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Introduction
The formation of chromosome aberrations is a well–
established biological marker of exposure to ionizing
irradiation. Accordingly, radiation–induced aberrations
are studied extensively to provide data for biological
dosimetry, where the measurement of chromosome
aberration (dicentrics, micronuclei, centric rings, etc)
frequencies in human lymphocytes is used for assessing
absorbed doses of ionizing radiation to individuals. A lymphocyte chromosome

spread with dicentric
chromosomes (IAEA, 2011).

The Standard Procedure
The usual approach for constructing the calibration curve is to irradiate some
blood samples from a healthy donor with several doses. Then, for each irradi-
ated sample, the cells are examined and the numbers of observed chromosomal
aberrations are recorded.

yij
xi 0 1 2 3 4 5 ni yi

0.00 2591 1 0 0 0 0 2592 1
0.25 2185 8 0 0 0 0 2193 8
0.75 2550 44 1 0 0 0 2595 46
1.00 2231 54 2 0 0 0 2287 58
1.50 1712 96 3 0 0 0 1811 102
2.50 1196 123 7 1 0 0 1327 140
3.00 1070 320 41 6 1 0 1438 424
4.50 895 360 110 25 5 1 1396 680

Frequency of dicentrics after exposure to Co–60 gamma rays.
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Dose–response curve fitted according to the Poisson
model with identity link.

• It is assumed that yi ∼ Poisson(niµi) where

µi = β0 + β1xi + β2x
2
i (1)

where ni is the no. assessed cells, yi is the no. chromosome aberrations, xiis
prefixed doses.

• The linear–quadratic relationship is well established.

• “Usually” not log–linear model. The identity link is the accepted standard in
biodosimetry (IAEA, 2011).

Drawbacks: The assumption of equidispersion implicit in the Poisson model is
often violated due to unobserved heterogeneity in the cell population, which will
render the variance of observed aberration counts larger than their mean, and/or
the frequency of zero counts greater than expected for the Poisson distribution.

Goal: Study the performance of zero–inflated models for modelling such data by
comparing their behavior with other models already used in biodosimetry. The
models are applied to several datasets with different radiation exposure patterns.

Zero–inflated regression models applied to biodosimetry
When overdispersion is attributed to the large number of zeros with respect to
the Poisson model, a ZIP model may provide a good fit. Let Yi, i = 1, . . . , n be
the response variable. A ZIP regression model is defined as

P(Yi = yi) =

{
pi + (1− pi) exp(−λi), yi = 0,
(1− pi) exp(−λi)λyii /yi!, yi > 0,

where 0 ≤ pi ≤ 1 and λi > 0. For the ZIP, E(Yi) = (1 − pi)λi = µi and
Var(Yi) = µi(1 + piλi).

When the overdispersion is both due to the heterogeneity of data and the excess
of zeros, the ZINB regression model often is more appropriate than the ZIP. For
the ZINB regression model, the probability mass function of the response variable
Yi (i = 1, . . . , n) is given by

P(Yi = yi) =

{
pi + (1− pi)(1 + αλci )

−λ1−c
i /α, yi = 0,

(1− pi)
Γ(yi+λ

1−c
i /α)

yi!Γ(λ1−c
i /α)

(1 + αλci )
−λ1−c

i /α(1 + λ−ci /α)−yi , yi > 0,

where α > 0 is an overdispersion parameter and the index c ∈ {0, 1} identifies
the form of the underlying negative binomial distribution (ZINB1 and ZINB2, re-
spectively). For the ZINB, E(Yi) = (1−pi)λi = µi and Var(Yi) = µi(1+piλi+αλ

c
i ).

Both the mean λi of the underlying Poisson distribution and the extra–zeros pro-
portion pi parameters can depend on vectors of covariates, i.e.,

g(λi) = xixixi
tβββ and h(pi) = zizizi

tγγγ,

where xixixi and zizizi are vectors of covariates, t denotes the transpose vector operator,
βββ and γγγ are the corresponding vectors of regression coefficients and g and h are
link functions.

Application to biological dosimetry

• Which mean should be modelled, the mean of the zero-inflated distribution,
µi, or the mean of the underlying Poisson or negative binomial distribution,
λi, which are relate via λi = µi(1− pi)?
For compliance with formulation (1) and with practice in this particular field, it
is adequate to model the mean of the corresponding zero–inflated distribution,
µi, via the linear predictor in (1).

• How to model pi?
The mixture parameter pi will be modelled as usual with logistic regression,
where three different scenarios will be investigated:

(a) logit(pi) = γ0; (b) logit(pi) = γ1xi; (c) logit(pi) = γ0+γ1xi; i = 1, . . . , d.

Comparative study
Zero–inflated models to describe the number of chromosome aber-
rations in biological dosimetry are compared with the Poisson, nega-
tive binomial, Neyman type A, Hermite, Pólya–Aeppli and Poisson–
inverse Gaussian models. The models have been applied to four real
datasets obtained under different scenarios:

(A) Whole body exposure – sparsely ionising radiation:
Frequency of dicentrics after exposure to Co–60 gamma rays
(Romm et al. 2013).

