
ALGEBRA SOLUTION SHEET

1 Associativity of the multiplication in the real or complex numbers implies associativity in
each case.

(a) 2k2l = 2k+l implies closure. The identity is 1 = 20 and the inverse of 2k is 2−k.
(b) Closure follows from the observation that the product of two odd numbers is odd.

The identity has m = n = 0. The inverse swaps the role of m and n.
(c) We are dealing with complex numbers of the form eiθ where θ is rational. The

multiplication then just adds the relevant θ values. That the sum of two rationals is
rational gives closure. The identity has θ = 0 and the inverse for θ requires the value
−θ which is also rational.

2 (a) The effect of TbTa is n 7→ n+ a 7→ n+ a+ b, so TbTa = Ta+b.
(b) The effect of RdTa is n 7→ n+ a 7→ d− (n+ a) = (d− a)− n, so RdTa = Rd−a.
(c) n 7→ c− n 7→ b+ c− n, so TbRc = Rb+c.
(d) n 7→ c− n 7→ d− (c− n) = (d− c) + n, so RdRc = Td−c.
The above calculations show we have closure. The group law is composition of functions so
associativity holds. The identity is T0. The inverse of Ta is T−a and that of Rc is Rc.
For the final bit, just take two different reflections. E.g., g = R1 and h = R0. Then
g2 = h2 = e, gh = T1, hg = T−1, and (gh)k = Tk 6= e.

3 Closure is obvious. For associativity we calculate

m∗(n∗p) = m+(n∗p)+m(n∗p) = m+n+p+np+m(n+p+np) = m+n+p+np+mn+mp+mnp

Similarly

(m∗n)∗p = (m∗n)+p+(m∗n)p = m+n+mn+p+(m+n+mn)p = m+n+p+mn+mp+np+mnp

0 is an identity, since m ∗ 0 = m + 0 + m0 = m, 0 ∗m = 0 + m + 0m = m. For an inverse
to m we need to be able to solve m+ n+mn = 0 which requires n = −m/(m+ 1). This is
not in general soluble in integers, but we need a specific example to show inverses fail and
m = −1 is the most spectacular since (−1) ∗ n = −1 + n + (−1)n = −1, so there is no
possible inverse to −1.

4 (a) Let’s determine if a2 = e, a or b. If a2 = a then multiplyin on the left (or right) by a−1

leads to a = e, so that’s impossible. Assume a2 = e, so a−1 = a. Then ab = e, a or b. The
first leads to b = a−1 = a, the second to b = e (multiply on the left by a−1), and the third
to a = e (multiply on the right by b−1). None of those are possible, so a2 6= e. That only
leaves a2 = b.
Ruling out ab = a or b never used any assumptions, so ab = e. Similarly ba = e. Then the
only product that is not clear is b2. If b2 = b we get b = e, if b2 = e = ab we get a = b,
leaving only b2 = a.
[This becomes a lot easier if we observe that gh1 = gh2 implies h1 = h2 (multiply on the
left by g−1). This means that in every row of the group table every element occurs at most
once. It also must occur exactly once (if we want to get k in the row starting with g we have
to take the column with g−1k at the top). Similarly h1g = h2g implies h1 = h2 (multiply
on the right by g−1), and every element of the group occurs exactly once in every column of
the group table. Now check that knowing that a2 = b allows you to fill in the group table
without any further calculations.]
(b) In this case we use the rule that in every row or column of the group table every element
occurs exactly once.
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For a2 there are three possibilities: a2 = e, a2 = b or a2 = c, but the last two coincide if we
rename b and c. When filling in the table for a2 = e we have to make a choice: b2 = e or a.
But the second case is like a2 = b but with a and b renamed, so we ignore it here. Then the
table can be filled out in only one way.
For a2 = b the table can be filled out in only one way. (Note that ab = e or c but ab = e
would lead to ac = c.)

5

(a) Since (a
0
b
d
)( e

0
f
h
) = (ae

0
af+bh
dh

), all entries are real and aedh 6= 0 since ad, eh 6= 0, we have
closure. Associativity comes from the fact that matrix multiplication is associative
(this is a case where you should not multiply out three example matrices two ways!).

I2 is in G and is the identity. Finally, the inverse of (a
0
b
d
) is (a

−1

0
−a−1bd−1

d−1 ).

(b) Suppose (A
0
B
D

) is in Z(G), so (Aa
0
Ab+Bd
Dd

) = (A
0
B
D

)(a
0
b
d
) = (a

0
b
d
)(A

0
B
D

) = (aA
0
aB+bD
dD

)
whenever ad 6= 0, or equivalently, Ab + Bd = aB + bD whenever ad 6= 0. Taking
a = 2, d = 1 and b = 0 shows B = 0; then taking b = 1 shows A = D. If B = 0 and
A = D the equation is satisfied, so Z(G) = {(A

0
0
A

) with A 6= 0}. To see Z(G) is a

group we note that closure follows from (A
0

0
A

)(A
′

0
0
A′

) = (AA
′

0
0

AA′
), matrix multiplation

is associative, we get the identity for A = 1, and (A
0

0
A

) has inverse (A
−1

0
0

A−1 ).

