ALGEBRA QUESTION SHEET

Harder questions are normally marked (*).

- 1 Prove that the following sets form infinite groups with respect to ordinary multiplication:

 - (a) $\{2^k\}$ where $k \in \mathbb{Z}$. (b) $\{\frac{1+2m}{1+2n}\}$ where $m, n \in \mathbb{Z}$. (c) $\{\cos \theta + i \sin \theta\}$ where θ runs over all rational numbers.
- Think of the integers \mathbb{Z} as points equally spaced along the real line. Define two kinds of $\mathbf{2}$ transformations on \mathbb{Z} :

(1) Translations of the form T_a (where a is an integer) which have the effect of translating \mathbb{Z} a places to the right (if $a \ge 0$; or -a places to the left if a < 0) using the formula $n \mapsto n+a$. (2) Reflections of the form R_c (where c is an integer) which have the effect of reflecting \mathbb{Z} in the point $\frac{c}{2}$ using the formula $n \mapsto c - n$.

Work out the effect of composing the following pairs of transformations: (a) T_bT_a , (b) R_dT_a , (c) $T_b R_c$, (d) $R_d R_c$. [In each case, because these are functions the compositions have to be evaluated from right to left; e.g., T_bT_a means first do T_a and then do T_b .]

Now let A be the set of all such T_a and R_c . Show that A is a group and that we can find examples of elements $g, h \in A$ such that $gh \neq hg, g^2 = h^2 = e$ and $\forall s > 0, (gh)^s \neq e$.

[Note: A is called the group of *affine transformations* on \mathbb{Z} . There are more general groups of affine transformations on \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 etc.]

Define a composition * on the integers \mathbb{Z} by 3

$$n * m = n + m + nm$$

Show that under this composition, \mathbb{Z} is closed, associative and has an identity element. Does it have inverses?

 $\mathbf{4}$

- (a) Let $G = \{e, a, b\}$ be a group with identity element e. Show that there is only one possible multiplication table for G [so that groups of order 3 have to have the same underlying structure.
- (b) (*) Let $G = \{e, a, b, c\}$ be a group with identity element e. Show that this time there are essentially just two possible multiplication tables for G so that groups of order 4 have to have one of two distinct underlying structures. (Here "essentially" means that we may have to rename a, b and c in order to get one of the two tables.)

 $\mathbf{5}$

- (a) Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ where $a, b, d \in \mathbb{R}$, and $ad \neq 0$. Show that G is a group under matrix multiplication.
- (b) With G as in part (a), define $Z(G) = \{g \in G \mid \text{such that}, \forall h \in G, gh = hg\}$. Identify the elements of Z(G) and show that it is also a group. [Z(G)] is called the *centre* of G.]
- Give a formal proof that every integer can be written either as 2k or as 2k + 1 for some 6 $k \in \mathbb{Z}$. [This means prove Theorem 2.1 in this case – you cannot simply assume it. If you need to, look into Whitehead's book.]
- 7 Let a, b, $d \in \mathbb{Z}$ and suppose d|a and d|b. Prove that $\forall m, n \in \mathbb{Z}, d|(ma + nb)$.

ALGEBRA QUESTION SHEET

- (a) Consider the integers n = 0, 1, ..., 11. For each *either* find the smallest positive integer q such that the product nq has remainder 1 when divided by 12 or say why no such q can exist.
- (b) Repeat the exercise in (a) with 12 replaced by 30.
- (c) What general observations can one make about the outcomes of the above calculations?
- **9** Let d > 0 be an integer. Show that any consecutive ascending sequence of d integers $(n, n+1, \ldots, n+d-1)$ contains just one number divisible by d.
- 10 A prime pair is a pair of consecutive odd numbers that are primes (e.g., 11 and 13, or 17 and 19); a prime triple consists of three consecutive odd numbers that are primes. There are many prime pairs (indeed there is a famous unproved conjecture that states there are infinitely many). Prove that there is only one prime triple and find it.

11

- (a) There is a simple test for whether a number is divisible by 9, which involves a calculation on the decimal digits of the number. Find out what it is. Prove that it works.
- (b) Do the same for divisibility by 11.
- 12 Eratosthenes Sieve Write down the integers $2, 3, \ldots, 30$ in ascending order. Call the first element of this list (i.e., 2) p_1 .

