cohen–Macaulay.
Finally, we will show below in Lemma 6.3 that the singular locus of X has codi-
mension 2, and so X is normal and reduced by Serre’s criterion and the fact that
it is Cohen–Macaulay. □

3. Vector bundles on the flag variety

Our aim in this section is to prove Theorem 2.4, modulo technical cohomological
calculations that we defer until later.

Recall that X = X red
F and Y = YF, and similarly define Z = ZF and F =

FF. Note that Y ⊂ Z is a closed subscheme (and this is an equality for n = 2).
We continue to write π and πZ for the natural morphisms Y → F and Z → F ,
respectively. This gives us the following diagram of varieties over F:

Z Y X

F

πZ π

f

Since πZ is affine, for any coherent sheaf V on Z we haveHi(Z,V) = Hi(F, πZ,∗V)
(and similarly for sheaves on Y ). This is the starting point of our analysis.

3.1. Bundles, roots, weights. Working always over the field F, we let G = SLn

(a small departure from the previous section) and take B to be the standard Borel
subgroup of upper triangular matrices, with T the standard torus and U the unipo-
tent radical. Let g, b, t and n be their respective Lie algebras. We write X(T ) for
the character group of T , choose a system of positive roots such that the weights
of n are negative, and write ρ for half the sum of the positive roots.

If V is a variety over F with an action of B, then we can form G ×B V , which
is a fibre bundle over F with fibre V , and carries an action of G compatible with
that on G/B.

If V is the vector-space scheme underlying a finite-dimensional representation of
B, then we obtain a G-equivariant vector bundle on F , and this furnishes an equiv-
alence of abelian categories between finite-dimensional representations of B over
F and G-equivariant locally free coherent sheaves on F . We will therefore iden-
tify finite-dimensional representations of B with the corresponding G-equivariant
coherent sheaves.
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The representation g is self-dual via the trace pairing and under this pairing
b = n⊥; thus n∗ ∼= g/b as B-representations. If χ ∈ X(T ) is a character, we write
O(χ) for the corresponding G-equivariant line bundle on F . For E a coherent sheaf
on F we write E(χ) = E ⊗OF

O(χ).

3.2. The varieties Y and Z. Examining the proof of Lemma 2.3 and noting that
Φ0 there is the identity matrix over F, we see that

Z ∼= G×B (n× n)

and that
Y ∼= G×B C(n)

where
C(n) = {(M,N) ∈ n× n : [M,N ] = 0}.

In particular, Z is a vector bundle over F .

Lemma 3.1. Suppose that n = 2 or n = 3. Then the morphism f : Y → X is
birational.

Proof. It follows from the above that Y is irreducible. Since Y → X is proper,
surjective over E, and X is flat over O, we see that f is surjective. As n ≤ 3, Y is
irreducible, and so the same is true for X. Moreover, dimY = n2 − 1 (again, for
n ≤ 3), and this is also the dimension of the set of points (M,N,F ) ∈ Y such that
N is regular. But f is an isomorphism on this locus, and is therefore birational. □

If E is a coherent sheaf on Z, we write E(χ) = E ⊗OZ
π∗
ZO(χ). The projection

formula then gives the compatibility

πZ,∗E(χ) ∼= (πZ,∗E)(χ).
Similarly for coherent sheaves on Y .

Proposition 3.2. We have the following isomorphisms:

πZ,∗OZ
∼= Sym[(g/b)2](1)

ωZ
∼= OZ(2ρ)(2)

and, if n = 3, then

IY ∼= OZ(ρ)(3)

ωY
∼= OY (ρ).(4)

Remark 3.3. Part (1) is implicit in [VX16], while part (3) may be found in [Ngo18].
We include a proof here since we also require the result in positive characteristic,
as well as the versions with the dualizing sheaf.

Proof. (1) We have that Z is the total space of the G-equivariant vector bundle
n2, and n∗ ∼= g/b. Therefore

Z = Spec
F
(Sym[(g/b)2]),

and the result follows.
(2) Recall that ωZ

∼= ωZ/F ⊗OZ
π∗
ZωF because πZ and F are smooth. We also

recall from [Jan03] II. §4.2 that ωF
∼= O(−2ρ). It remains to calculate

ωZ/F . Notice that the relative tangent bundle has TZ/F = π∗
Z((n)

2), so

ωZ/F
∼= π∗

Z det((g/b)2) = π∗
Z(O(4ρ)). Therefore

ωZ
∼= π∗

Z(O(−2ρ)⊗O(4ρ)) = π∗
Z(O(2ρ)) = OZ(ρ).
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(3) Write a general point of n2 as

(M,N) =

0 a b
0 0 c
0 0 0

 ,

0 d e
0 0 f
0 0 0


as in Lemma 2.3. Then a, b, . . . , f are a basis for (n2)∗. The ideal sheaf
of C(n) inside Sym[(n2)∗] is principal, generated by af − dc, which is an
element of Sym2[(n2)∗] of weight ρ.1 In other words,

IC(n)
∼= On×n(ρ)

as B-equivariant sheaves on n2. Since Y = G×B C(n) ⊂ G×B n2 = Z we
get that

IY ∼= OZ(ρ)

as required.
(4) This follows from the adjunction formula (see [Sta17, Section 0AU3 (7)])

ωY = i∗(ωZ ⊗OZ
I∨
Y )

and parts (2) and (3). □

3.3. Proof of Theorem 2.4. We first prove Theorem 2.4 when n = 2. This
essentially appears (in the context of ordinary deformation rings when l = p) in
section 3.3 of [Sno18], but we include the proof here to illustrate the ideas in this
setting and to prepare the ground for the more complicated case n = 3.

Proof of Theorem 2.4 when n = 2. In this case F = P1 and Y = Z is the total
space of the vector bundle n2. As line bundles on P1, we see that

g/b ∼= n∗ ∼= O(2)

and O(ρ) ∼= O(1), so that

H1(P1,Symr
[
(g/b)2

]
) = H1(P1,Symr

[
(g/b)2

]
(2ρ)) = 0

for every r ≥ 0. By Proposition 3.2,

H1(Y,OY ) = H1(F, π∗OY ) = 0

and
H1(Y, ωY ) = H1(F, π∗ωY ) = 0.

Since X is affine, H1(Y,OY ) = H0(X,R1f∗OY ) vanishes and so

R1f∗OY = 0.

Similarly, R1f∗ωY = 0.
It remains to show that f∗ : H0(X,OX) ↪→ H0(Y,OY ) is an isomorphism. For

convenience, we set R = H0(X,OX) and R̃ = H0(Y,OY ). We note that the natural
map

H0(F,Sym
[
g2
]
) = F[g2] → R

is surjective because X is defined as a closed subscheme of g2 (and recall that we
are identifying g ∼= g∗ via the trace pairing). Let I be the kernel of this surjection.
The composite

H0(F,Sym
[
g2
]
) → R

f∗

−→ R̃ = H0(F,Sym
[
(g/b)2

]
)

1Recall that our convention is that the weights of n are negative.

https://stacks.math.columbia.edu/tag/0AU3
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is the morphism induced by the natural surjective map of coherent sheaves g2 →
(g/b)2.

Letting S = F[g2] and S+ be the irrelevant ideal of S, Proposition 2.1.5 of [Sno18]
gives us that

TorS0 (R,F) = R̃/S+R̃ ∼= H0(F,OF )⊕H1(F, b2).

Because of the (non-equivariant) isomorphism of vector bundles b ∼= O(−1)2, this

shows that R̃/S+R̃ is 1-dimensional. Hence the composite F[g2] → R → R̃ is
surjective. It follows that the map H0(X,OX) → H0(Y,OY ) is an isomorphism as
required. □

Remark 3.4. The above proof works equally well for the Steinberg component of
the fixed-determinant moduli space in the case l = 2.

Next we turn to the main case of interest for this article, n = 3; we defer the
actual cohomological calculations until the next section.

Proof of Theorem 2.4 when n = 3. By Proposition 4.15 below,

Hi(Y,OY ) = Hi(Y, ωY ) = 0

for all i > 0. To prove the theorem, the only thing that remains to check is
that the natural morphism f∗H0(X,OX) ↪→ H0(Y,OY ), injective since Y → X is
birational, is an isomorphism.

As in the case n = 2, define S = F[g2] = Sym[g2], with irrelevant ideal S+.

Let R̃ = H0(Z,OZ) for Z the total space of the vector bundle n2 on G/B. By
Lemma 4.12, Hi(Z,OZ) = 0 for i > 0. We may therefore apply Proposition 2.1.5
of [Sno18] to deduce that

R̃/S+R̃ = TorS0 (R̃,F) =
⊕

Hi(F,Λi[b2])[i].

By Calculation 4.4 below, we know that Hi(F,Λi[b2]) = 0 unless i = 0, when

H0(F,Λ0[b2]) = H0(F,F) = F.