6 Let n be the integer and consider the set of numbers: {n− 2k|k ∈ Z}. Let r be the least
non-negative value that occurs. If r ≥ 2 and r = n − 2k then r′ = n − 2(k + 1) satisfies
0 ≤ r′ < r, so r was not the least non-negative. Hence r = 0, 1 are the only possibilities,
and n = 2k or n = 2k + 1 for some k in Z.

7 By assumption there exist x, y in Z with a = xd and b = yd. Then ma+nb = (mx+ny)d,
so d|(ma+ nb).

8 Any linear expression where every term is divisible by k is also divisible by k. So the
only integers of interest for (a) are those which have no prime factor common with 12, and
similarly for (b) with 12 replaced by 30.

(a) 1 · 1 = 1, 5 · 5 = 24 = 2 · 12 ·+1, 7 · 7 = 49 = 4 · 12 + 1, 11 · 11 = 121 = 10 · 12 + 1.
(b) 1 · 1 = 1, 7 · 13 = 13 · 7 = 91 = 3 · 30 + 1, 11 · 11 = 121 = 4 · 30 + 1, 17 · 23 = 23 · 17 =

391 = 13 · 30 + 1, 19 · 19 = 361 = 12 · 30 + 1, 29 · 29 = 841 = 28 · 30 + 1
(c) The situation is symmetric in the sense that if a leads to b then 0 < b < 12 (resp.

0 < b < 30) and b leads to a (with a = b a distinct possibility).

9 Suppose that d|a and d|b. Then d|a− b and d||a− b| = ±1. If a, b are among the integers
n, n + 1, . . . , n + d − 1 then |a − b| < d − 1 so this can only be divisible by d if it is 0, i.e.,
a = b. This shows that at most one of n, n+ 1, . . . , n+ d− 1 is divisible by d.
To see that at least one of those integers is divisible by d we apply Theorem 2.1 to n, so
n = qd+ r for 0 ≤ r < d. Note that n− r = qd is divisible by d, but it might be too small,
so we might have to consider n − r + d. This leads to two cases: if r = 0 then d|n and we
are done; if 1 ≤ r < d then n− r+ d is divisible by d and satisfies n < n− r+ d ≤ n+ d− 1,
so is among the integers under consideration.

10 Consider 3 integers n, n+ 2, n+ 4. Divide n by 3 to get n = 3k + r with 0 ≤ r < 3. If
r = 0 then r is a multiple of 3. If r = 1 then n+ 2 = 3k+ 3 is a multiple of 3. If r = 2, then
n+ 4 = 3k + 6 is a multiple of 3. Thus any such triple contains a multiple of 3.
But any multiple of 3 greater than 3 is not prime. So the only prime triple must involve the
integer 3 explicitly. By inspection this is the triple 3, 5, 7.
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11

(a) The test is to add the decimal digits and see whether this sum is divisible by 9. If it is

then so was the original number. To prove this let n = dkdk−1 . . . d1d0 =
∑k

i=0 di10i.

Then the sum of the digits is s =
∑k

i=0 di and

n− s =
k∑
i=0

di(10i − 1)

But 10i−1 is a multiple of 9 (it is a string of i consecutive nines). So n−s is divisible
by 9 whence n is divisible by 9 if and only if s is also.

(b) Here we take the alternating sum of the decimal digits. So with the same notation

we have s =
∑k

i=0(−1)idi and

n− s =
k∑
i=0

di(10i − (−1)i)

Examine the values 10i−(−1)i and we find that each of them is necessarily a multiple
of 11. So essentially the same argument works.

12 Eratosthenes Sieve The pi are just the primes in ascending order. By the time we have
done 4 iterations, we have eliminated all multiples of 2, 3, 5 and 7. But 72 > 30 and so what
remains cannot have a divisor less than its square root so that what remains are also prime.
(a) Applying the same argument in fact all the numbers left up to 100 are prime, since any
such non-prime integer would have a prime factor less than

√
100 = 10.

(b) 312 = 961, 372 > 1, 000, so we need to do enough iterations to get to deal with the
number 31. I.e. 11 in all.
(c) 1002 = 10, 000 so the number of iterations is the number of primes up to 100. There are
26 such.
(d) We need the number of primes up to

√
10n.

13 Since n! is a multiple of k, n! + k is a multiple of k and is greater than k. Hence it is not
prime.
The above formula says look at the 10 numbers starting at 11! + 2 = 39, 916, 802.
On the other hand there is a sequence of 13 non-primes starting at 114.