Now cross out all the multiples of $p_1 = 2$. Call the first element of what remains p_2 ; what is it?

Next, cross out all the multiples of p_2 in what is left. Call the first element of what remains p_3 ; what is it?

Next, cross out all the multiples of p_3 in what is left. Call the first element of what remains p_4 ; what is it?

What is the common property of p_1 , p_2 , p_3 , p_4 ? Why is that property shared with *all* the remaining numbers in the list. [If you cannot spot this, look up 'Eratosthenes Sieve' on the web using Google.]

Finally, we started with the number 30 and did just 4 iterations to get the final result. How many iterations are required if we started with (a) 100, (b) 1,000, (c) 10,000, (d) 10^n ? [A general statement is required in (d), not the actual number – in general it is somewhat difficult to find.]

- 13 Let n be a positive integer. Show that none of the integers n! + k, $2 \le k \le n$ are prime (i.e., they are all composite). Find a sequence of 10 consecutive positive composite integers. CHALLENGE: Find the lowest such sequence.
- 14 For a long time, people have been looking for a 'nice' formula to construct all the primes. While there are some very un-nice ones, there are some interesting equations. E.g., x^2+x+41 is prime for a certain sequence of 80 consecutive integers. Find a value of x for which $x^2 + x + 41$ is not prime.

8

 $\mathbf{2}$

15 (*) Given a positive integer n, let σ(n) be the sum of all the divisors of n less than n. (So σ(4) = 1 + 2 = 3, σ(10) = 1 + 2 + 5 = 8, σ(15) = 1 + 3 + 5 = 9.) A number where σ(n) = n is called **perfect**. So 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect. Let p be prime and n = 2^kp. Write down all the divisors of n less than n, and compute σ(n) in this case. Deduce that, if p = 2^{k+1} - 1, then n is perfect. Find two more perfect numbers. [It is conjectured that all perfect numbers are even. In fact all the even ones have the form stated above. If you start looking for odd ones, they have at least 8 different primes as factors and must be very, very large.]

- 16
- (a) Mersenne Primes Show that if a, b are positive integers such that a|b, then $(x^a 1)|(x^b 1)$ as polynomials in x. [Hint: consider what happens when you add up the geometric series that starts at 1, has ratio x^a and has $\frac{b}{a}$ terms]. Deduce that if $2^n 1$ is prime, then n is prime.
- (b) Find the lowest prime p such that $2^p 1$ is not prime [Maple will help here].
- (c) Fermat Primes Show that if a, b are positive integers such that a|b and $\frac{b}{a}$ is odd, then $(x^a + 1)|(x^b + 1)$ regarded as polynomials in x [there is a similar hint]. Deduce that if $2^n + 1$ is prime, then n is a power of 2.
- (d) Find the lowest n such that $2^{2^n} + 1$ is not prime [Maple will again help here].
- 17 A linear combination of integers a, b is an expression of the form ax + by where x, y are also integers.
 Show that any integer n can be written as a linear combination of (a) 2 and 3, (b) 5 and 7, (c) 8 and 13. [Here you should 'spot' the answers rather than use the Euclidean Algorithm.]
- 18 In each of the following use Euclid's algorithm to work out the greatest common divisor of the two given integers and express it as a linear combination of the two numbers: (a) 26, 44, (b) 1169, 3493, (c) 182, 589, (d) 1573, 2860, (e) 22103, 33580, (f) 1229, 22861.
- **19** Find integers x, y such that 45x + 63y = 90. Can we find integers s, t such that 45s + 63t = 80? Either find them or prove they cannot exist
- **20** Let a, b, d be non-zero integers such that gcd(a, d) = 1 and d|ab. Show that d|b. [Theorem 2.5 must not be used here: this statement is used to prove the uniqueness part of that theorem!]
- **21** Find the rational roots of the following polynomials: (a) $2x^3 + 3x^2 1$, (b) $x^3 x^2 7x + 3$, (c) $4x^3 x^2 11x 6$, (d) $4x^3 + 8x^2 x 2$ (e) $x^4 2x^3 5x^2 + 2$ (f) $4x^4 27x^2 + 7x + 30$.
- 22 Write down the addition and multiplication tables for arithmetic modulo n when (a) n = 4, (b) n = 6, (c) n = 7. In each case identify those elements \bar{x} for which there exists \bar{y} with $\bar{x} \cdot \bar{y} = \bar{1}$.
- **23** In \mathbb{Z}_n , denote $\bar{a} \cdot \bar{a}$ by \bar{a}^2 . Tabulate the values \bar{a}^2 for the non-zero elements in each of \mathbb{Z}_7 , \mathbb{Z}_8 , \mathbb{Z}_{11} . Why is there the apparent symmetry in the respective tables?
- 24 In each of the following, use Euclid's algorithm to find the multiplicative inverse of \bar{a} in \mathbb{Z}_n^* and find \bar{x} such that $\bar{a}\bar{x} = \bar{b}$ in \mathbb{Z}_n : (a) n = 25, a = 11, b = 19; (b) n = 18, a = 11, b = 4; (c) n = 255, a = 16, b = 5. If you are good at mental arithmetic there is a very quick way to do the third of these. What is it?
- 25 (a) Compare $\mathbb{Z}_3 \times \mathbb{Z}_3$ with \mathbb{Z}_9 and show that they cannot be isomorphic [Hint: what happens to $\overline{1}$ in \mathbb{Z}_9 when you add it to itself several times. How long before you get back to $\overline{0}$?] (b) Show that when $n \geq 2 \mathbb{Z}_n \times \mathbb{Z}_n$ cannot be isomorphic to \mathbb{Z}_{n^2} .
- (a) Show that Z₃₀ is isomorphic to Z₂ × Z₃ × Z₅.
 (b) Using a similar approach, how finely can you decompose Z₁₂₀? Z₉₉? Z₄₀₀₄?