Thus the map S → R̃ is surjective and, as H1(Z, IY ) = 0 by Proposition 3.2 and

Lemma 4.12, the map R̃ = H0(Z,OZ) → H0(Y,OY ) is surjective. The composite
map

S → H0(Z,OZ) → H0(Y,OY )

is equal to the composite

S → H0(X,OX)
f∗

−→ H0(Y,OY ),

and so f∗ is surjective as required. □

4. Cohomology of sheaves on the flag variety when n = 3

We let n = 3 and G = SL3, and continue with the notation of section 3.1.
Let X(T ) be the character lattice, X∨(T ) be the cocharacter lattice, and ⟨ , ⟩ :
X(T ) × X∨(T ) → Z be the natural pairing. For a character λ ∈ X(T ), let F(λ)
be the corresponding representation of B and recall that in section 3.1 we have
defined a line bundle O(λ) on G/B. We have chosen the system Φ+ positive roots
such that the weights of n are negative. Our basic tool will be the Borel–Weil–Bott
theorem, which holds in positive characteristic for ‘sufficiently small’ weights.
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Let

CZ = {λ ∈ X(T ) : 0 ≤ ⟨λ+ ρ, β∨⟩ ≤ l for all β ∈ Φ+},

X(T )+ = {λ ∈ X(T ) : ⟨λ, β∨⟩ ≥ 0 for all β ∈ Φ+}},

and C0
Z = CZ ∩X(T )+. Recall the ‘dot action’ of the Weyl group W ∼= S3 of G on

X(T ):

w·λ = w(λ+ ρ)− ρ.

Theorem 4.1. Let λ ∈ CZ.

(1) If λ ∈ C0
Z then H0(G/B,O(λ)) is an irreducible representation of G that

we denote by V (λ).
(2) The representations V (λ) for λ ∈ C0

Z are pairwise non-isomorphic.
(3) If λ ̸∈ C0

Z, then Hi(G/B,O(λ)) = 0 for all i.
(4) If w ∈ W , then Hi(G/B,O(w·λ)) = 0 unless i = l(w), in which case

H l(w)(G/B,O(w·λ)) ∼= H0(G/B,O(λ)).

Proof. This is Corollary II.5.5 and Corollary II.5.6 of [Jan03]. □

In what follows, for V a representation of B, we will abbreviate Hi(G/B, V ) to
Hi(V ). For V a representation of B and λ a character of T we write Vλ = {v ∈ V :
tv = λ(v)t for all t ∈ T} for the λ-weight space of V . The multiset in which each
character λ of T occurs dim(Vλ) times is the multiset of weights of V ; its elements
are the weights of V .

We will call
⋃

w∈W w · CZ the BWB locus and say that a representation V
of B is BWB-good if all of its weights are in the BWB locus. For i ≥ 0 let
Ci

Z =
∐

l(w)=i w·C0
Z. For i ≥ 0 and V a BWB-good representation of B, we let

psuppi(V ) =
⋃

l(w)=i

{λ ∈ C0
Z : w · λ is a weight of V },

viewed as a multiset where the multiplicity of λ is the sum of the multiplicities of
w · λ as weights of V .

Lemma 4.2. Suppose that V is a BWB-good representation of B and i ≥ 0.

(1) The G-representation Hi(V ) has a composition series in which all irre-
ducible subquotients have the form V (λ) for λ ∈ psuppi(V ), and each V (λ)
occurs with multiplicity at most the multiplicity of λ in psuppi(V ).

(2) The representation Hi(V ) is completely reducible.

Proof. Part (1) results from repeatedly applying the long exact sequence in coho-
mology to a composition series for V . By [Jan03, Proposition II.4.13],

ExtiG(V (λ), V (µ)) = 0

for all λ, µ ∈ C0
Z and i > 0. Part (2) follows from this and part (1). □

If V is a representation of B then we let

χ(V ) =
∑
i≥0

(−1)i[Hi(V )]
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where the sum is taken in the Grothendieck group of the category of finite-dimensional
representations of G. Formation of χ is additive in short exact sequences, and we
therefore have

χ(V ) =
∑
i≥0

(−1)i
∑

λ∈psuppi(V )

[V (λ)]

for a BWB-good representation V of B.
Finally, we will also need the fact (see [Jan03, Proposition I.4.8]) that, if V is

a B-representation and W a G-representation, then Hi(V ⊗W ) ∼= Hi(V ) ⊗W as
G-representations for all i ≥ 0.

We let L1, L2, L3 ∈ X(T ) be the characters taking t ∈ T to its respective diagonal
entries, labelled so that L1 corresponds to the bottom right entry (!) and L3 to the
top left. Then L1 and −L3 generate the monoid X(T )+ of dominant weights and
we have ρ = L1 −L3. The positive simple roots are α = L1 −L2 and β = L2 −L3.
The lines {µ : ⟨µ+ ρ, κ∨⟩ = 0} for κ ∈ {α, ρ, β} divide X(T ) ⊗ R into six regions.
The weights strictly in the interior of each region are w ·X(T )+ for some w ∈ W .
Figure 1 shows the BWB-locus when p = 5 — the interior and boundary of blue
dashed region — and shows the different Ci

Z. Also shown are the weights L1, L2, L3,
α, β, ρ,−ρ and −2ρ; the weights of b are coloured red and those of g/b coloured
green.

Figure 1. The weight lattice of SL3.
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4.0.1. Calculating Hi(Λj [b⊕ b]).

Calculation 4.3. Suppose that l ≥ 5. Then the G-representations Hi(Λjb) are as
shown in Table 1. Moreover, Hi(b⊗ b) = Hi(Λ2b) for all i.

j
i

0 1 2 3

0 F · · ·
1 · · · ·
2 · F · ·
3 · · F ·
4 · · · ·
5 · · · F

Table 1. The cohomology groups Hi(Λjb).

Proof. If l ≥ 5 then each of the representations b, g/b, b⊗ b and b⊗ g/b is BWB-
good. We may therefore discuss the potential support of these representations and
apply Lemma 4.2 to them.

(0) When j = 0, Λjb = F. By Theorem 4.1, Hi(F) = 0 unless i = 0, in which
case H0(F) = F.

(1) When j = 1, we note that psupp2(b) = psupp3(b) = ∅, so
H2(b) = H3(b) = 0.

We have
psupp0(b) = psupp1(b) = {0, 0}

and so all composition factors of H0(b) and H1(b) are trivial as G-representations.
Further, there is a short exact sequence

0 → b → g → g/b → 0

which gives a long exact sequence in cohomology

0 H0(b) H0(g) H0(g/b)

H1(b) H1(g) . . .

As g is a G-representation, we see from part (0) that H0(g) = g and H1(g) = 0. For
g/b we have psupp0(g/b) = {ρ} and psuppi(g/b) = 0 for i > 0. Thus H0(g/b) ⊂
V (ρ) = g. As all subquotients of H0(b) and H1(b) are the trivial representation,
we must have H0(b) = H1(b) = 0 and H0(g/b) = g.

(2) When j = 2, consider the exact sequence

0 → b⊗ b → g⊗ b → g/b⊗ b → 0,

from which we get a long exact sequence with parts

Hi(g⊗ b) → Hi(g/b⊗ b) → Hi+1(b⊗ b) → Hi+1(g⊗ b).

As Hi(b) = 0 for all i, we obtain isomorphisms Hi(b⊗ g/b) ∼= Hi+1(b⊗b) for all i.
Thus, H0(b⊗ b) = 0 and H3(b⊗ b) = H2(g/b⊗ b) = 0, since psupp2(g/b⊗ b) = ∅.
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To show that H2(b⊗ b) = 0, consider first the exact sequence

0 → b⊗ g/b → g⊗ g/b → g/b⊗ g/b → 0

giving rise to the long exact sequence

0 → H0(b⊗ g/b) → g⊗ g → H0(g/b⊗ g/b) → H1(b⊗ g/b) → 0.

Here we have used that H1(g⊗ g/b) ∼= g⊗H1(g/b) = 0, as psupp1(g/b) = ∅, and
H0(g⊗ g/b) ∼= g⊗H0(g/b) ∼= g⊗ g. Thus

H2(b⊗ b) ∼= H1(b⊗ g/b) ∼= coker(g⊗ g → H0(g/b⊗ g/b)).

Since psupp2(b⊗b) = {0, 0}, every irreducible constituent of H2(b⊗b) is trivial.
So it is enough to show that H0(g/b⊗g/b) does not have the trivial representation
as a subquotient. If l ≥ 7, this follows as g/b⊗g/b is BWB-good and 0 ̸∈ psupp0(b⊗
g/b). If l = 5 then every weight of g/b ⊗ g/b except for 2ρ is in the BWB locus
and nonzero, so cannot give rise to a trivial subquotient of H0(g/b ⊗ g/b). Every
other composition factor of H0(g/b ⊗ g/b) is isomorphic to a composition factor
of H0(F(2ρ)). By the strong linkage principle of [Jan03, Proposition II.6.13], these
are of the form V (ρ) or L(2ρ) (the irreducible representation with highest weight
2ρ), and are therefore nontrivial as required.