14 x = 41 works, as does x = 40.

15 The divisors of n = 2kp are 1, 2, . . . 2k, p, 2p, . . . 2k−1p. Adding these up (using the stan-
dard formula for geometric series) gives a total 2k+1 − 1 + p(2k − 1).
For this to be equal to 2kp we must have p = 2k+1 − 1 as required.
The perfect number 6 corresponds to the case p = 3, k = 1.
k = 2 gives p = 23 − 1 = 7 and n = 28.
k = 4 gives p = 25 − 1 = 31 and n = 496.

16

(a) Mersenne Primes

Let a = bc, then 1 + xb + x2b + · · ·+ x(c−1)b = (xcb−1)
(xb−1)

. So

xa − 1 = (xb − 1)(1 + xb + x2b + · · ·+ x(c−1)b) .

Now simply put x = 2 to get a factorisation of 2a − 1 with 2b − 1 as a factor. So
the only way 2n− 1 can be prime is if 2b− 1 = 21− 1 = 1 and b = 1 is the only factor
of n less than n. I.e., n must be prime.

(b) 211 − 1 = 23 · 89



4 ALGEBRA SOLUTION SHEET

(c) Fermat Primes Let a = bc where c is odd. Now do the sum of the geometric series

c−1∑
k=0

(−1)kxkb =
((−xb)c − 1)

(−xb − 1)
=

(xa + 1)

(xb + 1)

Thus

xa + 1 = (xb + 1)(
c−1∑
k=0

(−1)kxkb)

Now put x = 2 and we have a factorisation of 2a + 1 involving 2b + 1 as a factor.
The only way this can fail to give a proper factor is if a = b and c = 1. But

as soon as a has an odd factor greater than 1, then we can choose this as c and
get a factorisation. Similarly, if a is odd, we can choose b = 1, c = 1 and get a
factorisation.

So the only possibility of 2a + 1 being prime is when a = 2n and n > 0.
(d) If we let the n-th Fermat number be Fn = 22n

+1, then Fn is prime for n = 1, 2 , 3 , 4.
F5 = 4, 294, 967, 297 = 641.6, 700, 417. It is known that all the Fermat numbers

up to F23 are composite (i.e. non-prime). Nothing more is known above that.

17 (a) n = n(3− 2) = n · 3− n · 2
(b) 1 = 3 · 5− 2 · 7, so n = 3n · 5− 2n · 7
(c) 1 = 5 · 13− 8 · 8 so n = 5n · 13− 8n · 8
18 (a) −5 · 26 + 3 · 44 = 2
(b) −248 · 1169 + 83 · 3493 = 7
(c) 178 · 182− 55 · 589 = 1
(d) −9 · 1573 + 5 · 2860 = 143
(e) −79 · 22103 + 52 · 33580 = 23
(f) 2846 · 1229− 153 · 22861 = 1

19 A bit easier than I had wanted: x = 2, y = 0 works for the first bit.
For the second it is impossible as 9 divides the LHS but not the RHS.

20 We know that we can find ax + dy = 1. So abx + dby = b. Since d|ab we know that
d|LHS hence d|b.
21 (a) (2x− 1) (x+ 1)2: 1

2
, −1, −1.

(b) (x− 3) (x2 + 2x− 1): Only 3, the quadratic does not factor.
(c) (x− 2) (4x+ 3) (x+ 1): 2, −3

4
, −1.

(d) (2x+ 1) (2x− 1) (x+ 2): −1
2
, 1

2
, −2.

(e) (x2 − 4x+ 2) (x+ 1)2: -1 twice; the quadratic does not factor.
(f) (x− 2) (2x+ 5) (2x− 3) (x+ 1): 2, −5

2
, 3

2
, −1.

22 This is straightforward. The numbers we want are those coprime to the arithmetic base.

23 In each case we list them in order from 12 up to (n− 1)2.
Z7 : 1, 4, 2, 2, 4, 1
Z8 : 1, 4, 1, 0, 1, 4, 1
Z11 : 1, 4, 9, 5, 3, 3, 5, 9, 4, 1
There is symmetry about the middle because (n− k)2 ≡ k2 (mod n).

24 (a) gcd(11, 25) = 1 = −9 · 11 + 4 · 25. So 11 · −9 = 1. Therefore x = 19 · −9 = 4.
(b) gcd(11, 18) = 1 = 5 · 11− 3 · 18 and x = 4 · 5 = 2.
(c) gcd(16, 255) = 1 = 16 · 16 − 1 · 255 (the trick was knowing that 162 = 256). Now
x = 5 · 16 = 80.
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25

(a) 1 in Z9 has order 9. On the other hand, in Z3 × Z3, every multiple of 3 gets you to
(0, 0).

(b) This is the same with n replacing 3 and n2 replacing 9.

26

(a) By the standard theorem Z30
∼= Z2×Z15 and Z15

∼= Z3×Z5. Put these together and
the result follows.