ALGEBRA QUESTION SHEET

- 27 In each of the following, solve the simultaneous congruences to find the smallest positive number x that satisfies both:
 - (a) $x \equiv 5 \pmod{13}$ and $x \equiv 7 \pmod{19}$;
 - (b) $x \equiv 11 \pmod{17}$ and $x \equiv 15 \pmod{23}$;
 - (c) $x \equiv 4 \pmod{11}$ and $x \equiv 14 \pmod{27}$;
 - (d) $x \equiv 5 \pmod{12}$ and $x \equiv 14 \pmod{25}$ and $x \equiv 15 \pmod{49}$.

- (a) Let p be a prime number. Recall that the binomial coefficient $\binom{p}{k} = \frac{p!}{k!(p-k)!}$. Show that if $1 \le k \le p-1$, then $\binom{p}{k} \equiv 0 \pmod{p}$. Deduce that, for every pair of integers $a, b, (a+b)^p \equiv a^p + b^p \pmod{p}$.
- (b) Use part (a) to deduce that if p is prime, then for every integer a, $a^p \equiv a \pmod{p}$.
- (c) From the above, when p is prime, for what values a is it true that $a^{p-1} \equiv 1 \pmod{p}$?
- **29** Recall that Euler's totient function $\varphi(n)$ is the number of integers $k, 1 \le k < n$ for which gcd(k, n) = 1.
 - (a) Work out $\varphi(p)$ when p is prime.
 - (b) For p prime and r > 1, write down all the integers among $1, 2, \ldots, p^r 1$ with a common divisor greater than 1 with p^r , and find $\varphi(p^r)$.
 - (c) Let p, q be distinct primes. Work out $\varphi(pq)$, $\varphi(pq^2)$, $\varphi(p^2q^2)$, $\varphi(p^rq^s)$. These are algebraic formulae in terms of p and q. In each case show that they can be expressed as a product of an expression involving only p and one involving only q.
 - (d) (*) Show that if gcd(m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$. [Hint: use Theorem 3.23 and Remark 3.11.]
 - (e) From the previous part, deduce a general formula for $\varphi(n)$ in terms of the prime factorisation of n.
- **30** In each of the following, list all the positive integers r less than n that are coprime to n and for each find the smallest positive integer k such that $r^k \equiv 1 \pmod{n}$. In each case verify that k is a divisor of $\varphi(n)$.

