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Radiation

Photo-electron
Radiation is energy in the form of °

waves or particles that travels through
space or some material (includes heat,
radio waves, light,...)

When we talk about radiation, we often mean ionizing radiation (« and
B particles, y—rays, X-rays, neutrons...), which carries enough energy to
ionize atoms or molecules. lonizing radiation can cause serious damage to
cells, tissues, and DNA.
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Dosimetry is the measurement of the absorbed dose delivered by ionizing
radiation. The absorbed dose is measured in Gy (Joules per kg).

This talk will focus on biological dosimetry, short biodosimetry.

Biological dosimetry is based on biomarkers that measure either the damage
caused by ionizing radiation (such as counts of aberrant chromosomes per
cell) or the (damage-repair) response by the cell to the radiation exposure
(through proteins). In either case, this (typically) produces count data.

/
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Example: Calibration (laboratory) data for dicentric chromosomes

Frequencies of dicentric chromosomes in n = 4400 lymphocyte cells after
in vitro ‘whole body’ exposure with 200 kV X-rays.

Yij
xX; 0 1 2 3 4 5 6 7 n;
1 1715 268 15 2 0 0 0 0 2000
2 638 298 5 8 0 0O O 0 1000
3 247 225 8 37 6 0 0 0 600
4 99 129 92 52 21 5 2 0 400
5 48 88 97 99 36 25 5 2 400

= z;: dose (in Gy) used to irradiate blood sample i, i = 1,...5.

= y;;: counts of dicentric aberrations in j-th cell of blood sample i,
j = 1, Ny
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Dose—response modelling

These are count data, so a natural choice for the response distribution is
Poisson, that is
AL
fyijlwi) = e ==
Yij:

where

Ai = E(yijlzi)
is some parametric model for the dose-response relationship. For parameter
estimation, firstly set up the likelihood function:

) Z Yij

L:l—[f(yijp:Z He it ocHe i N7
1,J is!

Hence, one can conveniently work at the aggregated data level, with data
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Aggregated data

Let Y; = >_;vi;. Then the

aggregated data are:

1.0 2000 304
2.0 1000 434
3.0 600 530
4.0 400 590
5.0 400 892

Graphically, with circle size  n;:

Yi/ni

20

05

‘Empirical dose-response curve’; this

this context never exponential...

may be linear or quadratic, but in
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Poisson regression with identity link

Model in terms of aggregated data: Y; ~ Pois(n;\;) with

Xi = E(Yi|ai)/ni = Bo + Brai + fas.

Fitted dose-response curve from Pois- .
son regression,

5\1’ = Bo + lei + 323322

This curve (estimated from labora-
tory data) serves as calibration curve 54

for the dose-estimation problem.
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Inverse regression

Dose estimation is an inverse regression problem:

= We have a model for the dicentric count, Y;, given dose z;.

= In practice, we want to estimate z; given Y;.
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Inverse regression

For instance, assume a patient has
been admitted to hospital due to
potential radiation exposure. A
sample of n, = 200 lymphocytes
was analyzed, yielding Y, = 150

Yin

dicentrics.
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Dose estimation from calibration curve

Mathematically, this is not a big problem. Assume the observed ratio of
dicentrics ('yield') is y« = Yi/n.. Then we have

Y = BO + le + 52372
which can be solved wrt z as

BT \/3% — 4B2(Bo — )
26,
With y, = 150/200 = 0.75, this gives

A

L

Ty = 2.745.

Jochen Einbeck | 08.11.24



Uncertainty

Of course, this estimation is not exact. There is uncertainty...

= .. due to the estimation of the = ...due to random variation of
calibration curve; Y., given x,.

Y/,

o
Jochen Einbeck | 08.11.24



Uncertainty bounds

Combine the two sources of uncertainty (‘Merkle's method’, 1983):

, Here, a 95% confidence interval
$ s for the ‘true’ dose, ., is given
; as [2.04,3.33].

Official uncertainty assessment routine suggested by the International
Atomic Energy Agency (IAEA, 2011).

B
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Estimate in vitro dose-response curve A(z) as before.

