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Abstract

For the linear model with random effects of unspecified distribution, we develop methodology for simultaneous response transformation and estimation of regression parameters. This is achieved
by extending the “Nonparametric Maximum Likelihood” towards a “Nonparametric Profile Maximum Likelihood” technique. The methods allow to deal with overdispersion as well as two–level
data scenarios.

1. Introduction

For data with a two–level structure, such as longitudinal
data, correlation of responses within upper–level units can
be induced by adding a random effect zi to the linear predic-
tor xTijβ, with the upper-level indexed by i = 1, . . . , r, and the
lower-level indexed by j = 1, . . . , ni,

∑
ni = n. Conditional

on the random effect, the responses yij are independently
distributed with mean function

E(yij|zi) = xTijβ + zi. (1)

The objective of the Box–Cox transformation [3] is to select
an appropriate parameter λ which is then used to transform
the responses such that they follow a normal distribution
more closely than the untransformed data. Under the sce-
nario of model (1), this transformation can be written as

y
(λ)
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{
yλij−1
λ λ 6= 0,

log yij λ = 0

for yij > 0, i = 1, ..., r and j = 1, ...., ni. It is assumed that

there is a value of λ for which y
(λ)
ij |zi ∼ N(xTijβ + zi, σ

2),
where zi is a random effect with an unspecified mixing dis-
tribution g(zi). Taking account of the Jacobian of the trans-
formation from y

(λ)
ij to yij, the conditional density function of

yij given zi is
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yλ−1ij√
2πσ2

exp
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.

2. Estimation

Under the NPML estimation approach, the distribution of
the random effect is approximated by a discrete distribution
at mass points z1, . . . , zK, which can be considered as in-
tercepts for the different unknown subgroups on the upper
level. Hence, the likelihood in relation to the original obser-
vations can be approximated as [1]

L(λ, β, σ2, g) =

r∏
i=1

∫  ni∏
j=1

f (yij|zi)

 g(zi)dzi ≈ r∏
i=1

K∑
k=1

πkmik,

(2)
where mik =

∏ni
j=1 f (yij|zk). Defining indicators Gik = 1 if

case i stems from cluster k and 0 otherwise, the complete
log–likelihood is

`∗ = logL∗ =
r∑
i=1

K∑
k=1

[Gik log πk +Gik logmik]

where L∗ =
∏r
i=1
∏K
k=1(πkmik)

Gik. Of course, `∗ depends
on λ. For fixed λ, one proceeds via standard EM, with E-
step wik = E(Gik) =

πkmik∑
` π`mi`

. In the M-step, the expected
complete likelihood is maximized, yielding
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Replacing the results into mik and then into (2), we get the
non–parametric profile likelihood function LP (λ), or its log-
arithmic version `P (λ) = log(LP (λ)). The non–parametric
profile maximum likelihood (NPPML) estimator is therefore
given by

λ̂ = arg max
λ

`P (λ),

which can be found through a grid search over λ.

3. Example: Oxboys data

We consider a data set available as part of the R package
nlme [4], which consists of measurements of height (cm)
of 26 boys in Oxford at 9 standardized age measurements,
yielding a total of 234 observations. We fitted a variance
component model

E(yij|zi) = agej + zi

where zi is boy–specific random effect and agej is the j-th
standardized age measurement (dimensionless, and equal
for all boys for fixed j).

It can be seen that the best estimate of λ that maximizes
`P (λ) is λ̂ = −0.25. The results before and after applying the
response transformation are summarized in the table be-
low. Comparing the Akaike Information Criterion (AIC) val-
ues of the untransformed model fit (λ = 1) and our method
using K = 5, 6 and 7, respectively, shows a better perfor-
mance of the NPPML approach. In other words, using the
response after applying the transformation leads to a better
fitting model than the original data.

K = 5 K = 6 K = 7

λ̂ = −0.51 λ = 1 λ̂ = −0.25 λ = 1 λ̂ = −0.25 λ = 1
−2 logL 1119.3 1132.8 1026.2 1048.3 1024.2 1132.8

AIC 1141.3 1154.9 1052.2 1074.3 1054.2 1162.9

4. Simulation Study

We are interested in examining the method’s ability to es-
timate the true parameter values. Therefore, we first sim-
ulate data by applying the Box–Cox transformation ‘back-
wards’ to a dataset that follows a normal distribution using
a set of λ values. Specifically, for each of four given val-
ues λ`, ` = 1, 2, 3, 4, we generate 1000 datasets with 100
observations as follows,

ζij` = ỹ(ηij, λ`), i = 1, ..., 20, j = 1, ..., 5

ỹ(ηij, λ`) =

{(
1 + λ`ηij

)1/λ` (λ` 6= 0),

eηij (λ` = 0)
ηij = 3 xij + zi + εij

xij ∼ U(−4, 4), εij ∼ N(0, 0.52)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}
zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

Note that ỹ(·) denotes the ‘backward’ Box–Cox–
transformation, and that the generated data possess a vari-
ance component structure due to the random effect terms
zi.
We estimate λ and β simultaneously, yielding for each (true)
value of λ a total of 1000 estimates of λ̂ and β̂. The figure
below shows the boxplots for the regression and transfor-
mation parameter estimates, respectively. The reference
lines in the figures indicate the actual values of the param-
eters. It is clear that the median of the estimated β and λ
is approximately equal to the true value in each plot. There
are some outliers in each of the plots; in fact the outliers

in the transformation estimates cause the outliers in the re-
gression estimates as they shift the scale of the linear pre-
dictor. The means and medians of the estimated parame-
ters are provided in the table below; we see that the me-
dians for the transformation parameters sit exactly at their
true values, and those of the regression parameters approx-
imately so.
We also investigate standard errors. An empirical but robust
measure of spread can be obtained by computing the IQR
of (the non–logarithmic version of) each of the four empiri-
cal distributions of β̂. Via normal reference, the IQR can be
mapped back to the scale of the standard deviations by di-
vision through 1.349. We call the resulting robust estimate
of standard deviation RESD(β̂). We display RESD(β̂) val-
ues along with means and medians of EM–based standard
errors, SE(β̂), obtained by extraction from the model fitted
in the last M–step. It is conceptually clear that EM–based
standard errors cannot be ‘correct’ as they ignore the varia-
tion caused by the EM algorithm itself, but we see that they
are still satisfyingly close to their empirical counterparts.

True values λ = 0 λ = 0.5 λ = 1 λ = 2
β 3 3 3 3

Mean(λ̂) 0 0.5026 1.003 2.0049
Median(λ̂) 0 0.5 1 2
Mean(β̂) 2.9996 3.0901 3.0770 3.1090

Median(β̂) 3.0003 3.0001 3.0003 3.0006
RESD(β̂) 0.0246 0.0251 0.0255 0.0335

Mean(ŜE(β̂)) 0.0256 0.0267 0.0264 0.0268
Median(ŜE(β̂)) 0.0214 0.0214 0.0214 0.0214

5. Implementation

The methodology is implemented in R package boxcoxmix
[2] which is available on CRAN. This package features fur-
ther variants and capabilities which have not been intro-
duced here, such as a version for simple ‘overdispersion’
models (where ni ≡ 1), and several routines to select the
starting points for the EM algorithm.
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