(a)
$$n = 10$$
 (b) $n = 12$ (c) $n = 9$ (d) $n = 11$ (e) $n = 15$ (f) $n = 16$.

31 For the following pairs of permutations σ , τ , compute $\sigma\tau$:

(a)	∫1	2	3	4	5	6	7	8	9	10		(1	2	3	4	5	6	7	8	9	10)
(a) <	6	2	4	8	7	1	5	3	10	9)	^ک , ۲	7	5	2	10	8	1	9	4	3	6)
(h)	∫ 1	2	3	4	5	6	7	8	9)	∫ 1	2	3	4	5	6	7	8	9)			-
(u)	1	7	9	2	4	3	5	8	6	' \ 1	5	6	4	7	3	9	2	8	>		

- **32** Express each of the four permutations displayed in the previous question as a product of disjoint cycles.
- **33** Express the results of the following products of permutations cycles as disjoint cycles and as a product of transpositions.
 - (a) $(1\ 3\ 4\ 6)(2\ 5)(3\ 1\ 5)$
 - (b) $(1\ 2)(6\ 4\ 2\ 3\ 5)(1\ 2)$
 - (c) $(5\ 4\ 3\ 2\ 1)(2\ 4\ 6\ 1\ 3)(1\ 2\ 3\ 4\ 5)(5\ 3\ 1)$
 - (d) $(1\ 2\ 4\ 8)(3\ 2\ 4\ 7)(6\ 5\ 4\ 3)(8\ 7\ 5\ 1)$

4

 $[\]mathbf{28}$

- [RSA cryptography] Alice sends Bob a number M that is obtained by encrypting a number 34 T according to the RSA algorithm: raise T to the power d and reduced modulo N to give the residu M in the range $0, 1, \ldots, N-1$. In each of the following cases, find the original number T when:
 - (a) M = 45, d = 13, N = 667.
 - (b) M = 4063, d = 59, N = 7979.
 - (c) M = 14756, d = 5, N = 16781.

In each case, the answers are "recognisable" numbers. You will find it useful to use Maple, and in particular the *irem* and *ifactor* functions. irem(a,b) gives the remainder when the integer a is divided by the integer b; so it gives the residue of a modulo b. ifactor(n) factorises the integer n.

(*) Let $n \geq 2$. For a permutation σ in S_n we define 35

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

- (a) Show that $\varepsilon(\sigma) = \pm 1$.
- (a) Show that $\varepsilon(\sigma) = \pm 1$. (b) Writing $\frac{\sigma(\tau(i)) \sigma(\tau(j))}{i-j} = \frac{\sigma(\tau(i)) \sigma(\tau(j))}{\tau(i) \tau(j)} \frac{\tau(i) \tau(j)}{i-j}$, show that $\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau)$ for any σ, τ in S_n .
- (c) Compute $\varepsilon((12))$ and, more generally, $\varepsilon((ab))$ for any transposition (ab).
- (d) Show that if σ is written as a product of t transpositions, then $\varepsilon(\sigma) = (-1)^t$.
- (e) Finally, verify that $\varepsilon(\sigma) = 1$ if σ is even and -1 if σ is odd.
- (*) Let $\sigma = (a_1 \ a_2 \ \dots \ a_k)$ be a k-cycle, and τ a permutation in S_n . Show that $\tau \sigma \tau^{-1} =$ 36 $(\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_k))$ and so is also a k-cycle. Deduce that for any two permutations $\rho, \tau \in S_n, \tau \rho \tau^{-1}$ has the same cycle type as ρ . [Hint: write ρ as a product of disjoint cycles, insert the identity permutation e between each cycle and use the fact that $\tau^{-1}\tau = e$.]
- Let G be a group such that for every element $g \in G$, $g^2 = e$. Show that G is Abelian. $\mathbf{37}$
- Prove that, if g, h are elements of the group G then gh and hg have the same order. 38
- Prove that a group of even order has an odd number of elements of order 2. [Hint: group 39 together q and q^{-1} . When are they the same?]
- Let G be a finite group and let X be a non-empty subset of G. Show that X is a subgroup 40 of G if and only if for every x, $x' \in X$, $xx' \in X$. Give an example to show that this is no longer true if G is not required to be finite.
- Let X be a subset of a group G. For fixed elements $g, g' \in G$, define $gXg' = \{gxg' | x \in X\}$. 41 Show that
 - (a) $x \in X$ if and only if $gxg' \in gXg'$. [This is not absolutely trivial.]
 - (b) if $g \in G$ is fixed, then X is a subgroup of G if and only if gXg^{-1} is a subgroup of G.
- Let G be a group. Define the *centre* of G to be $Z(G) = \{g \in G | \text{ for all } h \in G, gh = hg\}$ 42(i.e., the set of elements that commute with everything in G). Show that Z(G) is a subgroup of G and that for every $q \in G$, $qZ(G)q^{-1} = Z(G)$.
- $\mathbf{43}$ Recall that a function $\varphi: G \to H$ between two groups is a homomorphism if, $\forall g_1, g_2 \in G$, $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$. The kernel of φ is the set ker $(\varphi) = \{g \in G | \varphi(g) = e_H\}$. The image of φ is the set $\operatorname{im}(\varphi) = \{\varphi(g) | g \in G\} \subseteq H$
 - (a) Show that $\ker(\varphi)$ is a subgroup of G.
 - (b) Show that $im(\varphi)$ is a subgroup of H.

