
ALGEBRA QUESTION SHEET

Harder questions are normally marked (*).

1 Prove that the following sets form infinite groups with respect to ordinary multiplication:

(a) {2k} where k ∈ Z.
(b) {1+2m

1+2n
} where m, n ∈ Z.

(c) {cos θ + i sin θ} where θ runs over all rational numbers.

2 Think of the integers Z as points equally spaced along the real line. Define two kinds of
transformations on Z:
(1) Translations of the form Ta (where a is an integer) which have the effect of translating Z
a places to the right (if a ≥ 0; or −a places to the left if a < 0) using the formula n 7→ n+a.
(2) Reflections of the form Rc (where c is an integer) which have the effect of reflecting Z in
the point c

2
using the formula n 7→ c− n.

Work out the effect of composing the following pairs of transformations: (a) TbTa, (b) RdTa,
(c) TbRc, (d) RdRc. [In each case, because these are functions the compositions have to be
evaluated from right to left; e.g., TbTa means first do Ta and then do Tb.]
Now let A be the set of all such Ta and Rc. Show that A is a group and that we can find
examples of elements g, h ∈ A such that gh 6= hg, g2 = h2 = e and ∀s > 0, (gh)s 6= e.
[Note: A is called the group of affine transformations on Z. There are more general groups
of affine transformations on R, R2, R3 etc.]

3 Define a composition ∗ on the integers Z by

n ∗m = n+m+ nm

Show that under this composition, Z is closed, associative and has an identity element. Does
it have inverses?

4

(a) Let G = {e, a, b} be a group with identity element e. Show that there is only one
possible multiplication table for G [so that groups of order 3 have to have the same
underlying structure].

(b) (*) Let G = {e, a, b, c} be a group with identity element e. Show that this time there
are essentially just two possible multiplication tables for G so that groups of order
4 have to have one of two distinct underlying structures. (Here ”essentially” means
that we may have to rename a, b and c in order to get one of the two tables.)

5

(a) Let G be the set of all 2 × 2 matrices of the form

(
a b
0 d

)
where a, b, d ∈ R, and

ad 6= 0. Show that G is a group under matrix multiplication.
(b) With G as in part (a), define Z(G) = {g ∈ G | such that,∀h ∈ G, gh = hg}. Identify

the elements of Z(G) and show that it is also a group. [Z(G) is called the centre of
G.]

6 Give a formal proof that every integer can be written either as 2k or as 2k + 1 for some
k ∈ Z. [This means prove Theorem 2.1 in this case – you cannot simply assume it. If you
need to, look into Whitehead’s book.]

7 Let a, b, d ∈ Z and suppose d|a and d|b. Prove that ∀m, n ∈ Z, d|(ma+ nb).
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8

(a) Consider the integers n = 0, 1, . . . , 11. For each either find the smallest positive
integer q such that the product nq has remainder 1 when divided by 12 or say why
no such q can exist.

(b) Repeat the exercise in (a) with 12 replaced by 30.
(c) What general observations can one make about the outcomes of the above calcula-

tions?

9 Let d > 0 be an integer. Show that any consecutive ascending sequence of d integers
(n, n+ 1, . . . , n+ d− 1) contains just one number divisible by d.

10 A prime pair is a pair of consecutive odd numbers that are primes (e.g., 11 and 13, or 17
and 19); a prime triple consists of three consecutive odd numbers that are primes. There
are many prime pairs (indeed there is a famous unproved conjecture that states there are
infinitely many). Prove that there is only one prime triple and find it.

11

(a) There is a simple test for whether a number is divisible by 9, which involves a cal-
culation on the decimal digits of the number. Find out what it is. Prove that it
works.

(b) Do the same for divisibility by 11.

12 Eratosthenes Sieve Write down the integers 2, 3, . . . , 30 in ascending order. Call the first
element of this list (i.e., 2) p1.
Now cross out all the multiples of p1 = 2. Call the first element of what remains p2; what is
it?
Next, cross out all the multiples of p2 in what is left. Call the first element of what remains
p3; what is it?
Next, cross out all the multiples of p3 in what is left. Call the first element of what remains
p4; what is it?
What is the common property of p1, p2, p3, p4? Why is that property shared with all the
remaining numbers in the list. [If you cannot spot this, look up ‘Eratosthenes Sieve’ on the
web using Google.]
Finally, we started with the number 30 and did just 4 iterations to get the final result.
How many iterations are required if we started with (a) 100, (b) 1,000, (c) 10,000, (d) 10n?
[A general statement is required in (d), not the actual number – in general it is somewhat
difficult to find.]