For the (potentially) exposed patient, count dicentrics, Yi, in a sample of n,
cells, yielding ‘test data likelihood'’

L(Yi\ ny) oc e = A\Yx

where A = By + 1z + P22, and x representing dose. Assume a prior density

~ ~

p(z, A) = op(A|x)p(z), where p(A|x) ~ N(A(x), Var(A(z))). Use Bayes's theorem
to obtain posterior density for (A, z):

p(A, 2]Yy) o L(Yi| A, na)p(x, A)
Integration over \ gives calibrative density of x:
palY) xp(o) [ LY.IA ) o(N) A
Integral has explicit solution via Hermite distribution.
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Consider again the example before:
Patient sample with n, = 200,
Y, = 150.

15
I

Yi/ni

10

Use the same estimated dose—
response curve, \; = B + f1x; +
[272, as before:

05
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Calibrative density for ‘true’ dose x, using R package radir:

3.0

15 2.0

Probability Density

1.0

0.5

0.0
I

2.0 25 3.0 35

Dose, x, Gy

o
Jochen Einbeck | 08.11.24



A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Dose estimate: Mode of calibrative density:

3.0

25

2.0

Probability Density
15

1.0

Ty = 2.75.

05

0.0

Dose, x, Gy

:
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Uncertainty assessment: 95% Credible intervals

25 3.0

2.0

Probability Density
15

CI = [2.48,3.01].

1.0

Compare Merkle:

/ \ [2.04,3.33].

T T T T
2.0 25 3.0 35

05

0.0

Dose, x, Gy
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Properties of the dicentric assay

Generally considered as "gold-standard" for biological dosimetry.
= Little inter-individual or inter-lab variation;
» Little overdispersion (hence Poisson model is appropriate);
= can be adapted to deal with partial body exposures;
= well supported by software.
However, some disadvantages:
= Need to wait 2 to 3 days until metaphase in mitosis;
= Need experienced cytogeneticists for the ‘scoring’ of aberrations;

= Potential biases (cell death, repair).
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Alternative biomarker: The v-H2AX foci assay

» Histones are proteins which help to package histones

the DNA double helix. gﬂ;\gﬁ%ﬂ

» Following radiation-induced double strand »7“
breaks, the H2AX histone phosphorylates, in e
this state referred to as v-H2AX.

= The resulting foci can be counted manually or
in a semi-automated way, using immunofluo-
rescence microscopy.

» Typically, one examines a sample of 500-
2000 (blood) cells on a given ‘slide’ and then
records the number of foci per cell.
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H2AX calibration data from PHE (now UKHSA)

Foci yield (that is foci/cell, out of

500 sample cells) versus design dose: _
= Strong (linear?) dose—response

relationship; strong decay from

N 1h to 24h after exposure
. o 1h

o | ;

= ° 24h . = H2AX-based dose estimation
e H has to happen within 24 hours
goq ’ of exposure!

< 2 . . .

i . = Considerable variation, so Uncer-
Nl tainty Quantification crucial
ol
0 1 2 3 4
dose [Gy]

]
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Calibration curve estimation

Denote again Y; the total foci count from n; cells for slide 7, i = 1,..., k.
< g
— §
As before, one can easily fit linear  « | — linear, 1n
i — ’: ———— quadra!ic, 1h
[or quadratic] curves 9| | et 2an
k)
= A—i—sz[—i—C’xf] 2 ©1
<]
Linear calibration curves appear
sufficient for this assay.
o .|

dose [Gy]
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Overdispersion

However, variance-to-mean ratio 8
(dispersion) now >> 1! 2 o
In fact, linear-model based disper- 3 ] & 1h
sion estimate é v 24h
¢ = Deviance/(N — 2), E g
=4 a v

. . N

with N =YK n;, gives:
b v o O
time 1h 24h o] @d®
o 57.91 54.26 0 1000 3000 5000

means

=
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Quasi-Poisson regression

» Overdispersed linear Poisson model
E(Yi|z;) = An; + B(n;x;); Var(Y;|z;) = ¢ E(Yi|x;)

Score equations for this model

11 0

.. so the estimates of A and B do not depend on ¢!

» However, standard errors do depend on ¢, namely

SE(A) = \/4SEp(A); SE(B) = \/$ SER(B).

