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Radiation

Radiation is energy in the form of
waves or particles that travels through
space or some material (includes heat,
radio waves, light,...)

When we talk about radiation, we often mean ionizing radiation (α and
β particles, γ–rays, X–rays, neutrons...), which carries enough energy to
ionize atoms or molecules. Ionizing radiation can cause serious damage to
cells, tissues, and DNA.
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Dosimetry

Dosimetry is the measurement of the absorbed dose delivered by ionizing
radiation. The absorbed dose is measured in Gy (Joules per kg).

This talk will focus on biological dosimetry, short biodosimetry.

Biological dosimetry is based on biomarkers that measure either the damage
caused by ionizing radiation (such as counts of aberrant chromosomes per
cell) or the (damage-repair) response by the cell to the radiation exposure
(through proteins). In either case, this (typically) produces count data.

Dicentric chromosomes
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Example: Calibration (laboratory) data for dicentric chromosomes

Frequencies of dicentric chromosomes in n = 4400 lymphocyte cells after
in vitro ‘whole body’ exposure with 200 kV X-rays.

yij

xi 0 1 2 3 4 5 6 7 ni

1 1715 268 15 2 0 0 0 0 2000
2 638 298 56 8 0 0 0 0 1000
3 247 225 85 37 6 0 0 0 600
4 99 129 92 52 21 5 2 0 400
5 48 88 97 99 36 25 5 2 400

• xi: dose (in Gy) used to irradiate blood sample i, i = 1, . . . 5.

• yij : counts of dicentric aberrations in j-th cell of blood sample i,
j = 1, . . . ni.
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Dose–response modelling

These are count data, so a natural choice for the response distribution is
Poisson, that is

f(yij |xi) = e−λi
λ

yij

i

yij !
where

λi = E(yij |xi)

is some parametric model for the dose-response relationship. For parameter
estimation, firstly set up the likelihood function:

L =
∏
i,j

f(yij |xi) =
∏
i,j

e−λi
λ

yij

i

yij ! ∝
∏

i

e−niλiλ

∑
j

yij

i

Hence, one can conveniently work at the aggregated data level, with data
(xi, Yi) = (xi,

∑ni
j=1 yij).
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Aggregated data

Let Yi =
∑

j yij . Then the
aggregated data are:

xi ni Yi

1.0 2000 304
2.0 1000 434
3.0 600 530
4.0 400 590
5.0 400 892

Graphically, with circle size ∝ ni:
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‘Empirical dose-response curve’; this may be linear or quadratic, but in
this context never exponential...
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Poisson regression with identity link

Model in terms of aggregated data: Yi ∼ Pois(niλi) with

λi ≡ E(Yi|xi)/ni = β0 + β1xi + β2x2
i .

Fitted dose-response curve from Pois-
son regression,

λ̂i = β̂0 + β̂1xi + β̂2x2
i .

This curve (estimated from labora-
tory data) serves as calibration curve
for the dose-estimation problem.
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Inverse regression

Dose estimation is an inverse regression problem:

• We have a model for the dicentric count, Yi, given dose xi.

• In practice, we want to estimate xi given Yi.
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Inverse regression

For instance, assume a patient has
been admitted to hospital due to
potential radiation exposure. A
sample of n∗ = 200 lymphocytes
was analyzed, yielding Y∗ = 150
dicentrics.
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Dose estimation from calibration curve

Mathematically, this is not a big problem. Assume the observed ratio of
dicentrics (’yield’) is y∗ = Y∗/n∗. Then we have

y∗ = β̂0 + β̂1x + β̂2x2

which can be solved wrt x as

x̂∗ =
−β̂1 +

√
β̂2

1 − 4β̂2(β̂0 − y∗)
2β̂2

With y∗ = 150/200 = 0.75, this gives

x̂∗ = 2.745.
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Uncertainty

Of course, this estimation is not exact. There is uncertainty...
• ...due to the estimation of the

calibration curve;
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• ...due to random variation of
Y∗, given x∗.
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Uncertainty bounds

Combine the two sources of uncertainty (‘Merkle’s method’, 1983):
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Here, a 95% confidence interval
for the ‘true’ dose, x∗, is given
as [2.04, 3.33].

Official uncertainty assessment routine suggested by the International
Atomic Energy Agency (IAEA, 2011).
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Estimate in vitro dose-response curve λ̂(x) as before.