13 Let n be a positive integer. Show that none of the integers n! + k, 2 ≤ k ≤ n are prime
(i.e., they are all composite). Find a sequence of 10 consecutive positive composite integers.
CHALLENGE: Find the lowest such sequence.

14 For a long time, people have been looking for a ‘nice’ formula to construct all the primes.
While there are some very un-nice ones, there are some interesting equations. E.g., x2+x+41
is prime for a certain sequence of 80 consecutive integers.
Find a value of x for which x2 + x+ 41 is not prime.
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15 (*) Given a positive integer n, let σ(n) be the sum of all the divisors of n less than n. (So
σ(4) = 1 + 2 = 3, σ(10) = 1 + 2 + 5 = 8, σ(15) = 1 + 3 + 5 = 9.) A number where σ(n) = n
is called perfect. So 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect.
Let p be prime and n = 2kp. Write down all the divisors of n less than n, and compute σ(n)
in this case. Deduce that, if p = 2k+1− 1, then n is perfect. Find two more perfect numbers.
[It is conjectured that all perfect numbers are even. In fact all the even ones have the form
stated above. If you start looking for odd ones, they have at least 8 different primes as factors
and must be very, very large.]

16

(a) Mersenne Primes Show that if a, b are positive integers such that a|b, then (xa −
1)|(xb − 1) as polynomials in x. [Hint: consider what happens when you add up the
geometric series that starts at 1, has ratio xa and has b

a
terms]. Deduce that if 2n−1

is prime, then n is prime.
(b) Find the lowest prime p such that 2p − 1 is not prime [Maple will help here].
(c) Fermat Primes Show that if a, b are positive integers such that a|b and b

a
is odd,

then (xa + 1)|(xb + 1) regarded as polynomials in x [there is a similar hint]. Deduce
that if 2n + 1 is prime, then n is a power of 2.

(d) Find the lowest n such that 22n
+ 1 is not prime [Maple will again help here].

17 A linear combination of integers a, b is an expression of the form ax + by where x, y are
also integers.
Show that any integer n can be written as a linear combination of (a) 2 and 3, (b) 5 and 7,
(c) 8 and 13. [Here you should ‘spot’ the answers rather than use the Euclidean Algorithm.]

18 In each of the following use Euclid’s algorithm to work out the greatest common divisor of
the two given integers and express it as a linear combination of the two numbers: (a) 26, 44,
(b) 1169, 3493, (c) 182, 589, (d) 1573, 2860, (e) 22103, 33580, (f) 1229, 22861.

19 Find integers x, y such that 45x+ 63y = 90. Can we find integers s, t such that 45s+ 63t =
80? Either find them or prove they cannot exist

20 Let a, b, d be non-zero integers such that gcd(a, d) = 1 and d|ab. Show that d|b. [Theo-
rem 2.5 must not be used here: this statement is used to prove the uniqueness part of that
theorem!]

21 Find the rational roots of the following polynomials: (a) 2x3 + 3x2− 1, (b) x3− x2− 7x+ 3,
(c) 4x3− x2− 11x− 6, (d) 4x3 + 8x2− x− 2 (e) x4− 2x3− 5x2 + 2 (f) 4x4− 27x2 + 7x+ 30.

22 Write down the addition and multiplication tables for arithmetic modulo n when (a) n = 4,
(b) n = 6, (c) n = 7. In each case identify those elements x̄ for which there exists ȳ with
x̄ · ȳ = 1̄.

23 In Zn, denote ā · ā by ā2. Tabulate the values ā2 for the non-zero elements in each of
Z7, Z8, Z11. Why is there the apparent symmetry in the respective tables?

24 In each of the following, use Euclid’s algorithm to find the multiplicative inverse of ā in Z∗n
and find x̄ such that āx̄ = b̄ in Zn: (a) n = 25, a = 11, b = 19; (b) n = 18, a = 11, b = 4;
(c) n = 255, a = 16, b = 5. If you are good at mental arithmetic there is a very quick way
to do the third of these. What is it?

25 (a) Compare Z3×Z3 with Z9 and show that they cannot be isomorphic [Hint: what happens
to 1̄ in Z9 when you add it to itself several times. How long before you get back to 0̄?]
(b) Show that when n ≥ 2 Zn × Zn cannot be isomorphic to Zn2 .