=
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Dose estimation

Inverse regression: For a new yield ys,, ;
one has =1 i
Em— I
N Z/*_lz1 ¥
Ty = —.
B "y
UQ via delta—method: ot dasiey] o
&4\ 2 . &4\ 2 . &4\ 2
SE*(#,) =~ ( :*) SE?(A +( i‘) SE*(B +< ) SE?(y,
@) ~ (55) SB@+(55) 2B+ (5,”) 2w
1 oL = A2 a1 oy
= ——SE*A)+ 2" SE*B)+ —
B2S (A) + B SE*( )+B2n*

This accounts for intra— and inter—individual variation, but still requires
calibration curve to be ‘correct’

2]
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Curve validation

Complication: The calibration curve may vary with laboratory, scorer,
equipment etc. Hence, a given calibration curve needs to be validated
before use.

Before examining a patient sample, lab should
irradiate two reference samples at 0Gy and 1.5Gy
and compare yields with prediction interval:

8 10 12 14

= If inside, validated

foci / cell
6
I

= If outside, a new calibration curve can be <7
computed from the reference samples which  ~1 .
still allows dose estimation, albeit at a °’O"'"/
higher variance (Einbeck et al, 2018) dose [Gy]

=
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Web applet

smam)
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Web applet

) DoseEstimateHzAX x
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Dosimetry with the y-H2AX assay

J-PLOS | one

A statistical framework for radiation dose
estimation with uncertainty quantification
from the y-H2AX assay

Jochen Einbecks '#, A 2, !, Stephen Barnard?,
Felix Kaestle®, Manuel Higueras™®

1 Dapartment of Mathematical Sciences, Durham University, Durham, United Kingdom, 2 Public He:
England, Chemical and Environmental Hazards, Chilten, Didcot, United Kingdom, 3 Bundesamt fir

d dheit, Ok Gemany, 4 Depa
de Matematicas y Gomputacion, Universidad de La Rioja, Lografie, La Ricja, Spain, 5 Basque Gente
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updates
Abstract
Qverthe lastdecade, the y-H2AX focus assay, which exploits the phosphorylation ¢
& open access

H2AX histone following DNA double—strand-breaks, has made considerable progre

bkt Eimbnls | Kb EA Elan B B
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Raw and aggregated data

Why is the dispersion value (= 60) such high?

Calibration data from dosimetry units usually come in one of two forms:

Aggregated data (one row for
Raw data (columns with all slide, with averaged foci count)
counts for a given slide)
-l i >2 [;’;“ “3

26 0538462 0
50 7.6 05
0 766 4
50 014 o

Accordingly one would use raw or aggregated data for the model fitting
including the dispersion estimation.

]
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Data aggregation and dispersion (From PhD dissertation A. Errington)

Of course, if one has the raw data available, then we can also aggregate
them, and fit both (raw and aggregated data models) to compare.

Raw Aggregated
PHE-Focil BIS-Foci PHE-Focil BfS-Foci
(5o, B1) (0.766, 1.700) (2.011, 5.746) (0.766, 1.700) (2.011, 5.746)
(SE(,@U),SE(&)) (0.042, 0.058) (0.009, 0.023) (0.213, 0.298) (0.102, 0.248)
® 1.444 1.223 37.70 147.99
SE[(S} 0.049 0.004 37.70 0.16
v 1198 233218 2 114
Xao9s/V 1.068 1.005 2.006 1.227

Table 6.1 Parameter estimates along with their associated standard errors and dispersion
estimates obtained from each model. The last row gives the critical value that ¢ would
be compared with in a Poisson goodness-of-fit test at the 5% level of significance.

o
Jochen Einbeck | 08.11.24



Data aggregation and dispersion (From PhD dissertation A. Errington)

While these high dispersion estimates are clearly biased, they do correct
a problem which sits elsewhere, namely unaccounted correlations in the
raw data structure. Fitting raw data models naively will lead to incorrect

results:
- s 3 -
] — ° s ]
i ] H i
 — 9 ! [
34 JEE T o — !
5] —i ; L
° o o —
N o
= s°
w w9
o 8 3
S
o
3
=)
g4 8
5] o
Raw Random Aggregated Raw Random Aggregated

We suggest to either use the aggregated model for calibration curve fitting,
or a raw data model with random effects for slides.