(B) Whole body exposure – densely ionising radiation:
Number of dicentrics after exposure of blood samples to 1480
MeV oxygen ions (Di Giorgio et al. 2004).

(C) Partial body exposure – sparsely ionising radiation:
Frequencies of dicentrics + centric rings aberrations after par-
tial body (50%) exposure with 200 kV X-rays (Heimers, 2006).

(D) Partial body exposure – densely ionising radiation:
Frequencies of dicentrics + centric rings aberrations after par-
tial body (50%) exposure with 2.1 MeV neutrons (Heimers,
2006).

(A) (B)∗ (C) (D)∗

Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 3 -3748.6 7503.2 7526.1 -2855.9 5717.7 5738.7 -3526.9 7059.8 7079.7 -2302.1 4608.2 4621.5
NB1 4 -3742.8 7493.7 7524.3 -2800.3 5608.6 5636.6 -3011.9 6031.7 6058.2 -2148.7 4303.3 4323.3
NB2 4 -3739.2 7486.5 7517.1 -2807.5 5623.0 5651.0 -2939.5 5887.0 5913.5 -2151.6 4309.3 4329.3
Neyman A 4 -3743.0 7493.9 7524.5 -2799.7 5607.5 5635.5 -3021.1 6050.1 6076.7 -2147.0 4299.9 4319.9
Hermite (r=2) 4 -3743.1 7494.2 7524.8 -2802.2 5612.3 5640.3 -3122.5 6253.0 6279.6 -2164.8 4335.6 4355.6
Polya-Aeppli 4 -3742.9 7493.8 7524.4 -2799.8 5607.6 5635.6 -3007.0 6022.0 6048.6 -2146.7 4299.3 4319.3
PIG 4 -3742.8 7493.5 7524.1 -2801.9 5611.8 5639.8 -3035.9 6079.8 6106.3 -2155.0 4316.1 4336.1
ZIP (a) 4 -3739.8 7487.6 7518.2 -2814.5 5637.1 5665.1 -2852.6 5713.3 5739.8 -2155.2 4316.3 4336.3
ZIP (b) 4 -3741.3 7490.5 7521.2 -2805.4 5618.7 5646.7 -2844.9 5697.8 5724.3 -2172.8 4351.6 4371.6
ZIP (c) 5 -3739.2 7488.4 7526.7 -2800.6 5611.2 5646.2 -2842.4 5694.8 5727.9 -2147.0 4302.1 4328.7
ZINB1 (a) 5 -3739.7 7489.4 7527.7 -2797.4 5604.8 5639.9 -2852.7 5715.3 5748.5 -2143.5 4294.9 4321.6
ZINB1 (b) 5 -3741.3 7492.5 7530.8 -2797.3 5604.6 5639.6 -2844.2 5698.4 5731.6 -2143.6 4295.2 4321.9
ZINB1 (c) 6 -3742.8 7497.7 7543.6 -2797.3 5606.7 5648.7 -2842.4 5696.8 5736.6 -2143.4 4296.8 4330.1
ZINB2 (a) 5 -3739.1 7488.3 7526.6 -2807.5 5624.9 5660.0 -2852.6 5715.3 5748.4 -2150.7 4309.4 4336.0
ZINB2 (b) 5 -3739.1 7488.2 7526.5 -2800.1 5610.1 5645.2 -2844.9 5699.8 5732.9 -2147.3 4302.6 4329.3
ZINB2 (c) 6 -3738.2 7488.3 7534.3 -2798.6 5609.2 5651.2 -2842.4 5696.8 5736.6 -2144.9 4299.9 4333.2
Hermite (r=3) 5 -3742.5 7495.0 7533.3 -2799.7 5609.5 5644.5 -3204.5 6419.0 6452.1 -2146.5 4301.1 4327.8
Hermite (r=4) 6 -3743.1 7498.1 7544.1 -2799.7 5611.4 5653.4 -3048.9 6109.8 6149.6 -2145.4 4300.7 4334.1

.

Results of fitting various models to datasets (A), (B), (C) and (D). The winning model in each column is underlined.
k is the sum of regression and model parameters.
∗ The number of parameters for datasets (B) and (D) is (k − 1) since fits where obtained by using a linear predictor without quadratic term.

Conclusions and further results
• Zero–inflated models behave well in several scenarios, especially for partial

body exposure. Therefore, although for whole–body exposure and sparsely
ionising radiation it is usually assumed that data follow a Poisson model, data
under this scenario may depart from the Poisson model due to other circum-
stances (e.g., the scoring procedure).

• Results by modelling the mean yield of aberrations through a log–link were
also obtained and they were similar to these ones obtained by using the iden-
tity link. The use of the log–link for the mean enabled the use of the score test
for model testing which showed the adequacy of zero–inflated models.
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