Finally, we compute

χ(b⊗ b) = 4[F]− 4[F]− 4[F] + 2[F] + 2[F]− [F] = −[F].

Since Hi(b ⊗ b) = 0 for i ̸= 1, we deduce that H1(b ⊗ b) = F. As Λ2b is a direct
summand of b⊗ b (as l > 2), it follows that Hi(Λ2b) = 0 when i ̸= 1 and, as

χ(Λ2b) = [F]− 4[F] + 2[F] = −[F],

H1(Λ2b) = F = H1(b⊗ b).
For later use, also note that we have shown Hi(b⊗ g/b) = 0 for i > 0; an Euler

characteristic calculation then shows that H0(b⊗ g/b) = F.
(3) For j = 3, 4, 5 we have a B-equivariant pairing

Λjb× Λ5−jb → Λ5b ∼= F(−2ρ)

and so

(Λjb)∗ ⊗ F(−2ρ) ∼= Λ5−jb.

Since ωG/B
∼= F(−2ρ), Serre duality gives

Hi(Λjb) ∼= H3−i(Λ5−jb)∗

and the result follows from parts 0–2. □

Calculation 4.4. Suppose that l ≥ 5. Then

Hi(b⊗ Λ2b) =

{
g2 ⊕ F for i = 2

0 otherwise.

Proof. Firstly, we observe that b ⊗ b ⊗ g, and therefore any subquotient of it, is
BWB-good for l ≥ 5. This justifies the use of potential supports in the following
calculation.

Considering the long exact sequence associated to

0 → Λ2b⊗ b → Λ2b⊗ g → Λ2b⊗ g/b → 0
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along with the isomorphism Hi(g⊗ Λ2b) = g⊗Hi(Λ2b) and the results of Calcu-
lation 4.3, we obtain an exact sequence

0 → H0(Λ2b⊗ g/b) → H1(Λ2b⊗ b) → g → H1(Λ2b⊗ g/b) → H2(Λ2b⊗ b) → 0,

and isomorphisms
H2(Λ2b⊗ g/b) ∼= H3(Λ2b⊗ b)

and H0(Λ2b⊗ b) = 0. As psupp2(Λ2b⊗ g/b) = ∅, we see that H3(Λ2b⊗ b) = 0.
We calculate (using superscripts to denote multiplicity)

psuppi(Λ2b⊗ b) =


{02} i = 0

{010} i = 1

{014, ρ2} i = 2

{07} i = 3

and so
χ(Λ2b⊗ b) = 2[g]− [F].

Since ρ appears only in psupp2, we obtain that

H1(Λ2b⊗ b) ∼= Fn

and
H2(Λ2b⊗ b) ∼= g2 ⊕ Fn+1

for some integer n ≥ 0. It follows that

H0(Λ2b⊗ g/b) ∼= Fn

since the map H1(Λ2b⊗ b) → g must be zero.
The B-representation Λ2b⊗ g/b is a direct summand of b⊗ b⊗ g/b, which fits

into the short exact sequence

0 → b⊗ b⊗ g/b → g⊗ b⊗ g/b → g/b⊗ b⊗ g/b → 0

and so we have an exact sequence

0 → H0(b⊗ b⊗ g/b) ↪→ g⊗H0(b⊗ g/b) ∼= g

(the last isomorphism appearing in part 2 of the proof of Calculation 4.3). As
H0(Λ2b⊗g/b) ∼= Fn and F is not a subrepresentation of g, we deduce thatH0(Λ2b⊗
g/b) = H1(Λ2b⊗ b) = 0. □

Calculation 4.5. (1) Suppose that l ≥ 5. Then

H3(Λ3b⊗ b) = 0.

(2) Suppose that l ≥ 5. Then

H3(Λ2b⊗ Λ2b) = 0.

Proof. (1) We first show that H3(Λ3b ⊗ b) = 0. By Serre duality, the pairing
Λ3b× Λ2b → Λ5b ∼= F(−2ρ), and the isomorphism ωF

∼= OF (−2ρ), we have

H3(Λ3b⊗ b) ∼= H0(Λ2b⊗ b∗)∗.

Since b∗ ∼= g/n, we wish to show that H0(Λ2b ⊗ g/n) = 0. The last line of the
proof of Calculation 4.4 shows that H0(Λ2b ⊗ g/b) = 0, and by Calculation 4.3
H0(Λ2b) = 0. The result follows by tensoring the short exact sequence of B-
representations

0 → b/n ∼= F2 → g/n → g/b → 0
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with Λ2b and applying H0(·).
(2) If l ≥ 5 then Λ2b⊗Λ2b is BWB-good, which justifies the following argument

in characteristic l. Note that the only weights in psupp3(Λ2b ⊗ Λ2b) are 0 and ρ,
so that H3(Λ2b⊗ Λ2b) is a direct sum of copies of F and g.

Let e±α, e±ρ and e±β be root vectors in g (chosen to be elementary matrices)
and let P be the parabolic subgroup of G whose Lie algebra is spanned by b and
eα, with unipotent radical UP and Levi quotient M = P/UP

∼= GL2. We will use
the following lemma of Demazure.

Lemma 4.6 (“Easy Lemma” of [Dem76]). If V is a representation of B and λ ∈
X(T ) is such that ⟨λ, α∨⟩ = 1, and if V (λ) extends to a representation of P , then
Hi(V ) = 0 for all i ≥ 0.

The next lemma allows us to recognise certain representations that extend to P .

Lemma 4.7. Suppose that V is a representation of B such that:
• dim(V ) ≤ l
• e−β and e−ρ act as zero on V ;
• There is a vector v ∈ V of weight µ such that ⟨µ, α⟩ = dim(V ) − 1 and such

that

v, e−αv, . . . , e
dim(V )−1
−α v

is a basis of V .
Then V extends to a representation of P .

Proof. Since e−β and e−ρ act as zero on V and dim(V ) ≤ l, the root subgroups
U−β and U−ρ act trivially on V , and therefore so does UP . Thus the action of B
factors through the quotient B → B/UP . The third condition, together with the
restriction dim(V ) ≤ l, implies that V is the restriction to B/UP of an irreducible
representation of M ∼= GL2 whose restriction to Mder ∼= SL2 is the irreducible
representation of highest weight dim(V )− 1. In particular, V extends to P . □

We first show that H3(Λ2b ⊗ Λ2b) does not contain the trivial representation.
Let W1 ⊂ Λ2b⊗ Λ2b be the F-span of all weight vectors of weights in

{−ρ− 2α,−2ρ− 2α,−2ρ− α,−3ρ,−2ρ− β,−2ρ− 2β,−ρ− 2β}

and let W2 be the F-span of W1 and all weight vectors of weights in {−2ρ,−ρ −
α,−ρ − β}. Then W1 and W2 are B-subrepresentations of W3 = Λ2b ⊗ Λ2b. Let
V = W2/W1. Because 0 is not contained in psupp3(W1) or psupp3(W3/W2), to
show that H3(W3) contains no copy of the trivial representation it is enough to
show that H3(V ) = 0.

Consider the weight space V−ρ−β ⊆ V . The B representation generated by Vρ−β

is V β := V−ρ−β ⊕ e−α(V−ρ−β), and this representation splits as a direct sum into
copies of F(−ρ − β) and 2-dimensional representations satisfying the hypotheses
of Lemma 4.7. Thus, H3(V β) = 0 by Lemma 4.6. Analogously, consider the
B-subrepresentation V α ⊆ V/V β generated by V−ρ−α. In the exact same way
(switching the roles of α and β in Lemmas 4.6 and 4.7), we see thatH3(V α) = 0. To
show that H3(V ) = 0, it remains simply to show that V α = V/V β , or equivalently,
that V−2ρ = e−α(V−ρ−β) + e−β(V−ρ−α).

This can be calculated via a direct calculation by showing that each of the 17
simple tensors which span V−2ρ are in this joint image. We outline this calculation.
Set fγ = e−γ ∈ b (reserving e−γ = [fγ , ] for the linear map) and set tα, tβ ∈ t a
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basis of weight 0 vectors such that e−ν(tµ) = δν,µfν in b for ν, µ ∈ {α, β}. (Such a
basis exists when the characteristic l ̸= 3). Then

(fα ∧ fρ)⊗ (tα ∧ fβ) = e−β

[
(fα ∧ fρ)⊗ (tα ∧ tβ)

]
(fα ∧ fρ)⊗ (tβ ∧ fβ) =

1

2
e−α

[
(tα ∧ fρ)⊗ (tβ ∧ fβ)

+(fβ ∧ fα)⊗ (tβ ∧ fβ) + (fβ ∧ tα)⊗ (tβ ∧ fρ)
]

(tα ∧ fρ)⊗ (fα ∧ fβ) =
1

2
e−β

[
(tα ∧ fα)⊗ (tβ ∧ fρ)

+ (tα ∧ fα)⊗ (fα ∧ fβ)+(tα ∧ fρ)⊗ (fα ∧ tβ)
]
.