TR
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Data aggregation and dispersion

DE GRUYTER Int. ). Biostat. 2022; 18(1): 183-202 8

Adam Errington*, Jochen Einbeck, Jonathan Cumming, Ute R6ssler and David
Endesfelder

The effect of data aggregation on dispersion
estimates in count data models

https://doi.org/10.1515/ib-2020-0079
Received May 29, 2020; accepted April 21, 2021; published online May 7, 2021

Abstract: For the modelling of count data, aggregation of the raw data over certain subgroups or predictor
configurations is common practice. This is, for instance, the case for count data biomarkers of radiation
exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson
parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in
biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson
models behave under data aggreganon have received little attention. Indeed, for real data sets featuring

lained h can increase strongly after aggregation, an effect which
we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies
an inflation of the parameter standard errors, which, however, by comparison with random effect models,
can be shown to serve a corrective purpose. The phenomena are illustrated by y-H2AX foci data as used for
instance in radiation biodosimetry for the calibration of dose-response curves.

)
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Estimation of dose and time

» The 7-H2AX assay has a strong time-dependency. ldeally, we could
estimate simultaneously exposure time and dose.

= Basic idea: If one had TWO measurements of foci yield at unknown
points but with known time distance, one has two pieces of in-
formation to work out dose and exposure time from the relevant
equations.

» Our work takes the premise that, for a given lab, two lab-specific
calibration curves at any time points are available, and that the
physical decay mechanism between measurement points is universal
(not lab-specific).

)
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Linking calibration curves with foci decay

We know from the literature that y-H2AX foci decay follows a double-
exponential law.

Hence a suitable model is
y = a+ bt +d(Ae" + Be') (1)
where a, b, A, B, u, v are constants.

Assume further that we have two patient samples available (considered as
realizations of model ) at time points tg and to + A, with known A.

The values tg are d are to be inferred.

2
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Find values for a, b, A, B, u, v.

The parameters u and v are determined by the physical decay mechanism
and hence we fix them at © = —0.35 and v = —0.018 (Horn et al, 2011).

The parameters a, b, A, B are related to the absolute magnitude of foci
observed, and hence are lab-specific. We can obtain them by equating the
calibration curves y; = a; + d X by, for t = t1,to to the model equation:

= For the ‘background radiation’
a; = a+ bt

= For the dose-dependent part
bt — Ae—0.35t +Be—0.018t

Note these are two equations each, at t = tq, to.

)
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Estimating time and dose

For the actual dose and time estimation,

» set up a system of two equations of type with our two yield
measurements at times tg and ¢ + A4,

= solve this system for d and tg, for which we use the Mathematica
solver “NSolve".

o
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Example for PHE data

The calibration curves of the previously shown PHE data
y1 = 0.13 + 12.56d
yoq = 0.18 + 1.94d

lead to the system of equations

yi = 0.1340.0021¢ + d(13.62¢ 3% 4 3.01e~-0187)
Yira = 0.13+0.0021(t + A) + d(13.62¢035+A) 4 3 01~ 0-018(t+A))

which can be solved for any two yields y;, y;+a at unknown times ¢, t + A
with known A.

7
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Simulation (from MSc dissertation Y. Cai)

100 NB count data sets simulated from y;, y24 (¢ = 50, n = 500)

110 14
True dose —‘7 ' —‘7

].Gy 100 10

True dose i

4Gg l l

)
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Impact of number of cells on dose estimates

Dose
7t
5
r W n=200
5t W n=500
i I W n=1000
4} T W n=2000

]
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Impact of number of cells on time estimates

Time

r

3

st W n=200
i ® n=500

| = n=1000
- T T T B n=2000

0 L

al

ok
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Estimating dose and time

Home > >

Estimating Dose and Time of Exposure
from a Protein-Based Radiation Biomarker

Conterence paper | FirstOnline:12]uly 2024

y
Developments i
(IWSM 2024)
Yilun Cai Acce
3 Included in the following conference series:
:

Availableas PL
Readonanyde
Instant downle

£)309 Accesses

s e

Ownit forever

=

Abstract

In order to analyze the potential damage to the human body caused by exp
radiation, one needs to have an estimation of the dose of radiation received by the

individual. n the context of aprotin-based biomarker for radiation xposire, we presenc v eBook
here a new met that pr fon with data

collectedata fer llows us t he dose atany time @ Eremse]
withina i exposure, as well as he time of exposure

if necded. Namely, ing calibrati i ing —
‘mechanism of y-H2AX foci to build a model that describes the functional relationship Purchases
between the count of y-H2AX foci i

exposure. This model is llustrated using both real and simulated data. Institutional subs
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Estimating dose and time

Home > >

Estimating Dose and Time of Exposure
from a Protein-Based Radiation Biomarker
Conteence papr | FrsOnine: 2y 2026

PP239-245 | Citethis conterence paper

YilunCai (&,

m i ONTRIB.STAT.))