(b) 120 = 23 · 3 · 5, so Z120
∼= Z8 × Z3 × Z5.

99 = 32 · 11, so Z99
∼= Z9 × Z11.

4004 = 22 · 7 · 11 · 13, so Z4004
∼= Z4 × Z7 × Z11 × Z13.

27 If x ≡ a (mod m) and x ≡ b (mod n), where m, n are coprime, then find s, t such that
sm+ tn = 1 and let x = bsm+atn. You may have to adjust this by adding multiples on mn
to get this minimal and positive (e.g., if x < 0), but so long as you have the least positive
residue you will have the answer.
In the given cases, the numbers required are: (a) 83 (b) 130 (c) 257 (d) 1289.

28

(a) If 1 ≤ k ≤ p− 1 and p is prime then both k! and (p− k)! contain no factor p. On the
other hand p! does. Thus the numerator of

(
p
k

)
contains a factor p and it cannot be

cancelled by anything in the denominator. The equality modulo p then follows from
the binomial theorem since all other terms have a factor p.

(b) Write a = 1 + 1 + · · · + 1 (a times) = ((a − 1) · 1 + 1). Thus ap ≡ (a − 1)p + 1p ≡
(a− 1)p + 1 (mod p). Similarly (a− 1)p ≡ (a− 2)p + 1 (mod p). Thus we may strip
of a contribution of 1 in each of a stages to get ap ≡ a (mod p) as required. [Or you
can do a formal induction.] A similar argument works for negative a, and for a = 0
the result is obvious.

(c) Clearly if p|a, then ap−1 ≡ 0 (mod p). And if a is not divisible by p then gcd(ap, p) =
1 so ap = ā in Z∗p by what we just proved. We can then use that ap = āp in Z∗p and

multiply by ā−1 in the group Z∗p. This gives āp−1 = 1̄, so ap−1 ≡ 1 (mod p).

29 Recall that Euler’s totient function ϕ(n) is the number of integers k, 1 ≤ k < n for which
gcd(k, n) = 1.

(a) When p is prime, every positive integer less than p is coprime to p. Hence ϕ(p) = p−1.
(b) The non-coprime numbers among 1, 2, . . . , pr − 1 (note we’re including pr here) are

those numbers divisible by p: the gcd must be a power of p. Those are kp with
k = 1, . . . , pr−1 − 1, so ϕ(pr) = pr − pr−1.

(c) The easiest approach with these is to work out what the multiples of p and/or q are
among 1, 2, . . . , pq−1 since the gcd will have to be 1, p or q. This gives q−1 multiples
of p together with p − 1 multiples of q. There is no double counting here because p
and q are coprime. So ϕ(pq) = pq−1−(q−1)−(p−1) = pq−p−q+1 = (p−1)(q−1).
Similar arguments show that ϕ(pq2) = (p − 1)(q2 − q), ϕ(p2q2) = (p2 − p)(q2 − q),
and ϕ(prqs) = (pr − pr−1)(qs − qs−1). [The point with all of these is that one has to
consider 1, 2, . . . , prqs (note we’re including prqs so we must make sure to exclude it
as well) and that gcd(a, prqs) 6= 1 if and only if p|a or q|a. This way we count the
multiples of pq twice and have to correct for this; and we certainly exclude prqs.]

(d) We claim that Z∗mn ⊆ Zmn is mapped surjectively to Z∗m × Z∗n ⊆ Zm × Zn in The-
orem 3.23. That shows immediately that ϕ(mn) = ϕ(m)ϕ(n). To see the claim
note that gcd(r,mn) = 1 implies gcd(r,m) = gcd(r, n) = 1 (this does not use that
gcd(m,n) = 1), so that Z∗mn is mapped to Z∗m×Z∗n by Remark 3.11. To see that it is
surjective, take (ā, b̄) in Z∗m ×Z∗n ⊆ Zm ×Zn, and consider c̄ in Zm ×Zn mapping to
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it. Then gcd(c,mn) = 1: any common prime factor must come from either m or n,
and since c ≡ a (mod m) we have gcd(c,m) = gcd(a,m) = 1; similarly for gcd(c, n).

(e) If n =
∏k

i=1 p
ri
i is the factorisation of n as a product of primes, then the previous

parts imply that ϕ(n) =
∏k

i=1 ϕ(prii ) =
∏k

i=1(p
ri
i − p

ri−1
i )

30 In each case we form a list of things of the form k(r) where k is an element and r is its
least required power.
(a) 1(1), 3(4), 7(4), 9(2). ϕ(10) = 4.
(b) 1(1), 5(2), 7(2), 11(2). ϕ(12) = 4.
(c) 1(1), 2(6), 4(3), 5(6), 7(3), 8(2). ϕ(9) = 6.
(d) 1(1), 2(10), 3(5), 4(5), 5(5), 6(10), 7(10), 8(10), 9(5), 10(2). ϕ(11) = 10.
(e) 1(1), 2(4), 4(2), 7(4), 8(4), 11(2), 13(4), 14(2). ϕ(15) = 8.
(f) 1(1), 3(4), 5(4), 7(2), 9(2), 11(4), 13(4), 15(2). ϕ(16) = 8.

