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Motivation: Energy data

Energy 
onsumption of n = 135 
ountries, in kg of oil equivalentper 
apita, in the year 2007.Plotted is histogram of log- energy 
onsumption, with fourexemplary 
ountries highlighted.
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Kernel density estimation

Alternative to Histogram: Density Estimation

The kernel density estimator
f̂(x) =

1

nh

n
∑

i=1

K

(

xi − x

h

)

estimates the density by re-distributing the point mass 1
nsmoothly to its vi
inity.
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Popular 
hoi
e of K: Gaussian density.

– p. 3/14



Bandwidth sele
tion

Choose h by minimizing the asymptoti
 integrated MSE,
∫ MSE(x) dx =

∫

[Bias2(f̂(x)) + Var(f̂(x))
]

dx =

≈
κ1h

4

4

∫

(f ′′(x))2 dx +
κ2

nhyielding

hopt = κ0

[
∫

(f ′′(x))2 dx

]−1/5

n−1/5

(where κj , j = 0, 1, 2 are 
onstants only depending on K).

Problem: unknown !
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Normal referen
e bandwidth sele
tion

Idea (Silverman, 1986): Repla
e ∫

(f ′′(x))2 dx by that value thatwould be obtained for a normal density φ0,σ = 1√
2πσ2

e−x2/(2σ2)with the same varian
e as f ("normal referen
e").One �nds

∫

(φ′′
0,σ(x))2 dx =

1

σ5

∫

(φ′′
0,1(x))2 dx =

3

8
√

π
σ−5.

Using κ0 = 0.776 for a Gaussian kernel K, one gets

hS = 1.06σn−1/5,where σ is estimated using the sample standard deviation, s.
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Normal referen
e bandwidth sele
tion (
ont.)

For the energy data,

s = 1.074, n = 135, so

h = 1.06 × 1.074 × 135−1/5 =
0.43.Resulting �t looks not too bad,but method tends to oversmoothif the data are multimodal.

log(energy use)

D
en

si
ty

5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

hS

Sought: A systemati
 rule or justi�
ationhow to redu
e the 
onstant 1.06 under multimodality.
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Referen
e to a Gaussian mixture

Obviously, the issue is with Df ≡
∫

(f ′′(x))2 dx.If the data are multimodal, then referen
e to a normal distributionwill give a wrong result.Mathemati
al exer
ise: What happens if we refer to a mixture ofnormals instead?Postulating say, m, modes, this gives the density
ϕm(x) = p1φµ1,σ1

(x) + . . . + pmφµm,σm
(x)The parameters pj , µj , σj 
an be estimated through the EMalgorithm (for instan
e, R pa
kage npmlreg).The integral Dϕm

=
∫

(ϕ′′
m(x))2(x) dx 
an then be solvednumeri
ally (for instan
e, using Mathemati
a).Finally,

hm = κ0D
−1/5
ϕm

n−1/5.
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Referen
e to a Gaussian mixture (
ont.)

For the energy data with m = 2, one obtains Dϕ2
= 0.96, so

h2 = 0.29.For 
omparison, for m = 1, Dϕ1
= 0.15.Resulting density estimate:
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Short
ut

This seems rather useless: Nobody will take the trouble of �tting amixture just in order to produ
e a bandwidth for a kernel densityestimate (espe
ially, as the mixture produ
es a density estimateitself!).However, we 
an simplify things 
onsiderably.Assume an equal mixture of m 
omponents of equal s.dev. σ,whi
h are all separated by a distan
e d.Then tedious 
al
ulation yields
hopt ≈ 1.06m−4/5s

2
√

3

d
√

1 + (12
d2 − 1)/m2

n−1/5

For , 
orresponding to well-separated modes, this boilsdown to
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Short
ut (
ont.)

Rule of thumb: For m−modal distributions,multiply the normal�referen
e�bandwidth with m−4/5.Spe
i�
ally, anti
ipating m modes, the �mixture-of�normals�referen
e bandwidths are given by
hm = c(m)sn−1/5with

m 1 2 3 4 5 6 7

c(m) 1.06 0.61 0.44 0.35 0.29 0.25 0.22

Note: Ex
ept for , all values � 0.9 !!
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Ba
k to energy data

Anti
ipating m = 2 modes, for instan
e from ba
kground or expertknowledge, su
h as the shape of the distribution from previousyears, the rule of thumb-bandwidth sele
tor gives
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Tra�
 data

n = 876 measurements of tra�
 �ow (veh/5min) 10-12/07/07 onCalifornian freeway.Normal referen
e gives hS = 13.90.Indeed, tra�
 engineers might expe
t at least two modes (free�ow,busy tra�
).
So, m = 2 gives

h2 = 2−4/5 × hS = 7.98.Anti
ipating m = 2 unveilsa third mode!
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Galaxy data

Velo
ities in km/se
 of n = 82 galaxies.
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Con
lusion

For situations where ba
kground/expert knowledge on the modalityis available, this information 
an be used to �nd a bandwidth of
orresponding resolution.Rather than needing to estimate Df a

urately through a �ttedmixture, a simple rule of thumb 
riterion 
an be applied.There is no guarantee that the number of modes obtained usingthis bandwidth 
orresponds exactly to the number of anti
ipatedmodes � in fa
t, it will often be larger.General message to take away: With an in
reasing number ofmodes, the bandwidth should be redu
ed by the magnitude m−4/5.

(1986): . Chapman & Hall/CRC.
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