- 44 Let $\varphi: G \to G$ be the function $\varphi(g) = g^2$. Show that if φ is also a homomorphism, then G is an Abelian group.
- 45 Show that a homomorphism $\varphi: G \to H$ is injective if and only if $\ker(\varphi) = \{e_G\}$.
- 46 [Cayley's Theorem] Show that if G is a finite group of order n, then G is isomorphic to a subgroup of S_n . [Hint: number the elements of G and think what happens to the list when you multiply all of them all simultaneously on the left by the same element of G.]
- **47** Let p be a prime number and G a group of order p^r for some r > 0. Show that G contains a subgroup of order p. [Hint: think about the subgroup generated by a non-identity element of G.]
- **48** Define T(a, b) to be the set of transformations of the real line given by $x \mapsto ax + b$ where a, b are real with $a \neq 0$. Show that the set G of all the T(a, b) forms a group under composition of functions. Let $H \subset G$ be all the transformations where a = 1. Show that H is a subgroup of G and describe the left and right cosets of H in G.
- **49** Let $\sigma = \gamma_1 \gamma_2 \cdots \gamma_r$ be a permutation in S_n expressed as a product of disjoint cycles, where γ_i is a cycle of length k_i . Prove that the order of σ is $lcm(k_1, k_2, \ldots, k_r)$.
- 50 Let p be a prime number and let $G = \mathbb{Z}_p^*$. Use Lagrange's theorem on G to prove that for every integer $a, a^p \equiv a \pmod{p}$ [Fermat's little theorem]. [Hint: consider the order of \bar{a} in G. Don't forget other values of a.]
- 51 Let A_n be the set of all *even* permutations in S_n . Show that (a) A_n is a subgroup of S_n , and that $|A_n| = n!/2$ when $n \ge 2$. $[A_n$ is called the *alternating group* on $\{1, \ldots, n\}$.] [Hint: how do the parities of permutations work when you multiply them? Use the answer to this to work out how many cosets A_n has in S_n .]
- **52** List all the abelian groups (up to isomorphism) as far as order 12.
- **53** This question considers the structure of \mathbb{Z}_n^* . It is a fact that \mathbb{Z}_n^* for $n \geq 3$ is isomorphic to a cartesian product of the form $\mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \times \cdots \times \mathbb{Z}_{r_t}$ for some $t \geq 1$, and integers r_1, r_2, \ldots, r_t with all $r_i \geq 2$ and each one dividing the next (so $r_1 | r_2, r_2 | r_3$, etc.). For each of the following values of n, determine the corresponding structure of \mathbb{Z}_n^* : (a) 3 (b) 5 (c) 6 (d) 7 (e) 8 (f) 9 (g) 12 (h) 15 (i) 21 (j) 24. [Hint: in each case work out the order of each element and use the list to determine which group structure must be present, using that $r_1 r_2 \cdots r_t = \varphi(n)$.]
- **54** List all the subgroups of (a) S_3 , (b) D_4 , (c) D_5 , (d) D_6 , (e) D_8 .