31 (a)

{
1 2 3 4 5 6 7 8 9 10
5 7 2 9 3 6 10 8 4 1

}
(b)

{
1 2 3 4 5 6 7 8 9
1 4 3 2 5 9 6 7 8

}
32 (a) (1 6)(2)(3 4 8)(5 7)(9 10) and (1 7 9 3 2 5 8 4 10 6).
(b) (1)(2 7 5 4)(3 9 6)(8) and (1)(2 5 7 9 8)(3 6)(4).

33 Express the results of the following products of cycles as disjoint cycles and as a product
of transpositions.
(a) (1 2 5 4 6) = (1 6)(1 4)(1 5)(1 2)
(b) (1 3 5 6 4) = (1 4)(1 6)(1 5)(1 3)
(c) (1 2)(5 6)
(d) (2 8 3 6 5) = (2 5)(2 6)(2 3)(2 8)

34 The notation here matches the course summary, not the problem as originally
handed out. The algorithm works by encoding a message T as T ≡Md (mod N). We know
that N = pq for two primes p, q. To do the decoding we need to find φ(N) = (p−1)(q−1) and
a positive number e with de = 1+m(p−1)(q−1), and determine U among 0, 1, . . . , pq−1 with
U ≡ M e modulo pq. The number e can be found using the extended Euclidean algorithm;
if we find a negative e then we can replace e and m by e + k(p − 1)(q − 1) and m + dk for
any integer k and make e positive. The solutions for the given calculations are:
(a) e = 237, M = 252. (b) e = 7139, M = 2004. (c) e = 6605, M = 1234.

35

(a) In the denominator we get the product of all the negative differences i−j for pairs i, j.
In the numerator we get the product of, for each pair σ(i), σ(j), either the positive
or the negative difference of σ(i) and σ(j). But all pairs σ(i), σ(j) (σ(i) 6= σ(j))
correspond to all pairs i, j (i 6= j) since σ permutes 1, . . . , n, so apart from the sign
the numerator and denominator are equal.

(b) Using the given formula we find ε(στ) = ε(τ)
∏

i<j
σ(τ(i))−σ(τ(j))

τ(i)−τ(j) . Because τ is a

permutation, all pairs τ(i), τ(j) (i 6= j) are all pairs i, j (i 6= j), but we do not know

if τ(i) < τ(j) or τ(i) > τ(j). However, since σ(τ(i))−σ(τ(j))
τ(i)−τ(j) = σ(τ(j))−σ(τ(i))

τ(j)−τ(i) we always

get the right contribution to ε(σ) anyway, and ε(στ) = ε(σ)ε(τ).
(c) Let σ = (12) and consider all pairs i, j with i < j. If {i, j} ∩ {1, 2} = ∅ then

σ(i)−σ(j)
i−j = 1 since σ(i) = i and σ(j) = j. If i = 1 and j = 2 then this gives −1.

The remaining pairs are of the form 1, j with j > 2 and 2, j with j > 2. But their
contribution is(∏

j>2

σ(1)− σ(j)

1− j

)(∏
j>2

σ(2)− σ(j)

2− j

)
=

(∏
j>2

2− j
1− j

)(∏
j>2

1− j
2− j

)
= 1 .



ALGEBRA SOLUTION SHEET 7

The general case for σ = (ab) is similar but notationally more awkward. We may

assume a < b (why?). Then σ(i)−σ(j)
i−j = 1 for any pair i < j with {i, j} ∩ {a, b} = ∅

since σ(i) = i and σ(j) = j. For the pair a, b we get −1. The remaining pairs are the
i, a with i < a; the a, j with a < j < b or b < j; the i, b with i < a or a < i < b; and
the b, j with j > b. Their contribution is(∏

i<a

σ(i)− σ(a)

i− a

)( ∏
a<j<b

σ(a)− σ(j)

a− j

)(∏
j>b

σ(a)− σ(j)

a− j

)
(∏
i<a

σ(i)− σ(b)

i− b

)( ∏
a<i<b

σ(i)− σ(b)

i− b

)(∏
j>b

σ(b)− σ(j)

b− j

)

=

(∏
i<a

i− b
i− a

)( ∏
a<j<b

b− j
a− j

)(∏
j>b

b− j
a− j

)(∏
i<a

i− a
i− b

)( ∏
a<i<b

i− a
i− b

)(∏
j>b

a− j
b− j

)
and everything cancels because i−a

i−b = a−i
b−i .