These three equations give us 12 linearly independent basis elements in the image
when we consider the two independent symmetries of swapping the left and right
sides of the tensor, and the symmetry interchanging e−α and −e−β , the effect of
which is to flip the signs of the terms in red. We have further:

(tα ∧ fρ)⊗ (tα ∧ fρ) = e−β

[
(tα ∧ fα)⊗ (tα ∧ fρ)

]
(tα ∧ fρ)⊗ (tβ ∧ fρ) =

1

2
e−β

[
(tα ∧ fα)⊗ (tβ ∧ fρ)

+ (tα ∧ fα)⊗ (fα ∧ fβ)−(tα ∧ fρ)⊗ (fα ∧ tβ)
]

again with the two conjugates (swapping α ↔ β and flipping the signs of the terms
in red) giving us in total 16 of the simple tensor spanning V−2ρ.

The last basis element can be expressed as

(fα ∧ fβ)⊗ (fα ∧ fβ) = e−β

[
(fα ∧ fβ)⊗ (fα ∧ tβ)

]
− (fα ∧ fβ)⊗ (fρ ∧ tβ)− (fρ ∧ fβ)⊗ (fα ∧ tβ)

with the last two terms inside e−αV−ρ−β + e−β(Vρ−α) as previously considered.
Since V−2ρ is a 17 dimensional vector space, this shows that V−2ρ = e−α(V−ρ−β) +
e−β(V−ρ−α) and, consequently, H

3(V ) = 0.
We have now shown that H3(Λ2b ⊗ Λ2b) ∼= gs for some s ≥ 0. The only

weight of Λ2b⊗Λ2b remaining that can contribute to H3 is −3ρ, which occurs with
multiplicity two; thus s ≤ 2 and we wish to show that s = 0.

Let µ = −2β − ρ. In Λ2b⊗ Λ2b let

v = (e−ρ ∧ e−β)⊗ (e−β ∧ tα)

and

v′ = (e−β ∧ tα)⊗ (e−ρ ∧ e−β).

Let Ṽ be the B-representation generated by v, and let V = ṼUP
be its UP -

coinvariants. The weights of V are a subset of

{µ = −2β − ρ, µ− α, µ− 2α = −3ρ}.

Since

e2−α(v) = 2(e−ρ ∧ e−β)⊗ (e−ρ ∧ e−α) ̸= 0

and ⟨µ+ L1, α⟩ = 2, Lemma 4.7 applies to show that V (L1) extends to a represen-
tation of P and hence that Hi(V ) = 0 for all i.
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Now, psupp3(ker(Ṽ → V )) = ∅ and so, as Hi(V ) = 0 for all i,

H3(Ṽ ) = 0.

Constructing Ṽ ′ similarly from v′ we see that H3(Ṽ ′) = 0. Let

Q = (Λ2b⊗ Λ2b)/(Ṽ + Ṽ ′).

Then

H3(Q) ∼= H3(Λ2b⊗ Λ2b) ∼= gs.

However, Ṽ + Ṽ ′ contains the entire two-dimensional weight space of Λ2b⊗Λ2b of
weight −3ρ, and so ρ ̸∈ psupp3(Q). Thus s = 0, as required. □

Calculation 4.8. Suppose that l ≥ 5, 0 ≤ i ≤ 3, and 0 ≤ j ≤ 4. Then the
cohomology group Hi(Λj(b⊕ b)) is as given in Table 2.

j
i

0 1 2 3

0 F · · ·
1 · · · ·
2 · F3 · ·
3 · · g4 ⊕ F4 ·
4 ? ? ? ·

Table 2. The group Hi(Λj [b ⊕ b]). Cohomology groups which
are zero are denoted by a dot, while those which are unknown are
denoted by a question mark.

Proof. This is immediate from Calculations 4.3, 4.4 and 4.5 and the decompositions

Λ2(b⊕ b) =
(
Λ2b

)2 ⊕ b⊗ b,

Λ3(b⊕ b) =
(
Λ3b

)2 ⊕ (Λ2b⊗ b
)2

and

Λ4(b⊕ b) =
(
Λ4b

)2 ⊕ (Λ3b⊗ b
)2 ⊕ (Λ2b⊗ Λ2b

)
which hold for l ≥ 5. □

Remark 4.9. It appears that Calculation 4.5 is near the limit of what our ad hoc
methods can handle. Using the programs of Hemelsoet and Voorhaar [HV21], avail-
able at https://github.com/RikVoorhaar/bgg-cohomology, it is easy to verify
all of the previous calculations over a field of characteristic zero. This implies that
these calculations are correct in sufficiently large positive characteristic; however,
it is not clear to us how to make this effective (their algorithm relies on the BGG
resolution).

https://github.com/RikVoorhaar/bgg-cohomology
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4.0.2. Twists.

Calculation 4.10. Let λ ∈ X(T )+ be a nonzero dominant weight. Suppose that
l ≥ 5. Then:

(0) Hi(F(λ)) = 0 for all i > 0;
(1) Hi(b(λ)) = 0 if i > 1, and H1(b(λ)) = 0 if λ ≥ ρ (in the usual partial

order on weights) or if l ≥ 2 + max(⟨λ, α∨⟩ , ⟨λ, β∨⟩);
(2) Hi(Λ2[b⊕ b](λ)) = 0 if i ≥ 2;
(3) H3(Λ3[b⊕ b](λ)) = 0.

Proof. Recall that Hi(F(λ)) = 0 for all i > 0 by Kempf’s vanishing theorem [Jan03,
Proposition II.4.5]. This deals immediately with part (0). Recall also from [Jan03,
Proposition II.5.4] that, if µ ∈ X(T ) with ⟨µ, κ∨⟩ = −1 for some simple root κ,
then Hi(F(µ)) = 0 for all i ≥ 0.

For part (1), if λ ≥ ρ then every weight µ of b(λ) lies in CZ, and we conclude
that Hi(b(λ)) = 0 for all i > 0. Otherwise, we have (without loss of generality)
that λ = aL1; assume this now.

For every weight µ of b(λ), we have µ ∈ CZ (in which case Hi(F(µ)) = 0 for
all i > 0), or µ ∈ C1

Z and ⟨µ+ ρ, β∨⟩ = −1. By [Jan03, Proposition II.5.4 (d)], we
have

Hi(F(µ)) ∼= Hi−1(F(sα · µ)) = 0

for all i > 1. It follows that Hi(b(λ)) = 0 for all i ≥ 2.
Suppose now that l ≥ 2 + a. Then b(λ) is BWB-good and psupp1(b(λ)) = {λ}.

On the other hand, from the short exact sequence

0 → b(λ) → g(λ) → (g/b)(λ) → 0

we obtain a surjection H0((g/b)(λ)) ↠ H1(b(λ)). But, using that λ = aL1,
psupp0((g/b)(λ)) = {ρ+ λ, β + λ} which is disjoint from {λ}, and so

H1(b(λ)) = 0

as required.
For part (2), as in the paragraph before last, it is enough to consider weights µ of

Λ2[b⊕b](λ) with ⟨µ+ ρ, α∨⟩ < 0. Any such weight µ either lies in sα ·CZ, or is equal
to −2ρ−L3 and so lies on the line ⟨µ+ ρ, β∨⟩ = 0. In the latter case, Hi(F(µ)) = 0
for all i; in the former, as ⟨µ+ ρ, α∨⟩ ≥ −3 and l ≥ 3, [Jan03, Proposition II.5.4 (d)]
implies that

Hi(F(µ)) ∼= Hi−1(F(sα · µ)) = 0

for all i ≥ 2. Thus Hi(Λ2[b⊕ b](λ)) = 0 for all i ≥ 2.
Finally, for part (3), every weight µ of Λ3[b ⊕ b](λ) lies in some w · CZ for

l(w) ≤ 2 and satisfies ⟨µ+ ρ, κ∨⟩ ≤ 4 < l for each negative root κ. We can therefore
apply [Jan03, Proposition II.5.4 (d)] l(w) times and deduce that H3(F(µ)) = 0.
Thus H3(Λ3[b⊕ b](λ)) = 0. □

Calculation 4.11. Let λ ∈ X(T )+. If l ≥ 3 then

Hi(Λj [b⊕ b](λ+ α)) = Hi(Λj [b⊕ b](λ+ β)) = 0

whenever i > j.
If l ≥ 7 and i ̸= 1, then

Hi(Λi[b⊕ b](α)) = Hi(Λi[b⊕ b](β)) = 0,
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while

H1(b(α)) ∼= H1(b(β)) ∼= g.