26 (a) Show that Z30 is isomorphic to Z2 × Z3 × Z5.
(b) Using a similar approach, how finely can you decompose Z120? Z99? Z4004?
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27 In each of the following, solve the simultaneous congruences to find the smallest positive
number x that satisfies both:

(a) x ≡ 5 (mod 13) and x ≡ 7 (mod 19);
(b) x ≡ 11 (mod 17) and x ≡ 15 (mod 23);
(c) x ≡ 4 (mod 11) and x ≡ 14 (mod 27);
(d) x ≡ 5 (mod 12) and x ≡ 14 (mod 25) and x ≡ 15 (mod 49).

28

(a) Let p be a prime number. Recall that the binomial coefficient
(
p
k

)
= p!

k!(p−k)! . Show

that if 1 ≤ k ≤ p− 1, then
(
p
k

)
≡ 0 (mod p). Deduce that, for every pair of integers

a, b, (a+ b)p ≡ ap + bp (mod p).
(b) Use part (a) to deduce that if p is prime, then for every integer a, ap ≡ a (mod p).
(c) From the above, when p is prime, for what values a is it true that ap−1 ≡ 1 (mod p)?

29 Recall that Euler’s totient function ϕ(n) is the number of integers k, 1 ≤ k < n for which
gcd(k, n) = 1.

(a) Work out ϕ(p) when p is prime.
(b) For p prime and r > 1, write down all the integers among 1, 2, . . . , pr − 1 with a

common divisor greater than 1 with pr, and find ϕ(pr).
(c) Let p, q be distinct primes. Work out ϕ(pq), ϕ(pq2), ϕ(p2q2), ϕ(prqs). These are

algebraic formulae in terms of p and q. In each case show that they can be expressed
as a product of an expression involving only p and one involving only q.

(d) (*) Show that if gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n). [Hint: use Theorem 3.23
and Remark 3.11.]

(e) From the previous part, deduce a general formula for ϕ(n) in terms of the prime
factorisation of n.

30 In each of the following, list all the positive integers r less than n that are coprime to n and
for each find the smallest positive integer k such that rk ≡ 1 (mod n). In each case verify
that k is a divisor of ϕ(n).
(a) n = 10 (b) n = 12 (c) n = 9 (d) n = 11 (e) n = 15 (f) n = 16.

31 For the following pairs of permutations σ, τ , compute στ :

(a)

{
1 2 3 4 5 6 7 8 9 10
6 2 4 8 7 1 5 3 10 9

}
,

{
1 2 3 4 5 6 7 8 9 10
7 5 2 10 8 1 9 4 3 6

}
(b)

{
1 2 3 4 5 6 7 8 9
1 7 9 2 4 3 5 8 6

}
,

{
1 2 3 4 5 6 7 8 9
1 5 6 4 7 3 9 2 8

}
32 Express each of the four permutations displayed in the previous question as a product of

disjoint cycles.

33 Express the results of the following products of permutations cycles as disjoint cycles and as
a product of transpositions.
(a) (1 3 4 6)(2 5)(3 1 5)
(b) (1 2)(6 4 2 3 5)(1 2)
(c) (5 4 3 2 1)(2 4 6 1 3)(1 2 3 4 5)(5 3 1)
(d) (1 2 4 8)(3 2 4 7)(6 5 4 3)(8 7 5 1)
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34 [RSA cryptography] Alice sends Bob a number M that is obtained by encrypting a number
T according to the RSA algorithm: raise T to the power d and reduced modulo N to give
the residu M in the range 0, 1, . . . , N − 1. In each of the following cases, find the original
number T when:

(a) M = 45, d = 13, N = 667.
(b) M = 4063, d = 59, N = 7979.
(c) M = 14756, d = 5, N = 16781.

In each case, the answers are ”recognisable” numbers. You will find it useful to use Maple,
and in particular the irem and ifactor functions. irem(a,b) gives the remainder when the
integer a is divided by the integer b; so it gives the residue of a modulo b. ifactor(n) factorises
the integer n.

35 (*) Let n ≥ 2. For a permutation σ in Sn we define

ε(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j
.

(a) Show that ε(σ) = ±1.

(b) Writing σ(τ(i))−σ(τ(j))
i−j = σ(τ(i))−σ(τ(j))

τ(i)−τ(j)
τ(i)−τ(j)

i−j , show that ε(στ) = ε(σ)ε(τ) for any σ, τ

in Sn.
(c) Compute ε((12)) and, more generally, ε((ab)) for any transposition (ab).
(d) Show that if σ is written as a product of t transpositions, then ε(σ) = (−1)t.
(e) Finally, verify that ε(σ) = 1 if σ is even and −1 if σ is odd.