(d) From (b) and (c) we know that if we write σ = τ1 · · · τt with all τi transpositions,
then ε(σ) = ε(τ1τ2 · · · τt) = ε(τ1)ε(τ2 · · · τt) = · · · = ε(τ1)ε(τ2) · · · ε(τt) = (−1)t. So t
is always even when ε(σ) = 1 and t is always odd when ε(σ) = −1.

(e) If σ = γ1 · · · γr is a product of disjoint cycles, with γi of length ki, then each γi can
be written as a product of ki − 1 transpositions. So σ can be written as a product
of t = (k1 − 1) + · · ·+ (kr − 1) = k1 + · · ·+ kr − r transpositions, and ε(σ) = (−1)t.
This is 1 if t is even (i.e., if σ is even), and −1 if t is odd (i.e., if σ is odd).

36 Consider the element τ(ai). Then the effect of τστ−1 on it is

τ(ai)→ ai → ai+1 → τ(ai+1)

(where the subscripts are taken cyclically so that ak+1 = a1).
On the other hand, if b is an element not of the form τ(ai), then τ−1(b) is not an ai and so σ
leaves it unmoved. Thus the effect of τστ−1 on b is to leave it fixed. This proves the result.
Now consider a general permutation ρ. Write ρ = σ1 · · ·σr as a product of disjoint cycles.
Then

τρτ−1 = τσ1 · · ·σrτ−1

= τσ1τ
−1τσ2τ

−1τσ3 · · · τ−1τσrτ
−1

=
r∏
i=1

τσiτ
−1

In addition, since τ is a permutation, the fact that the σi are disjoint cycles implies that the
τσiτ

−1 are also disjoint cycles. By the first part they have the same lengths, so the cycle
types of ρ and τρτ−1 are the same.

37 Let g, h be any two elements in G. Then (gh)2 = e gives ghgh = e. Multiply this on the
left by g and on the right by h to find g2hgh2 = geh, and since g2 = h2 = e this simplifies
to hg = gh, so the group is Abelian.

38 Let r > 0. Then (gh)r = e if and only if h(gh)rh−1 = heh−1, which simplifies to (hg)r = e
(use the definition of (gh)r). So gh has finite order if and only if hg has finite order, and
if that is the case the order (the smallest positive r such that equality holds) must be the
same for gh and hg.

39 Group together g and g−1 whenever g 6= g−1. (Since (g−1)−1 = g we really get pairs
here.) This uses an even number of elements in the group, so since the group has an even
number of elements, we are left with an even number of elements. But those elements are
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those g where g = g−1, i.e., g2 = e. So those are exactly the elements of order 1 or 2. Since
there is exactly one element of order 1, the number of elements of order 2 must be odd.

40 One way round is trivial: a subset that is a subgroup must be closed. We need to prove
the converse is true for a non-empty subset in a finite group.
So let X be such a non-empty set. By Lemma 5.3(2) it suffices to show that X is closed
under taking inverses since it is closed under taking products. Take x ∈ X. Since X is closed
under multiplication, x, x2, x3, . . . are also in X. As G is finite, we must have xi = xj for
some 0 < i < j. Then x−1 = xj−i−1. If j − i > 1 then xj−i−1 is in X. If j − i− 1 = 0 then
x−1 = e so x−1 = e = x is in X as well. [Alternatively, x−1 = x2(j−i)−1 is always in X.]
The statement is always false if G has an element of infinite order. For example, if G = Z
then the non-empty subset X = {1, 2, 3, . . . , } is closed under addition but is not a subgroup.

41

(a) If x ∈ X then gxg′ ∈ gXg′ is a trivial consequence. Suppose conversely, that gxg′ ∈
gXg′, then this means that we can find x′ ∈ X with gxg′ = gx′g′ [this is the non-
trivial observation]. But this means that x = g−1gxg′g′−1 = g−1gx′g′g′−1 = x′ and so
x = x′ ∈ X as required.

(b) Suppose that X is a subgroup of G. Then consider ab−1 for two elements a = gxg−1

and b = gyg−1 both in gXg−1:

ab−1 = gxg−1(gyg−1)−1 = gxg−1(g−1)−1y−1g−1 = gxg−1gy−1g−1 = gxy−1g−1

But since X is a subgroup, xy−1 ∈ X and so ab−1 ∈ gXg−1. This is enough to
demonstrate that gXg−1 is a subgroup also.

Conversely, if gXg−1 is a subgroup, then applying the above argument, so is
g−1(gXg−1)(g−1)−1 = X.

42 Z(G) is the set of all elements that commute with every element of G. Since eg = ge = e
for every g ∈ G, the identity e ∈ Z(G). If z ∈ Z(G) then for any g ∈ G, z must commute
with g−1, i.e. zg−1 = g−1z Taking inverses of both sides, this gives gz−1 = z−1g for every
g ∈ G. So Z(G) contains inverses.
Finally, it is also closed under multiplication, since if y, z ∈ Z(G) and g ∈ G, gyz = ygz =
yzg. so yz ∈ Z(G).
Finally, note that if z ∈ Z(G), then gzg−1 = gg−1z = z which proves the final part.