Proof. The statement in the case i > j can be proved by applying [Jan03, Propo-
sition II.5.4] exactly as in Calculation 4.10, and we omit the details. We therefore
focus on the case i = j; by symmetry, it is enough to deal with α. The reader may
check that, in the calculations below, every representation to which we apply psupp
is BWB-good for l ≥ 7.

If i = 0 then H0(F(α)) = 0 as α is on the boundary of CZ.
We have already shown that Hi(b(α)) = 0 for i > 1. From the inclusion b ↪→ g

we obtain an inclusion

H0(b(α)) ↪→ g⊗H0(F(α)) = 0

and soH0(b(α)) = 0. Computing the Euler characteristic shows thatH1(b(α)) ∼= g.
We next show that H1((g/b)(α)) = 0. Indeed, this sits in a short exact sequence

g⊗H1(F(α)) → H1((g/b)(α)) → H2(b(α))

and the outer terms are both zero.
Now, from the exact sequence

0 → b⊗ b(α) → b⊗ g(α) → (b⊗ g/b)(α) → 0

and the fact that H2(b(α)) = 0, we obtain a surjection

H1((b⊗ g/b)(α)) ↠ H2(b⊗ b(α))

As psupp2(b⊗ b(α)) = {0} we have that H2(b⊗ b(α)) ⊂ F.
From the short exact sequence 0 → (b ⊗ g/b)(α) → (g ⊗ g/b)(α) → (g/b ⊗

g/b)(α) → 0 and the vanishing of H1((g/b)(α)) we get a surjection

H0((g/b⊗ g/b)(α)) ↠ H1(g/b⊗ b(α))

and hence a surjection

H0((g/b⊗ g/b)(α)) ↠ H2(b⊗ b(α)).

But psupp0(g/b⊗ g/b(α)) does not contain {0}, so we must have

H2(b⊗ b(α)) = 0

from which we can obtain as in Calculation 4.8

H2(Λ2[b⊕ b](α)) = 0.

Finally we do the case i = j = 3. Here psupp3(Λ3b(α)) = ∅ so it is enough to
show that

H3(Λ2b⊗ b(α)) = 0.

From the usual exact sequence and the vanishing of H3(Λ2b(α)) we obtain a sur-
jection

H2((Λ2b⊗ g/b)(α)) ↠ H3(Λ2b⊗ b(α)).

But psupp2(Λ2b⊗ g/b(α)) = ∅ and so

H2((Λ2b⊗ g/b)(α)) = H3(Λ2b⊗ b(α)) = 0. □
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4.1. Results for the cohomology of sheaves on Z and Y . We now use the
above results to calculate cohomology groups of particular coherent sheaves on Z
and Y .

Lemma 4.12. Let λ ∈ X(T )+ and suppose that l ≥ 5. Then

Hi(Z,OZ(λ)) = Hi(Z,OZ(λ+ α)) = Hi(Z,OZ(λ+ β)) = 0

for all i > 0.

Proof. Because the map πZ : Z → F is affine, from Proposition 3.2 we have the
following isomorphisms of cohomology groups:

Hi(Z,OZ(λ)) = Hi(F, πZ,∗[OZ(λ)]) = Hi(F,Sym([g/b]2)(λ))

So the question reduces to the calculation of the groups Hi(F,Symn[g/b2]).
As in section 4 of [VX16], one can consider the Koszul complex of 0 → b2 →

g2 → g/b2 → 0 and twist by λ, giving us a resolution

... → Λi[b2]⊗ Symn−i[g2](λ) → ... → Symn[g2](λ) → Symn[g/b2](λ) → 0

We therefore have a spectral sequence

E−i,i+k
1 = Hi+k(Λi[b2](λ))⊗ Symn−i[g2] =⇒ Hk(Symn[g/b2](λ)).

By Calculation 4.8 in the case of λ = 0, and Calculations 4.10 and 4.11 in the
other cases, we see that Hk+i(Λi[b2](λ)) = 0 for any k > 0 and any i ≥ 0, and
therefore Hk(Sym[(g/b)2](λ)) = 0 for all k > 0. □

Remark 4.13. Lemma 4.12 appears as Corollary 4.3 in [Ngo18] (and, for λ = 0
in characteristic 0, in [VX16], with a claim (Remark 6.2) that the result holds for
l ≥ 5). We have given an alternative proof, as there appears to be a small issue
in [Ngo18] (and we also wish to obtain more refined information, such as about the
H0). The proof of Theorem 4.2 in [Ngo18] requires the case s = 0 (in the notation
of that paper) as a inductive hypothesis, whereas it is deduced afterwards as a
corollary. To repair that issue, we must show that Hi(Symn(n∗,r)(λ)) for all i ≥ 1
and λ ∈ X(T )+. Now, in the notation of that paper, β + λ ∈ Aα. Then we have
the exact sequence

0 → Symn−1[n∗,r](β + λ) → Symn(n∗,r)(λ) → Symn[n∗,r−1 ⊕ n∗β ](λ) → 0

and we can apply an appropriate inductive hypothesis to deduce the vanishing of
the ith cohomology of the middle term from the vanishing of the ith cohomology
of the outer terms.

Along with brevity, the advantage of this approach is that it applies without
restriction on the characteristic, as it relies on the “Easy Lemma” of [Dem76] and
a vanishing result of [KLT99] proved using Frobenius splitting.

Lemma 4.14. Suppose that l ≥ 5. Then we have

Hi(Z, ωZ) = 0

for all i > 0 and, for λ ∈ X(T )+,

Hi(Z, IY (λ)) = 0

for all i > 0.

Proof. From Proposition 3.2 that IY ∼= OZ(ρ) and ωZ
∼= OZ(2ρ). The lemma now

follows from Lemma 4.12. □
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Corollary 4.15. Let l ≥ 5 and λ ∈ X(T )+. Then

Hi(Y,OY (λ)) = 0

for all i > 0. Furthermore, Hi(Y, ωY ) = 0 for all i > 0.

Proof. The first claim follows from Lemmas 4.12 and 4.14 and the long exact se-
quence in cohomology arising from

0 → IY (λ) → OZ(λ) → OY (λ) → 0.

The second claim follows from the isomorphism ωY
∼= OY (ρ) proved in Proposi-

tion 3.2. □

5. Equations for XSt

In this section, we seek explicit equations for XSt (or equivalently, for X ). For
the generic fibre, X ×O E, this was done by the first author.

Proposition 5.1. For n ≥ 1, XE ⊂ GLn,E × GLn,E is the closed subscheme of
pairs (Σ,Φ) such that

ΦΣΦ−1 = Σq

χΦ(x) = (x− 1)(x− q) . . . (x− qn−1)

χΣ(x) = (x− 1)n.

Proof. After a change of variables from the unipotent cone to the nilpotent cone
via the logarithm map, this is a special case of Corollary 3.3 in [Fun23]. (Note
that in the nilpotent version, the equations making log(Σ) nilpotent are contained
in the ideal generated by the coefficients of Φ log(Σ)Φ−1 − q log(Σ) — see Propo-
sition 2.5 of [Fun23]). The main idea is that, if C ⊆ GLn,E is the conjugacy class
of diag(1, q, . . . , qn−1), which is a smooth variety defined by the second equation
above, then XE → C can be shown to be a vector bundle with fibre over Φ ∈ C
given by

{Σ unipotent : Φ log(Σ)Φ−1 = q log(Σ)}. □

However, even for n = 2, the subscheme of GLn,O × GLn,O cut out by these
equations is not O-flat, and so does not coincide with X . To find the correct set of
equations, we use the method of [Sno18]. We begin with a slight generalisation of
Proposition 2.1.5 of [Sno18].

Proposition 5.2. Let F be a scheme of finite type over F and

0 → ξ → ϵ → ν → 0

be a short exact sequence of vector bundles on F , with ϵ = V ⊗F OF for some
F-vector space V . Let S = Sym(V ∗), let Z be the total space of ν∗ with π : Z → F
the natural map, and let

R = H0(Z,OZ) = H0(F,Sym(ν)).

There is a natural map of graded rings S → R.
Let L be a line bundle on F and let

M = H0(Z, π∗L) = H0(F,Sym(ν)⊗ L),
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a graded R-module. Suppose that Hi(F,Sym(ν)⊗ L) = 0 whenever i > 0. Then

TorSn(M,F) =
⊕
i≥n

Hi−n(F,Λi(ξ)⊗ L)[i]

as graded vector spaces, where W [i] is the vector space W living in degree i.

Proof. Recall from the proof of Proposition 2.1.5 of [Sno18] that we have a diagram

F F × V

SpecF V

i′

p′ p

i

with the horizontal maps being the zero sections. Since Z ⊂ F × V is a closed
subscheme, we may also regard quasicoherent OZ-modules as quasicoherent OF×V -
modules supported on Z. In particular, this applies to π∗L, and if q : F × V → F
is the projection, then π∗L = OZ ⊗ q∗L.