36 (*) Let σ = (a1 a2 . . . ak) be a k-cycle, and τ a permutation in Sn. Show that τστ−1 =
(τ(a1) τ(a2) · · · τ(ak)) and so is also a k-cycle. Deduce that for any two permutations
ρ, τ ∈ Sn, τρτ−1 has the same cycle type as ρ. [Hint: write ρ as a product of disjoint cycles,
insert the identity permutation e between each cycle and use the fact that τ−1τ = e.]

37 Let G be a group such that for every element g ∈ G, g2 = e. Show that G is Abelian.

38 Prove that, if g, h are elements of the group G then gh and hg have the same order.

39 Prove that a group of even order has an odd number of elements of order 2. [Hint: group
together g and g−1. When are they the same?]

40 Let G be a finite group and let X be a non-empty subset of G. Show that X is a subgroup
of G if and only if for every x, x′ ∈ X, xx′ ∈ X. Give an example to show that this is no
longer true if G is not required to be finite.

41 Let X be a subset of a group G. For fixed elements g, g′ ∈ G, define gXg′ = {gxg′|x ∈ X}.
Show that

(a) x ∈ X if and only if gxg′ ∈ gXg′. [This is not absolutely trivial.]
(b) if g ∈ G is fixed, then X is a subgroup of G if and only if gXg−1 is a subgroup of G.

42 Let G be a group. Define the centre of G to be Z(G) = {g ∈ G| for all h ∈ G, gh = hg}
(i.e., the set of elements that commute with everything in G). Show that Z(G) is a subgroup
of G and that for every g ∈ G, gZ(G)g−1 = Z(G).

43 Recall that a function ϕ : G → H between two groups is a homomorphism if, ∀g1, g2 ∈ G,
ϕ(g1g2) = ϕ(g1)ϕ(g2). The kernel of ϕ is the set ker(ϕ) = {g ∈ G|ϕ(g) = eH}. The image of
ϕ is the set im(ϕ) = {ϕ(g)|g ∈ G} ⊆ H

(a) Show that ker(ϕ) is a subgroup of G.
(b) Show that im(ϕ) is a subgroup of H.
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44 Let ϕ : G→ G be the function ϕ(g) = g2. Show that if ϕ is also a homomorphism, then G
is an Abelian group.

45 Show that a homomorphism ϕ : G→ H is injective if and only if ker(ϕ) = {eG}.
46 [Cayley’s Theorem] Show that if G is a finite group of order n, then G is isomorphic to a

subgroup of Sn. [Hint: number the elements of G and think what happens to the list when
you multiply all of them all simultaneously on the left by the same element of G.]

47 Let p be a prime number and G a group of order pr for some r > 0. Show that G contains a
subgroup of order p. [Hint: think about the subgroup generated by a non-identity element
of G.]

48 Define T (a, b) to be the set of transformations of the real line given by x 7→ ax + b where
a, b are real with a 6= 0.
Show that the set G of all the T (a, b) forms a group under composition of functions. Let
H ⊂ G be all the transformations where a = 1. Show that H is a subgroup of G and describe
the left and right cosets of H in G.

49 Let σ = γ1γ2 · · · γr be a permutation in Sn expressed as a product of disjoint cycles, where
γi is a cycle of length ki. Prove that the order of σ is lcm(k1, k2, . . . , kr).

50 Let p be a prime number and let G = Z∗p. Use Lagrange’s theorem on G to prove that for
every integer a, ap ≡ a (mod p) [Fermat’s little theorem]. [Hint: consider the order of ā in
G. Don’t forget other values of a.]

51 Let An be the set of all even permutations in Sn. Show that (a) An is a subgroup of Sn, and
that |An| = n!/2 when n ≥ 2. [An is called the alternating group on {1, . . . , n}.] [Hint: how
do the parities of permutations work when you multiply them? Use the answer to this to
work out how many cosets An has in Sn.]

52 List all the abelian groups (up to isomorphism) as far as order 12.

53 This question considers the structure of Z∗n. It is a fact that Z∗n for n ≥ 3 is isomorphic to a
cartesian product of the form Zr1 ×Zr2 × · · · ×Zrt for some t ≥ 1, and integers r1, r2, . . . , rt
with all ri ≥ 2 and each one dividing the next (so r1|r2, r2|r3, etc.). For each of the following
values of n, determine the corresponding structure of Z∗n: (a) 3 (b) 5 (c) 6 (d) 7 (e) 8 (f) 9
(g) 12 (h) 15 (i) 21 (j) 24. [Hint: in each case work out the order of each element and use
the list to determine which group structure must be present, using that r1r2 · · · rt = ϕ(n).]

54 List all the subgroups of (a) S3, (b) D4, (c) D5, (d) D6, (e) D8.