43 We use Lemma 3.9.

(a) First of all, ϕ(eG) = eH so ker(ϕ) is non-empty. Let g1, g2 ∈ ker(ϕ), so ϕ(g1) =
ϕ(g2) = eH . Then ϕ(g1g

−1
2 ) = ϕ(g1)ϕ(g−1

2 ) = eHϕ(g2)
−1 = e−1

H = eH and so g1g
−1
2 ∈

ker(ϕ). Therefore ker(ϕ) is subgroup of G.
(b) Let h1, h2 ∈ im(ϕ), then we can find gi ∈ G with ϕ(gi) = hi (i = 1, 2). Ten

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g−1

2 ) = h1h
−1
2 and so h1h

−1
2 ∈ =(ϕ) and im(ϕ) is also a subgroup.

44 Let g, h ∈ G. Then ϕ(gh) = ϕ(g)ϕ(h) gives ghgh = g2h2. Cancel g on the left and h on
the right and we get hg = gh.

45 If ϕ is injective then ϕ(g) = eH = ϕ(eG) implies that g = eG and so ker(ϕ) = {eG}.
Conversely, if ker(ϕ) = {eG}, then ϕ(g1) = ϕ(g2) gives ϕ(g1g

−1
2 ) = ϕ(g1)ϕ(g2)

−1 = eH and
so g1g

−1
2 = eG, hence g1 = g2.

46 Let G = {g1, . . . , gn}. Let g ∈ G, then the ordered sequence

gg1, gg2, . . . , ggn

is a permutation of the original ordered sequence g1, . . . , gn. In other words we can write
ggi = gσg(i) for a permutation we call σg ∈ Sn.
The association g → σg then allows us to define a function ϕ : G→ Sn, by ϕ(g) = σg.
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It is then an easy calculation that for g, h ∈ G, σgh = σgσh. Therefore ϕ(gh) = ϕ(g)ϕ(h)
and ϕ is a homomorphism.
Finally, suppose that σg is the identity permutation. This means that for all gi, ggi = gi. But
the only element of G for which this is true is eG. Thus ker(ϕ) = {eG}, so ϕ is injective. It
is surjective onto its image im(ϕ), which is a subgroup of Sn because ϕ is a homomorphism.
G is therefore isomorphic to im(ϕ).

47 |G| > 1 and so there exists an element g ∈ G with g 6= e. Since |g| divides |G|, g has

order ps for some s ≤ r. Now just choose h = gp
s−1

and h clearly has order p.

48 T (a, b)T (c, d) = T (ac, ad+b), so we have closure. Associativity is trivial as we are dealing
with functions. e = T (1, 0) and T (a, b)−1 = T ( 1

a
,− b

a
) (which is where a 6= 0 is required).

H is clearly a subgroup: it is non-empty (T (1, 0) is in it); if g, h are in H then gh−1 is in H
since 11

1
= 1.

Multiplying on the right or left by T (1, c) changes T (a, b) into something of the form T (a, ∗)
for some number ∗. So any left or right coset must have elements of the form T (a, b) where
a is constant. On the other hand, T (a, b) = T (a, c)T (1, b−c

a
) = T (1, b − c)T (a, c) and so

two such objects are always in the same left and right cosets. Thus a left or right coset is
all transformations where the value a is fixed. [Note that in this case left and right cosets
always coincide, even though the group is not commutative.]

49 Disjoint cycles commute, so σm = γm1 γ
m
2 · · · γmr . This can equal e if and only if γmi = e

for all i, so each ki divides m.

50 For a = 1, . . . , p − 1 we have āp−1 = 1̄ in Z∗p ⊂ Zp by Theorem 3.27. (We use that p is
prime to see that ā is in Z∗p for those values of a.) Multiplying by ā gives that āp = ā for

ā = 1̄, 2̄, . . . , p− 1, and for ā = 0̄ it clearly holds. So ap ≡ a modulo p for any integer a.

51

(a) Clearly e is in An so An is non-empty. The inverse of an even permutation is even
(why?), and the product of two even permutations is even, so An is a subgroup.
[Alternatively, An = ker(ε) where ε : Sn → {±1} is as in Question 35; it is a
homomorphism by part (b) of that question.]

(b) We claim that there are two left cosets of An in Sn when n ≥ 2: An and (12)An. For
this we only have to check that (12)An is the set of odd permutations in Sn. But if
σ is an odd permutation, then (12)σ is even so lies in An, hence (12)(12)σ = σ lies
in (12)An. Conversely, any element in (12)An is odd. So |Sn : An| = 2, and therefore
|Sn| = 2|An| gives the result.