There are isomorphisms

TorS• (p∗π
∗L,F) = Li∗Rp∗π

∗L = Rp′∗L(i
′)∗π∗L.

The first isomorphism results from the hypothesis that

Rip∗π
∗L = Hi(F,Sym(ν)⊗ L) = 0

for all i > 0. The second is the base-change isomorphism of [Sta17, Lemma 08IB].
As in the proof of Proposition 2.1.5 of [Sno18], the Koszul complex gives a quasi-

isomorphism of complexes of coherent sheaves on F × V , graded as OV -modules,[
Λi(q∗ξ)(−i)⊗ q∗L

]
→ OZ ⊗ q∗L = π∗L.

Here (−i) is the shift operator on graded OV -modules. The differentials in the left-
hand complex vanish on applying (i′)∗, while the terms are flat OF×V -modules,
and so we get a quasi-isomorphism[

Λi(η)(−i)⊗ L
]
→ L(i′)∗π∗L

in which the differentials in the left-hand complex are zero. Applying Rp′∗ we
therefore find that

TorSn(p∗π
∗L,F) ∼=

⊕
i≥n

Hi−n(F,Λi(η)⊗ L)[i]

as required. □

We will always apply the lemma with V = (g∗)2 = g2 and ξ = (n⊥)2 = b2, so
that ν = (g/b)2 = (n∗)2 and Z is the total space of the vector bundle n2. Let
R = H0(Z,OZ). We have shown already that, if l > n, then S → R is surjective,
and so R is the coordinate ring of the image p(Z) of Z in g2 (a variety over F).
Let I = ker(S → R), which is also the ideal defining p(Z). Our strategy will be to

write down an ideal Ĩ ⊂ I and deduce that Ĩ = I by computing

I/S+I = TorS1 (R,F)

using Proposition 5.2. In the case n = 3, having determined p(Z), we will then
determine equations for X = p(Y ).

https://stacks.math.columbia.edu/tag/08IB
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Note that S = Sym((g∗)2) is the coordinate ring of the space of pairs of elements
of g = sl3, and we write (M,N) for the universal pair of matrices over S.

5.1. The case n = 2. In this case, Z = Y is the variety whose F-points are pairs
of commuting elements of sl2. By Proposition 5.2 we obtain

I/S+I = TorS1 (R,F) ∼= H0(b2)[1]⊕H1(Λ2
(
b2
)
)[2].

Since b ∼= O(−1)2, we see that

I/S+I ∼= H1(O(−2)6) ∼= F6

is 6-dimensional.
Let Ĩ be the ideal of S generated by the entries of MN −NM , by tr(MN), and

by det(M) and det(N). Then Ĩ ⊂ I, and Ĩ/S+Ĩ is six-dimensional (as may easily
be checked, noting that tr(MN − NM) = 0), sitting in degree 2. It follows that

Ĩ = I and we have proved

Theorem 5.3. Let n = 2. Then X ⊂ g2 is the closed subscheme cut out by the
equations det(M) = det(N) = 0, the entries of MN −NM , and tr(MN).

We can apply this to X , recalling that we have shown that X ⊗O F = X.

Corollary 5.4. Let n = 2. Then X ⊂ GL2 ×GL2 is the closed subscheme of pairs
(Σ,Φ) such that

ΦΣΦ−1 = Σq

χΦ(x) = (x− 1)(x− q)

χΣ(x) = (x− 1)2

tr(Φ(Σ− I)) = 0.

Moreover, XSt is defined by the same equations but with the second equation replaced
by q tr(Φ)2 = 4det(Φ).

Proof. The statement for XSt follows from that for X and the discussion following
Assumption 2.1.

To show that X is cut out by the given equations in GL2 ×GL2, we need only
check this after ⊗OF and ⊗OE. After ⊗F, and writing Φ = I + M , Σ = I + N ,
we obtain exactly the equations generating the ideal Ĩ above; thus we are done by
Theorem 5.3.

By Proposition 5.1, the first three equations alone already define X ⊗O E, and
that this is a smooth variety. Since every point of X (E) has Φ ∼ diag(q, 1), and
the fourth equation is easily seen to hold at such points, we have that this equation
is also contained in the defining ideal of X ⊗O E. □

5.2. The case n = 3. Recall that we have Y ⊂ Z where Z is the total space
of the vector bundle n2 on F and Y is the commuting subvariety, and we have
X = Spec Γ(Y,OY ). If R = Γ(Z,OZ) then by the discussion above we have a
surjective morphism S → R with kernel I.

Theorem 5.5. Suppose that n = 3 and that l ≥ 5. The homogeneous ideal I ⊴ S
is generated by:

• tr(M2), tr(N2), tr(MN) (in degree 2);
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• tr(M3), tr(N3), and all the entries of

M2N,N2M,NM2,MN2

(in degree 3).

Remark 5.6. In fact, the entries of MNM and of NMN are also in the ideal
generated by these equations, which may be easily checked by computer. One can
take any two of M2N,NM2, and MNM in the generating set.

Proof. By Proposition 5.2, along with Calculation 4.8 and 4.5, we see that:

I/S+I ∼=
⊕
i

Hi−1(F,Λi[b⊕ b])[i]

= F3[2]⊕ (g4 ⊕ F4)[3].

Hence we see that,

dim(I/S+I)k =


3 if k = 2

36 if k = 3

0 otherwise.

Let Ĩ be the ideal of S generated by the elements listed in the statement of the
theorem. Since all the elements of Ĩ vanish for M,N ∈ n, Ĩ ⊂ I. We show that
they are equal.

As tr(M2), tr(MN) and tr(N2) are all linearly independent, we see that they

span the degree 2 subspace of Ĩ/S+Ĩ. By a computer calculation we see that
the entries of M2N and NM2 span a 17-dimensional space modulo the subspace
spanned by entries of tr(M)2N , M tr(MN), and N tr(M2) so long as l > 2 (this
is just a matter of computing the invariant factors of an explicit finitely-generated
Z-module). This same calculation also shows that the entries of MNM are in Ĩ.

Therefore, using that there is a natural bigrading on S with respect to which Ĩ is
bihomogeneous, we have

dim(Ĩ/S+Ĩ)3 = 1 + 1 + 17 + 17 = 36 = dim(I/S+I)3.

Thus dim(Ĩ/S+Ĩ)k = dim(I/S+I)k for all k ≥ 0, and so I = Ĩ. □

Theorem 5.7. Let J be the ideal of S determining the closed subscheme X. Then
J is generated by

• tr(M), tr(N) (in degree 1);
• tr(M2), tr(MN), tr(N2), and the entries of MN −NM (in degree 2);
• and tr(M3), tr(N3) and the entries of M2N and MN2 (in degree 3).

Proof. Let i : Y → Z be the inclusion. Then we have thatH0(X,OX) = H0(Z, i∗OY )
and a short exact sequence

0 → H0(Z, IY ) → H0(Z,OZ) → H0(Z, i∗OY ) → 0

since, by Lemmas 2.3 and 4.12, H1(Z, IY ) vanishes.
We claim that IX = H0(Z, IY ) is generated, as a (homogeneous) ideal of R =

H0(Z,OZ), by the entries of MN − NM . These entries give eight linearly inde-
pendent elements of IX and it suffices to show that

dim(IX ⊗S F)i =
{
8 if i = 2

0 otherwise.
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By Lemma 2.3, IY ∼= OZ(ρ), locally (on F ) generated in degree 2; hence IX ∼=
H0(Z,OZ(ρ))(−2) as a graded S-module, where (−2) is the shift operator. By
Proposition 5.2,

(IX ⊗S F)i = dimHi(F,O(ρ)⊗ Λi[b⊕ b])[i+ 2]

for i ≥ 0. The claim then follows from Calculation 4.10.
As J is the preimage of IX under S → R, Theorem 5.7 then follows from Theo-

rem 5.5. □

We can also write down equations for X as follows:

Corollary 5.8. A complete set of equations defining the closed subscheme X ⊆
GL3 ×GL3 over O is as follows:

ΦΣ = ΣqΦ

χΦ(x) = (x− q2)(x− q)(x− 1)

χΣ(x) = (x− 1)3

tr(Φ(Σ− I)) = 0

(Φ− q2)(Σ− I)2 = 0

(Φ− q2)(Φ− q)(Σ− I) = 0,

where χA(x) denotes the characteristic polynomial of A.
Similarly for XSt, where the second equation is replaced by

q3(tr Φ(x))3 = (1 + q + q2)3 detΦ(x)

and

(1 + q + q2)2 tr(Φ(x)2) = (1 + q2 + q4) tr(Φ(x))2.

Proof. The statement for XSt follows from that for X and the discussion following
Assumption 2.1.

To show that X is cut out by the given equations in GL3 ×GL3, we need only
check this after ⊗OF and ⊗OE. After ⊗F, and writing Φ = I +M , Σ = I +N , we
obtain exactly the equations in Theorem 5.7, as required.

