Zero—inflated models for radiation—induced chromosome aberration data
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Introduction

The formation of chromosome aberrations is a well-
established biological marker of exposure to ionizing
irradiation. Accordingly, radiation—-induced aberrations
are studied extensively to provide data for biological

dosimetry, where the measurement of chromosome vl ST o
aberration (dicentrics, micronuclei, centric rings, etc) s J:*_ Vs

frequencies in human lymphocytes is used for assessing
absorbed doses of ionizing radiation to individuals. A lymphocyte - chromosome

spread with dicentric
chromosomes (IAEA, 2011).

The Standard Procedure
I'he usual approach for constructing the calibration curve is to irradiate some
blood samples from a healthy donor with several doses. Then, for each irradi-
ated sample, the cells are examined and the numbers of observed chromosomal
aberrations are recorded.
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Frequency of dicentrics after exposure to Co—60 gamma rays.
Dose-response curve fitted according to the Poisson
model with identity link.

e [tis assumed that y; ~ Poisson(n;u;) where

(1)

where n; is the no. assessed cells, y; is the no. chromosome aberrations, z;is
prefixed doses.

wi = Bo + Prz; + 52515‘?

e The linear—quadratic relationship is well established.

e “Usually” not log-linear model. The identity link is the accepted standard in
biodosimetry (IAEA, 2011).

Drawbacks: The assumption of equidispersion implicit in the Poisson model is
often violated due to unobserved heterogeneity in the cell population, which will
render the variance of observed aberration counts larger than their mean, and/or
the frequency of zero counts greater than expected for the Poisson distribution.

Goal: Study the performance of zero-inflated models for modelling such data by
comparing their behavior with other models already used in biodosimetry. The
models are applied to several datasets with different radiation exposure patterns.

Comparative study

Zero—inflated models to describe the number of chromosome aber-
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Zero—inflated regression models applied to biodosimetry

When overdispersion is attributed to the large number of zeros with respect to
the Poisson model, a ZIP model may provide a good fit. Let Y;, ¢ = 1,...,n be
the response variable. A ZIP regression model is defined as

N _ ) Dit (1 = pi) exp(—A;), y; = 0,
where 0 < p;, < 1 and A\; > 0. For the ZIP, E(Y;) = (1 — p;)\; = pu; and

When the overdispersion is both due to the heterogeneity of data and the excess
of zeros, the ZINB regression model often is more appropriate than the ZIP. For
the ZINB regression model, the probability mass function of the response variable
Y; e =1,...,n)is given by

P(Y; =y;) = T'(yi+A ¢/ cN—\"C /o S s
( )= -p) WS LD (14 adg) N1+ AT )T,y > 0,

{ i+ (1= pi)(1+ax) /e, yi =0,

where o > 0 is an overdispersion parameter and the index ¢ € {0, 1} identifies
the form of the underlying negative binomial distribution (ZINB1 and ZINB2, re-
spectively). For the ZINB, E(Y;) = (1—p;)\; = p; and Var(Y;) = i (14+p; A +as).

Both the mean )\; of the underlying Poisson distribution and the extra—zeros pro-
portion p; parameters can depend on vectors of covariates, i.e.,

g(\;) = z;"B and h(p;) = 2y,

where x; and z; are vectors of covariates, ¢ denotes the transpose vector operator,
B and +y are the corresponding vectors of regression coefficients and g and h are
link functions.

Application to biological dosimetry

e¢ Which mean should be modelled, the mean of the zero-inflated distribution,
i, or the mean of the underlying Poisson or negative binomial distribution,
A\;, Which are relate via \; = p; (1 — p;)?

For compliance with formulation (1) and with practice in this particular field, it
is adequate to model the mean of the corresponding zero—inflated distribution,
(i, via the linear predictor in (1).

e How to model p;?
The mixture parameter p; will be modelled as usual with logistic regression,
where three different scenarios will be investigated:

(a) logit(pi) = v0;  (b) logit(pi) = mzi;  (¢)logit(pi) = yot+mixs; i=1,...,d.