€3 Included n the following conference seres:

interational Workshop on Statistical Modelling
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Abstract

In order to analyze the potential damage to the human body caused by exp
radiation, one needs to have an estimation of the dose of radiation received by the
individual. In the context of a protein-based biomarker for radiation exposure, we present

herea new me that p ion with data
collectedata ined time after 1l toestimate the dose at any time
withina reasonable time interval after exposure, as well as determine the time of exposure
if needed. Namely, ing calibrati i ing

‘mechanism of y-H2AX foci to build a model that describes the functional relationship
between the count of y-H2AX foci in exposed blood cells and the time and dose of
‘exposure. This model is illustrated using both real and simulated data.
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(Experimental UQ in
progress...

but encounters some
difficulties as numerical

solvers are involved...).
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Biodose Tools

biodosetools Reference Articles ¥ Changelog Search for
H d T I. Links
BIO ose oo S View on CRAN

Browse source code

Report a bug

Overview ©

Biodose Tools (Herndndez et al. 2023) is an open source project that aims to be a tool to perform

Read documentation

all different tests and calculations needed by biological dosimetry laboratories. The app is License
developed using the R programming language and Shiny as a framework to offer an online, easy- Full license

to-use solution. Although the intention is to provide the application as a website, all R routines are

available as an R package, which can be downloaded for improvement or personal use. —

We also aim to clarify and explain the tests used and to propose those considered most Citation
appropriate. Each laboratory in its routine work should choose the most suitable method, but the Citing_biodosetools
project aims to reach a consensus that will help us in case of mutual assistance or

intercomparisons. Developers

Alfredo Hernandez

Author, maintainer &

The project is initially developed by RENEB association, but contributions are always welcome.

o
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Biodose Tools

Original Articles

Biodose Tools: an R shiny application for biological

.
dosimetry

Alfredo Hernandez (3, David Endesfelder, Jochen Einbeck @, Pedro Puig 3, Mohamed Amine Benadjaoud,
Manuel Higueras (@, Elizabeth Ainsbury (®, Gaétan Gruel (), Ursula Oestreicher, Leonardo Barrios &
Joan Francesc Barquinero &% (& _..show less

Pages 1378-1390 | Received 10 Jan 2023, Accepted 31 Jan 2023, Published online: 07 Feb 2023

) Check for updates.

66 Cite this article https://doi.org/10.1080/09553002.2023.2176564

Abstract

Introduction

In the event of a radiological accident or incident, the aim of biological dosimetry is to
convert the yield of a specific biomarker of exposure to ionizing radiation into an
absorbed dose. Since the 1980s, various tools have been used to deal with the statistical

procedures needed for biological dosimetry, and in general those who made several

Related Re

—
RENEB/EURAI
robust dose es
conditions bas
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Biodose Tools

= available as R Shiny app, can be downloaded from CRAN or Github
= hosted and managed by the BfS, Munich
= currenty supports
— Dicentrics
— Translocations
— Micronuclei
= Durham-based RA (Y. Zhang) currently working on v-H2AX exten-

sion

]
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Software for biodosimetric analysis:

BioDoseTools (Frequentist) dose estimation for dicentric chromosomes,
micronuclei, and translocations. Available as R Shiny App:
https://aldomann.shinyapps.io/biodosetools-v3/

radir (Bayesian) dose estimation, mainly for dicentric chromosomes. R
package Available on CRAN: https://cran.r-project.org/package=radir

DoseEstimateH2AX (Frequentist) dose estimation for the v-H2AX assay.
Available as R Shiny App: https://shinur.unirioja.es/apps/h2axDE/

ok
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