By Proposition 5.1, the first three equations alone already generate X ⊗OE, and
that this is a smooth variety. Since every point of X (E) has Φ ∼ diag(q2, q, 1), and
the fourth, fifth, and sixth equations are easily seen to hold at such points, we have
that these equations are also contained in the defining ideal of X ⊗O E. □

6. The Weil divisor class group

We compute the Weil divisor class group of X and the class of the canonical
divisor. For n = 2 this gives another perspective on the calculations of [Man21].
One might hope for similar automorphic applications for n = 3, but there appear
to be issues caused by the failure of the natural pairing on spaces of automorphic
forms to be Hecke-equivariant (we thank Jeff Manning for explaining this point to
us).
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6.1. Generalities on the class group. Let X be a Noetherian, integral, normal
scheme. Recall from [Sta17, Section 0AVT] that a coherent sheaf F onX is reflexive
if the canonical map F → (F∨)∨ is an isomorphism, where F∨ = HomX(F ,OX). A
reflexive sheaf on X of generic rank one is called divisorial. The set of isomorphism
classes of divisorial sheaves on X forms a group that, by [Sta17, Section 0EBK], is
isomorphic to the Weil divisor class group Cl(X). If D is a Weil divisor on X then
we write O(D) for the associated divisorial sheaf.

If j : U ↪→ X is the inclusion of an open subscheme such that X \ U has codi-
mension 2, then j∗ and j∗ define quasi-inverse equivalences of categories between
the set of reflexive sheaves on U and on X, so

Cl(U) ∼= Cl(X).

If X is, in addition, Cohen–Macaulay, then the canonical sheaf ωX is divisorial
by [Sta17, Lemma 0AY6, Lemma 0AWN] and we have ωX = j∗ωU .

Lemma 6.1. Let f : E → F be a morphism of normal integral schemes of finite
type over a field k, and suppose that f is faithfully flat with integral fibres. Let K
be the function field of F and let C = EK be the generic fibre of f . Then there is
an exact sequence

Γ(C,O×
C )/K

× δ−→ Cl(F ) → Cl(E) → Cl(C) → 0.

Proof. This is [FI73] Proposition 1.1, noting that a normal integral scheme of finite
type over a field is Krull.

The maps Cl(F ) → Cl(E) and Cl(E) → Cl(C) are the functorial maps (see
[FI73]). The map δ in the exact sequence is constructed as follows. Let u ∈
Γ(C,O×

C ). Then u determines an element of the function field of E and hence a
divisor Div(u) on E, which one can show is the pullback of a divisor D on F . We
define δ(u) = O(D) ∈ Cl(X). □

Lemma 6.2. Suppose that F is as in Lemma 6.1, that f : L → F is a line bundle,
and that E is the complement of the zero-section of f .

Choose an isomorphism LK → SpecK[t], so that t is a generator of

Γ(EK ,O×
EK

)/K×.

Then

δ(t) = L−1

where δ is the map from Lemma 6.1.

Proof. If D ⊂ F is a closed integral subscheme of codimension 1 with generic point
d, and if we choose a trivialisation Ld

∼= SpecOF,d[s] such that s = 0 is the zero
section then we have

t = κDs

for some κD ∈ K. We have that vd(κD) = 0 for all but finitely many D and, by
definition,

δ(t) = O

(∑
D

vd(κD)D

)
.

On the other hand, regard L as a sheaf on X that is locally free of rank 1, and
let t∨ ∈ Γ(Spec(K),LK) correspond to the section t∨ : Spec(K) → SpecK[t] such

https://stacks.math.columbia.edu/tag/0AVT
https://stacks.math.columbia.edu/tag/0EBK
https://stacks.math.columbia.edu/tag/0AY6
https://stacks.math.columbia.edu/tag/0AWN
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that (t∨)∗(t) = 1. Similarly, we have s∨ ∈ Γ(Xd,Ld), and the relation t∨ = κ−1
D s∨

for each D as above. Then we have

L = O

(∑
D

vd(κ
−1
D )D

)
,

from which the result follows. □

6.2. Calculation of Cl(X). Recall that we have the diagram

Y X

F

π

f

where Y is an irreducible variety, the map f is projective and π is a fibre bundle
with fibres isomorphic to

C(n) = {M,N ∈ n : [M,N ] = 0},

by (the proof of) Lemma 2.3 part (2). Let U ⊂ X be the open subscheme of points
(M,N) ∈ X such that either M or N is regular nilpotent. If V = f−1(U) then
f |V : V → U is an isomorphism, as in Lemma 3.1, while π|V : V → F is a fibre
bundle with fibres

C(n)reg = {M,N ∈ C(n) : M or N regular}.

Lemma 6.3. (1) When n = 2

C(n)reg ∼= A2 \ {(0, 0)},

Y \ V has codimension 2 in Y , and X \ U has codimension 3 in X.
(2) When n = 3

C(n)reg ∼= A2 \ {(0, 0)} ×Gm × A2,

Y \ V has codimension 1 in Y , and X \ U has codimension 2 in X.

Proof. If n = 2, then C(n) = n× n ∼= A2 and C(n)reg = A2 \ {(0, 0)}. Therefore

codim(Y \ V ⊂ Y ) = codim({0, 0} ⊂ A2) = 2.

Now

U = π(V ) = {(0, 0)} ∈ X ⊂ g× g

and X has dimension 3, so codim(X \ U ⊂ X) = 3. This proves part (1).
Now suppose that n = 3. We write

C(n) =


0 a b

0 0 c
0 0 0

 ,

0 d e
0 0 f
0 0 0

 : af = cd

 ,

which has dimension 5, and see that

C(n) \ C(n)reg = V(af − cd, ac, df)

= V(a, d) ∪ V(c, f).

Therefore

codim(Y \ V ⊂ Y ) = codim(C(n) \ C(n)reg ⊂ C(n)) = 1.
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We have an isomorphism

A2 \ {(0, 0)} ×Gm × A2 → C(n)reg

(a, d, λ, b, e) 7→ (a, b, c = λa, d, e, f = λd)

with inverse defined by c
a 7→ λ when a ̸= 0, and f

d 7→ λ when d ̸= 0.
Finally, we compute the dimension of X \ U . Since the locus M = N = 0 has

codimension 8 in X, it is enough to compute the dimension of {(M,N) ∈ X \ U :
M ̸= 0}. The projection map from this subset to {M ∈ g : M2 = 0,M ̸= 0}
is a GL3-equivariant surjection. Its image is the orbit in g of the matrix M0 =0 0 1
0 0 0
0 0 0

 whose centraliser consists of all matrices of the form

a b c
0 d e
0 0 a


and whose orbit in g has dimension 4 (by the orbit-stabiliser theorem). The fibre
in X \ U of M0 is then 

0 b c
0 0 e
0 0 0

 : be = 0


which has dimension 2, and so

dim(X \ U) = 4 + 2 = 6 = dim(X)− 2

as required. □

Part (1) of the next theorem is [Man21] Proposition 3.14 part (1), proved there
using toric geometry.

Theorem 6.4. (1) Suppose that n = 2. There is an isomorphism

ν : X∗(T ) → Cl(X).

Hence Cl(X) ∼= Z.
(2) Suppose that n = 3. There is a surjective homomorphism ν : X∗(T ) →

Cl(X) with kernel generated by 3(L1 + L3). Therefore

Cl(X) ∼= X∗(T )/ ⟨3(L1 + L3)⟩ ∼= Z× Z/3Z.

Proof. The case n = 2 follows quickly from Lemma 6.3 part (1): we have

Cl(X) = Cl(U) = Cl(V ) = Cl(Y ) = Cl(F )

since X \ U has codimension 2 in X, Y \ V has codimension 3 in Y , and Y is a
vector bundle over F and so Cl(Y ) ∼= Cl(F ) (for example, by Lemma 6.1). As is
well-known,

Cl(F ) = Pic(F ) = X∗(T ) ∼= Z.
Suppose now that n = 3. By Lemma 6.3 part (2), as the codimension of X \ U

in X is 2, we have
Cl(X) = Cl(U) = Cl(V ).

Let K be the function field of F . By Lemma 6.1 and Lemma 6.3 part (2), we have
an exact sequence

Γ(C(n)regK ,OC(n)regK
)

δ−→ Cl(F ) → Cl(V ) → Cl(C(n)regK ) → 0.
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Since C(n)regK is an open subscheme of A5
K , Cl(C(n)regK ) = 0. We have

Cl(F ) = Pic(F ) = X∗(T ) ∼= Z2.

It remains to compute the image of δ.
By Lemma 6.3, we have a morphism h : C(n)K → SpecK[λ, λ−1] that induces

an isomorphism

Γ(C(n)regK ,OC(n)regK
)

∼−→ {λn : n ∈ Z}.