52 Finite Abelian groups are always products of finite cyclic groups. For each order n we
have Zn which finishes the list for any prime order. Also we know that Zm × Zn

∼= Zmn

if gcd(m,n) = 1, which means that this also deals with n = 6, 10. So we only have
n = 4, 8, 9, 12 left.
Then we can start with any Zd1 × Zd2 × · · · × Zdt with d1d2 · · · dt = n and rearrange things
as on page 23 of the course summary to find that in these cases, we have, apart from Zn:
n = 4 : Z2 × Z2.
n = 8 : Z2 × Z4, Z2 × Z2 × Z2.
n = 9 : Z3 × Z3.
n = 12 : Z2 × Z6 (since Z3 × Z4

∼= Z12).

53 We get a start from the fact that |Z∗n| = ϕ(n) (Euler’s totient function).
(a) ϕ(3) = 2 and so we must have Z2.
(b) ϕ(5) = 4 and 2̄ has order 4, so we get Z4.
(c) ϕ(6) = 2 and so we must have Z2.
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(d) ϕ(7) = 6 and 3̄ has order 6, so we get Z6.
(e) ϕ(8) = 4 and every element has order 1 or 2, so we get Z2 × Z2.
(f) ϕ(9) = 6 and 2̄ has order 6, so we get Z6.
(g) ϕ(12) = 4 and and every element has order 1 or 2, so we get Z2 × Z2.
(h) ϕ(15) = 8 and we have elements of order 4 but none of order 8, so we must have Z2×Z4.
(i) ϕ(21) = 12 and we have elements of order 6 but none of order 12, so we must have
Z2 × Z6.
(j) ϕ(24) = 8 and every element has order 1 or 2, so we must have Z2 × Z2 × Z2.

54 This can be quite a long and tedious question. In each case we do not list the trivial
subgroup, the whole group, and cyclic subgroups. The cyclic subgroups can be easily
calculated by taking all elements in the group and computing which subgroup they generate
(but several elements may lead to the same cyclic subgroup).
In order to find the other subgroups, the general starting point is to think about the order
of the group and any consequences of Lagrange’s theorem.

(a) There are no other subgroups as S3 = 6 and the only proper divisors of 6 are primes.
(b) D4 = 8 and the only proper non-prime divisor of it is 4, so a non-cyclic proper

subgroup would have 4 elements, 3 which have order 2. Since the only rotation of
order 2 is r2 there must be two reflections. Since the product of two distinct reflections
is a rotation (and not the identity symmetry), and the only rotation of order 2 is
r2, this shows {e, r2} is part of such a subgroup. If we then add in a reflection
and see what this implies for the fourth element we get the solutions: {e, r2, h, r2h},
{e, r2, rh, r3h}. Note that it requires checking that those are indeed subgroups.

(c) The only proper divisors of |D5| = 10 are primes so there are no other subgroups.
(d) |D6| = 12 which has proper non-prime divisors 4 and 6. The same reasoning and

checking as in (b) leads to the 3 subgroups {e, r3, rih, ri+3h} (i = 0, 1, 2) of order 4.
Non-cyclic groups of order 6 are isomorphic to S3, so must contain 2 elements of

order 3 and 3 elements of order 2. The only elements of order 3 are r2 and r4, the
only elements of order 2 are r3 and the reflections. A subgroup containing r2 and r3

contains 〈r〉, which has six elements but is cyclic, so we ignore it. So the elements
of order 2 must all be reflections. Adding a reflection then gives only the candidate
subgroups {e, r2, r4, rih, ri+2h, ri+4h} for i = 0, 1. Checking that those are subgroups
can be done by a brute force calculation. But we can also inscribe two equilateral
triangles inside a regular hexagon (with vertices on vertices), and the elements in D6

preserving one of those triangles (i.e., preserving even more symmetry) must form a
non-cyclic subgroup with 6 elements. So there must be 2 non-cyclic subgroups with
6 elements, and the subsets we found must be subgroups.

(e) |D8| = 16, which has non prime divisors 4 and 8. The same argument as in (b) and
(d) leads to 4 non-cyclic groups all of the form {e, r4, rih, ri+4h}, i = 1, 2, 3, 4.

If we look for a group of order 8, then if all the elements had order 1 or 2, we
would need at least 6 reflections. But combining a fixed reflection with five other
reflections gives five different rotations, so their orders get too big. Hence such a
subgroup has an element of order 4, which must be r2 or r6. Either way, it contains
{e, r2, r4, r6}. Adding a reflection we see that only {e, r2, r4, r6, h, r2h, r4h, r6h} and
{e, r2, r4, r6, rh, r3h, r5h, r7h} are candidate subgroups. These are indeed subgroups,
the subgroups preserving one of the two squares that can be inscribed in a regular
hexagon.