For the (potentially) exposed patient, count dicentrics, Y∗, in a sample of n∗
cells, yielding ‘test data likelihood’

L(Y∗|λ, n∗) ∝ e−n∗λλY∗

where λ = β0 + β1x + β2x2, and x representing dose. Assume a prior density
p(x, λ) = ϕ(λ|x)p(x), where ϕ(λ|x) ∼ N(λ̂(x), Var(λ̂(x))). Use Bayes’s theorem
to obtain posterior density for (λ, x):

p(λ, x|Y∗) ∝ L(Y∗|λ, n∗)p(x, λ)

Integration over λ gives calibrative density of x:

p(x|Y∗) ∝ p(x)
∫

L(Y∗|λ, n∗)ϕ(λ|x) dλ

Integral has explicit solution via Hermite distribution.
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Consider again the example before:
Patient sample with n∗ = 200,
Y∗ = 150.

Use the same estimated dose–
response curve, λ̂i = β̂0 + β̂1xi +
β̂2x2

i , as before:
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Calibrative density for ‘true’ dose x, using R package radir:
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Dose estimate: Mode of calibrative density:
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x̂∗ = 2.75.
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A (semi-)Bayesian approach to UQ (Higueras et al, 2015)

Uncertainty assessment: 95% Credible intervals

2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Dose, x, Gy

P
ro

ba
bi

lit
y 

D
en

si
ty

CI = [2.48, 3.01].

Compare Merkle:
[2.04, 3.33].
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Properties of the dicentric assay

Generally considered as "gold-standard" for biological dosimetry.

• Little inter-individual or inter-lab variation;

• Little overdispersion (hence Poisson model is appropriate);

• can be adapted to deal with partial body exposures;

• well supported by software.

However, some disadvantages:

• Need to wait 2 to 3 days until metaphase in mitosis;

• Need experienced cytogeneticists for the ‘scoring’ of aberrations;

• Potential biases (cell death, repair).
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Alternative biomarker: The γ-H2AX foci assay

• Histones are proteins which help to package
the DNA double helix.

• Following radiation-induced double strand
breaks, the H2AX histone phosphorylates, in
this state referred to as γ-H2AX.

• The resulting foci can be counted manually or
in a semi-automated way, using immunofluo-
rescence microscopy.

• Typically, one examines a sample of 500-
2000 (blood) cells on a given ‘slide’ and then
records the number of foci per cell.
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H2AX calibration data from PHE (now UKHSA)

Foci yield (that is foci/cell, out of
500 sample cells) versus design dose:
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• Strong (linear?) dose–response
relationship; strong decay from
1h to 24h after exposure

• H2AX-based dose estimation
has to happen within 24 hours
of exposure!

• Considerable variation, so Uncer-
tainty Quantification crucial
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Calibration curve estimation

Denote again Yi the total foci count from ni cells for slide i, i = 1, . . . , k.

As before, one can easily fit linear
[or quadratic] curves

λi ≡ E(Yi|xi)/ni

= A + Bxi [+Cx2
i ].

Linear calibration curves appear
sufficient for this assay.
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Overdispersion

However, variance-to-mean ratio
(dispersion) now >> 1!

In fact, linear-model based disper-
sion estimate

ϕ̂ = Deviance/(N − 2),

with N =
∑k

i=1 ni, gives:
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Quasi-Poisson regression

• Overdispersed linear Poisson model

E(Yi|xi) = Ani + B(nixi); Var(Yi|xi) = ϕE(Yi|xi)

Score equations for this model

1
ϕ

k∑
i=1

(
1
xi

)
(Yi − niλi) /λi =

(
0
0

)
.

... so the estimates of A and B do not depend on ϕ!

• However, standard errors do depend on ϕ, namely

SE(Â) =
√

ϕ̂ SEP (Â); SE(B̂) =
√

ϕ̂ SEP (B̂).
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Dose estimation

Inverse regression: For a new yield y∗,
one has

x̂∗ = y∗ − Â

B̂
.

UQ via delta–method:
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SE2(x̂∗) ≈
(

∂x̂∗

∂Â

)2
SE2(Â) +

(
∂x̂∗

∂B̂

)2
SE2(B̂) +

(
∂x̂∗
∂y∗

)2
SE2(y∗)

= 1
B̂2

SE2(Â) + (y∗ − Â)2

B̂4
SE2(B̂) + 1

B̂2
ϕ̂y∗
n∗

This accounts for intra– and inter–individual variation, but still requires
calibration curve to be ‘correct’
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Curve validation

Complication: The calibration curve may vary with laboratory, scorer,
equipment etc. Hence, a given calibration curve needs to be validated
before use.
Before examining a patient sample, lab should
irradiate two reference samples at 0Gy and 1.5Gy
and compare yields with prediction interval:

• If inside, validated

• If outside, a new calibration curve can be
computed from the reference samples which
still allows dose estimation, albeit at a
higher variance (Einbeck et al, 2018)
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Web applet
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Web applet

Jochen Einbeck | 08.11.24
27/47



Dosimetry with the γ-H2AX assay

Jochen Einbeck | 08.11.24
28/47



Raw and aggregated data

Why is the dispersion value (≈ 60) such high?