This morphism is B-equivariant if λ = c
a = f

d is given weight L1−L2− (L2−L3) =
3(L1 + L3), and so we obtain a morphism

V → O(−3(L1 + L3)) \ {zero section}
whose restriction to the generic fibres is h. We may therefore apply Lemma 6.2 and
deduce that

δ(λ) = O(3(L1 + L3)).

The result follows. □

Finally, we compute the canonical sheaf of X in terms of these isomorphisms.
When n = 2, this recovers [Man21] Proposition 3.14 part (2).

Corollary 6.5. (1) Suppose that n = 2. Then ωX = ν(2ρ).
(2) Suppose that n = 3 and l ≥ 11. Then ωX = ν(ρ) ∈ Cl(X).

Proof. In either case, by Theorem 2.4, we have that ωX = f∗ωY .
If n = 2 then we have ωY = π∗O(2ρ) by Proposition 3.2. We therefore have

ωX = f∗π
∗O(2ρ),

but also
j∗ν(2ρ) = f∗(π

∗O(2ρ)|V ) = j∗(f∗π
∗O(2ρ))

as f : V → U is an isomorphism. Thus ωX = ν(2ρ).
If n = 3 we again apply Proposition 3.2 to obtain

ωX = f∗π
∗O(ρ)

but also
j∗ν(ρ) = f∗(π

∗O(ρ)|V ) = j∗(f∗π
∗O(ρ))

as in the case n = 2. Thus ωX = ν(ρ). □

6.3. Speculation on patched modules and their multiplicity. Let ι : GL3 →
GL3 be the involution A 7→ A−T , which induces involutions on X and on F that
we also denote by ι. On X∗(T ) this induces the involution interchanging L1 with
−L3.

Let D be a division algebra of degree 3 over a local field F with residue field of
order q. One expects (as in [Zhu21, Conjecture 4.5.1]) a functor from the category
of finitely generated smooth F-representations of D× to the derived category of
coherent sheaves on X. In a global context, the completion of this functor at
the origin of X should be realised by a “patching functor” constructed using an

appropriate unitary group. Applying this functor to indD
×

F×O×
D
(F) we expect to

obtain a coherent sheaf M on X∧
0 with the following properties:

(1) M is maximal Cohen–Macaulay on X∧
0 of generic rank one (and hence

divisorial);
(2) ι-self-duality: HomX∧

0
(M, ωX∧

0
) ∼= ι∗M.
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In [Man21], it was shown (in the patching context) that these properties char-
acterise M in the case n = 2, and this was used to prove a new global multiplicity
2 result for mod l automorphic forms. For that it is necessary to pass to the com-
pletion of X, which is subtle in the context of the class group. As there are other,
more serious, issues arising from the natural pairing on the patched module not
being Hecke-equivariant, we don’t pursue this and simply ask (for n = 3) to what
extent the above properties characterise M on X.

Proposition 6.6. Suppose that n = 3 and that M is a divisorial sheaf on X with
M = ν(w) for w ∈ X(T ). Then HomX(M, ωX) ∼= ι∗M if and only if

w = L1,−L3, or 2L1 + L3.

Proof. The map ν is easily seen to be ι-equivariant. If M = ν(aL1 − bL3) we have

HomX(M, ωX) = ν(L1 − L3 − (aL1 − bL3)

and

ι∗M = ν(bL1 − aL3).

These are equal if and only if

L1 − L3 = (a+ b)(L1 − L3) + 3k(L1 + L3)

for some k ∈ Z. This holds if and only if a + b = 1 and k = 0. The different
possibilities for b mod 3 give the result. □

We can explicitly describe ν(w) in these cases.

Lemma 6.7. Suppose that w ∈ X∗(T ) is such that Rf∗O(w) and Rf∗(ρ− w) are
each concentrated in degree zero. Then f∗O(w) is Cohen–Macaulay and

ν(w) = f∗O(w).

Proof. That f∗O(w) is Cohen–Macaulay is [HW19] Proposition 2.2. It is therefore
reflexive. The final claim follows as, if j : U ↪→ X is the natural inclusion, then
X \ U has codimension 2 and j∗f∗O(w) = j∗ν(w) by construction. □

Proposition 6.8. Let l ≥ 5 and λ = L1,−L3, or 2L1+L3 (as in Proposition 6.6).
Then

ν(λ) = f∗O(λ)

is Cohen–Macaulay.

Proof. By Proposition 4.15, Hi(Y,OY (λ)) and Hi(Y,OY (ρ−λ)) vanish for each of
these values of λ and for all i > 0. Since X is affine, we obtain exactly the vanishing
of Rif∗ required to apply Lemma 6.7 to these λ, and the Proposition follows. □

Let x ∈ X be the point (0, 0). If M is a coherent OX -module, then we call
dimF(M ⊗Ox F) the multiplicity of M (at the origin). When M∧

x arises as a
patched module, this multiplicity will be the multiplicity of a system of Hecke
eigenvalues in a certain space of mod l automorphic forms, as in [Man21] (see
also [CG18, Section 4.1] when l = p). When M = ωX , this number is known as
the type of the Cohen–Macaulay local ring OX,x.

Proposition 6.9. Let λ ∈ {L1,−L3, 2L1 +L3, L1 −L3} and let l ≥ 5 with l ≥ 7 if
λ = 2L1 + L3. Let m(λ) be the multiplicity of ν(λ) = f∗OY (λ). Then m(λ) is as
in Table 3.
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λ L1 −L3 2L1 + L3 L1 − L3

m(λ) 3 3 16 8

Table 3. Multiplicities of ν(λ).

Proof. Let λ be one of the weights occurring in the proposition and let M =
H0(Z,OZ(λ)) and N = H0(Y,OY (λ)). As in section 5, by Lemma 4.12 we are
in the situation of Proposition 5.2 with F the flag variety of GL3, the short exact
sequence

0 → ξ → ϵ → η → 0

being

0 → b2 → g2 → (g/b)2 → 0,

and L = OF (λ). We define S = Sym[(g∗)2] as in Proposition 5.2, and define

R = H0(Z,OZ) = H0(F,Sym[(g/b)2])

Thus (and recalling that, as in the proof of Theorem 5.7, H1(Z, IY ) vanishes) we
have morphisms of graded algebras

S ↠ R ↠ H0(Y,OY )
∼−→ H0(X,OX)

which fit into the following diagram:

F × Spec(S) Spec(S)

F Z Spec(R)

Y X
f

π

Here, the schemes on the right are all affine, the schemes in the middle are all fibre
bundles over F , and the vertical arrows are closed immersions.

Let M = H0(Z,O(λ)), a graded S-module. Then Proposition 5.2 applies and
we have

M ⊗S F =
⊕
i≥0

Hi(F,Λi(b2)(λ))[i] =

{
V (λ)[0] if λ ̸= 2L1 + L3

(g⊕ g)[1] if λ = 2L1 + L3

by Calculations 4.10 and 4.11. In either case we see that dim(M ⊗S F) is as given
in Table 3.

By Proposition 4.15 we have

Hi(Z, IY (λ)) = Hi(Z,O(λ+ ρ)) = 0

for i > 0. We therefore have a short exact sequence of graded S-modules

0 → H0(Z, IY (λ)) → H0(Z,OZ(λ)) = M → H0(Y,OY (λ)) → 0.

Since π∗IY (λ) is (locally on F ) generated in degree 2, H0(Z, IY (λ)) is generated
in degrees ≥ 2. We have shown that M is generated in degrees ≤ 1, and therefore

M ⊗S F → H0(Y,OY (λ))⊗S F
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is an isomorphism. As

dimH0(Y,OY (λ))⊗S F = dimH0(X, ν(λ))⊗S F = m(λ),

we obtain the result. □
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[Dem76] Michel Demazure, A very simple proof of Bott’s theorem, Inventiones mathematicae

33 (1976), no. 3, 271–272, https://doi.org/10.1007/BF01404206.
[DHKM20] Jean-François Dat, David Helm, Robert Kurinczuk, and Gilbert Moss, Moduli of

Langlands Parameters, http://arxiv.org/abs/2009.06708, September 2020.

[FI73] R. Fossum and B. Iversen, On Picard groups of algebraic fibre spaces, Journal of
Pure and Applied Algebra 3 (1973), no. 3, 269–280, https://www.sciencedirect.

com/science/article/pii/0022404973900145.

[FS21] Laurent Fargues and Peter Scholze, Geometrization of the local Langlands correspon-
dence, http://arxiv.org/abs/2102.13459, May 2021.

[Fun23] Daniel Funck, The geometry of the unipotent component of the moduli space of Weil-

Deligne representations, http://arxiv.org/abs/2302.07789, July 2023.
[Hel23] Eugen Hellmann, On the derived category of the Iwahori–Hecke al-

gebra, Compositio Mathematica 159 (2023), no. 5, 1042–1110,
https://www.cambridge.org/core/journals/compositio-mathematica/

article/on-the-derived-category-of-the-iwahorihecke-algebra/

FF559BB58F92AC9D3ADAECDD141F29A9.
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