rations in biological dosimetry are compared with the Poisson, nega-

. . . : ora . : B (A) (B)* (©) (D)
’F1ve binomial, Neyman type A, Hermite, Polya Aeppl} and Poisson Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC loglik AIC  BIC
inverse Gaussian models. The models have been applied to four real Poisson 3 -3748.6 75032 7526.1 -2855.9 5717.7 57387 -3526.9 7059.8 7079.7 -2302.1 4608.2 4621.5
datasets obtained under different scenarios: NB1 4 -3742.8 74937 75243 -2800.3 5608.6 5636.6 -3011.9 60317 60582 -21487 43033 43233
NB2 4 -37392 74865 75171 -2807.5 5623.0 5651.0 -2939.5 5887.0 59135 -2151.6 4309.3 43293
(A) Whole body exposure — sparsely ionising radiation: Neyman A 4 -3743.0 74939 75245 -2799.7 56075 56355 -3021.1 6050.1 6076.7 -2147.0 4299.9 4319.9
: . 3 Hermite (r=2) 4 -3743.1 74942 75248 -2802.2 56123 56403 -31225 6253.0 6279.6 -2164.8 43356 4355.6
Frequency of dicentrics after exposure to Co-60 gamma rays Polya-Aeppli 4 -37429 74938 75244 -2799.8 5607.6 5635.6 -3007.0 6022.0 6048.6 -21467 4299.3 4319.3
(Romm et al. 2013). PIG 4 -3742.8 74935 75241 -28019 5611.8 5639.8 -30359 6079.8 6106.3 -2155.0 4316.1 4336.1
L o ZIP (a) 4 -3739.8 74876 75182 -28145 5637.1 5665.1 -2852.6 57133 5739.8 -21552 43163 43363
(B) Whole body exposure — densely ionising radiation: ZIP (b) 4 -37413 74905 75212 -2805.4 5618.7 5646.7 -28449 5697.8 57243 -2172.8 4351.6 43716
Number of dicentrics after exposure of blood samples to 1480 ZIP (c) 5 -3739.2 74884 75267 -2800.6 56112 56462 -28424 56948 57279 -2147.0 4302.1 43287
MoV . Di Gioreio ef al. 2004 ZINBI (a) 5 -3739.7 74894 7527.7 -27974 56048 5639.9 -28527 57153 57485 -21435 42949 43216
eV oxygen ions (Di Giorgio et al. ). ZINBI1 (b) 5 37413 74925 7530.8 -2797.3 5604.6 5639.6 -28442 56984 5731.6 -2143.6 42952 43219
: B S ST ZINBI1 (c) 6 -3742.8 74977 7543.6 -2797.3 5606.7 5648.7 -28424 5696.8 5736.6 -21434 42968 4330.1
(C) Partial body exposure — sparsely ionising radiation: ZINB2(a) 5 -3739.1 74883 75266 -2807.5 56249 5660.0 -2852.6 57153 57484 -2150.7 43094 4336.0
Frequencies of dicentrics + centric rings aberrations after par- ZINB2 (b) 5 -3739.1 74882 75265 -2800.1 5610.1 56452 -28449 5699.8 57329 -2147.3 4302.6 4329.3
tial bodv (50%) exposure with 200 kV X-ravs (Heimers. 2006). ZINB2 (c) 6 -3738.2 74883 75343 -2798.6 5609.2 5651.2 -28424 5696.8 b5736.6 -21449 42999 4333.2
y (50%) exp ys ( ’ ) Hermite (r=3) 5 -3742.5 74950 75333 -2799.7 5609.5 56445 -32045 6419.0 64521 -21465 4301.1 4327.8
Hermite (r=4) 6 -3743.1 7498.1 75441 -2799.7 56114 56534 -30489 6109.8 6149.6 -21454 4300.7 4334.1

(D) Partial body exposure — densely ionising radiation:
Frequencies of dicentrics + centric rings aberrations after par-

tial body (50%) exposure with 2.1 MeV neutrons (Heimers,
2006).

Results of fitting various models to datasets (A), (B), (C) and (D). The winning model in each column is underlined.
k is the sum of regression and model parameters.
* The number of parameters for datasets (B) and (D) is (kK — 1) since fits where obtained by using a linear predictor without quadratic term.

Conclusions and further results

o Zero—inflated models behave well in several scenarios, especially for partial
body exposure. Therefore, although for whole-body exposure and sparsely
ionising radiation it is usually assumed that data follow a Poisson model, data
under this scenario may depart from the Poisson model due to other circum-
stances (e.g., the scoring procedure).

Results by modelling the mean yield of aberrations through a log-link were
also obtained and they were similar to these ones obtained by using the iden-
tity link. The use of the log-link for the mean enabled the use of the score test
for model testing which showed the adequacy of zero—inflated models.

References

1. Cytogenetic Dosimetry: Applications in Preparedness for a Response to Radiation Emergencies.
International Atomic Energy Agency. Vienna.

2. Heimers et al. (2006). Chromosome aberration analysis and the influence of mitotic
delay after simulated partial-body exposure with high doses of sparsely and densely ion-

ising radiation. Radiation and Environmental Biophysics, 45, 45-54.

3. Di Giorgio et al. (2004). Chromosome aberrations induced in human lymphocytes by
heavy charged particles in track segment mode. Radiation protection dosimetry, 108, 47-53.

4. Romm, H. et al. (2013). Automatic scoring of dicentric chromosomes as a tool in large
scale radiation accidents. Mutation Research/Genetic Toxicology and Environmental Mutagen-

esis, 756, 174-183.

Acknowledgements

This poster presents independent research supported by the National Institute for Health Research, Research Methods Opportunity Funding Scheme entitled “Random effects modelling for radiation biodosime-
try” (NIHR-RMOFS-2013-03-4). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.