Calibration data from dosimetry units usually come in one of two forms:

Raw data (columns with all
counts for a given slide)

Aggregated data (one row for
slide, with averaged foci count)

Accordingly one would use raw or aggregated data for the model fitting
including the dispersion estimation.

Jochen Einbeck | 08.11.24
29/47



Data aggregation and dispersion (From PhD dissertation A. Errington)

Of course, if one has the raw data available, then we can also aggregate
them, and fit both (raw and aggregated data models) to compare.
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Data aggregation and dispersion (From PhD dissertation A. Errington)

While these high dispersion estimates are clearly biased, they do correct
a problem which sits elsewhere, namely unaccounted correlations in the
raw data structure. Fitting raw data models naively will lead to incorrect
results:
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We suggest to either use the aggregated model for calibration curve fitting,
or a raw data model with random effects for slides.
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Data aggregation and dispersion
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Estimation of dose and time

• The γ-H2AX assay has a strong time-dependency. Ideally, we could
estimate simultaneously exposure time and dose.

• Basic idea: If one had TWO measurements of foci yield at unknown
points but with known time distance, one has two pieces of in-
formation to work out dose and exposure time from the relevant
equations.

• Our work takes the premise that, for a given lab, two lab-specific
calibration curves at any time points are available, and that the
physical decay mechanism between measurement points is universal
(not lab-specific).
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Linking calibration curves with foci decay

We know from the literature that γ-H2AX foci decay follows a double-
exponential law.

Hence a suitable model is

y = a + bt + d(Aeut + Bevt) (1)

where a, b, A, B, u, v are constants.

Assume further that we have two patient samples available (considered as
realizations of model (1)), at time points t0 and t0 + ∆, with known ∆.

The values t0 are d are to be inferred.
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Find values for a, b, A, B, u, v.

The parameters u and v are determined by the physical decay mechanism
and hence we fix them at u = −0.35 and v = −0.018 (Horn et al, 2011).

The parameters a, b, A, B are related to the absolute magnitude of foci
observed, and hence are lab-specific. We can obtain them by equating the
calibration curves yt = at + d × bt, for t = t1, t2 to the model equation:

• For the ‘background radiation’
at = a + bt

• For the dose-dependent part
bt = Ae−0.35t + Be−0.018t

Note these are two equations each, at t = t1, t2.
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Estimating time and dose

For the actual dose and time estimation,

• set up a system of two equations of type (1) with our two yield
measurements at times t0 and t0 + ∆,

• solve this system for d and t0, for which we use the Mathematica
solver “NSolve".
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Example for PHE data

The calibration curves of the previously shown PHE data

y1 = 0.13 + 12.56d

y24 = 0.18 + 1.94d

lead to the system of equations

yt = 0.13 + 0.0021t + d(13.62e−0.35t + 3.01e−0.018t)
yt+∆ = 0.13 + 0.0021(t + ∆) + d(13.62e−0.35(t+∆) + 3.01e−0.018(t+∆))

which can be solved for any two yields yt, yt+∆ at unknown times t, t + ∆
with known ∆.
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Simulation (from MSc dissertation Y. Cai)

100 NB count data sets simulated from y1, y24 (ϕ = 50, n = 500)

True dose
1Gy

True dose
4Gg
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Impact of number of cells on dose estimates
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Impact of number of cells on time estimates
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Estimating dose and time
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Estimating dose and time

(Experimental UQ in
progress...
but encounters some
difficulties as numerical
solvers are involved...).
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Biodose Tools
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Biodose Tools
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Biodose Tools

• available as R Shiny app, can be downloaded from CRAN or Github

• hosted and managed by the BfS, Munich

• currenty supports

– Dicentrics

– Translocations

– Micronuclei

• Durham-based RA (Y. Zhang) currently working on γ-H2AX exten-
sion
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Software

Software for biodosimetric analysis:

BioDoseTools (Frequentist) dose estimation for dicentric chromosomes,
micronuclei, and translocations. Available as R Shiny App:
https://aldomann.shinyapps.io/biodosetools-v3/

radir (Bayesian) dose estimation, mainly for dicentric chromosomes. R
package Available on CRAN: https://cran.r-project.org/package=radir

DoseEstimateH2AX (Frequentist) dose estimation for the γ-H2AX assay.
Available as R Shiny App: https://shinur.unirioja.es/apps/h2axDE/
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