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Statisti
al Learning

Supervised LearningData (xi, yi) ∈ R
p+1, i=1, ..., n.Aim: Re
over a 
ontinuous or dis
rete mapping xi 7→ m(xi),yielding �tted values ŷi = m̂(xi)(�Regression� or �Classi�
ation�, respe
tively).Estimation: Make yi and m̂(xi) �as 
lose as possible�(For instan
e, least squares ∑n

i=1[yi − m̂(xi)]
2).The yi play the role of a �tea
her� =⇒ Supervised Learning.

Unsupervised LearningData , i=1, ..., n. No response!Aim: Learn �something� about the inner stru
ture of the data
loud (density, linear summary, 
lusters, best �tting manifold).No �tea
her� available Unsupervised Learning.
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Example: Old Faithful geyser data
n = 272 measurements from the Old Faithful geyser in YellowstoneNational Park, Wyoming, USA:the waiting time between eruptions;the duration of the eruptions.
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Parametri
 estimation

Linear regression PCASupervised Learning Unsupervised Learning
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Nonparametri
 estimation

Nonparametri
 regression Prin
ipal 
urveSupervised Learning Unsupervised Learning
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Prin
ipal 
urves

Des
riptively, a prin
ipal 
urve is a smooth 
urve through the�middle� of a data 
loud X.A prin
ipal 
urve is symmetri
 w.r.t. inter
hanging the 
oordinateaxes.As su
h, a prin
ipal 
urve is a representant of a �nonparametri
unsupervised learning te
hnique�.Today exist a variety of di�erent notions of prin
ipal 
urves,roughly dividable in two 
ategories:
‘Top-down’ algorithms start with a globally �tted initial line (e.g.the 1st PC) and bend this line or 
on
atenate other lines to ituntil some 
onvergen
e 
riterion is met.Hastie & Stuetzle 1989 (HS),...
‘Bottom-up’ algorithms estimate the prin
ipal 
urve lo
ally movingstep by step through the data 
loud.Einbe
k, Tutz & Evers 2005 (LPC), ...
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Lo
al prin
ipal 
urves (LPC)

Idea: Cal
ulate alternately a lo
al mean and a �rst lo
al prin
ipal
omponent, ea
h within a 
ertain radius (�bandwidth�) h.
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The LPC is the series of lo
al means.
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Se
ond Example: Speed-Flow data
n = 288 measurements of tra�
 speed and vehi
le �ow on aCalifornian Freeway, with lo
al prin
ipal 
urve.
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Speed-Flow data (
ont.)

Compare with HS 
urve (variables now standardized):
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Coverage

The 
overage Cm(τ) of a prin
ipal 
urve m is the proportion of alldata points lying within a tube around m with radius τ .Compute Cm(0.05) for the two prin
ipal 
urves �tted before:
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Coverage (
ont.)

Of 
ourse, this measure depends on the tube width τ , but we 
an
ompute the 
overage 
urve over all τ .
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A �good� 
overage 
urve will be 
on
ave and rise qui
kly.Compute left top area, say A, between τ = 0, Cm(τ) = 1, and the
urve.

Small advantage for LPC!
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Interpretation

Theoreti
ally, this area has an appealing interpretation. Denote
||ǫi|| = ||xi − m|| the norm of the �residuals�, i.e. the shortestdistan
e between a point xi and the prin
ipal 
urve m.Note that

Cm(τ) =
1

n

n
∑

i=1

1{||ǫi||≤τ}|| ≡ Fn(τ)

whi
h is the empiri
al distribution fun
tion of the residuals. Then

A =

∫ ∞

0
(1 − Fn(τ))dτ =

1

n

n
∑

i=1

∫ ∞

0
1{||ǫi||>τ}dτ =

1

n

n
∑

i=1

||ǫi||

is just the mean length of the residuals!
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RC

Next, we set this area A in proportion to the 
orresponding area
APC whi
h would be obtained when �tting a linear prin
ipal
omponent line (the parametri
 ben
hmark). Computing �1 minusthis ratio� yields the 
overage 
oe�
ient, RC

RC ≡ 1 −
A

APC = 1 −

∑n
i=1 ||ǫi||

∑n
i=1 ||ǫ

(PC)
i ||

=

∑n
i=1

(

||ǫ

(PC)
i || − ||ǫi||

)

∑n
i=1 ||ǫ

(PC)

i ||Hen
e, RC 
an be interpreted as the mean reduction in residual
length .For instan
e, RC = 0.8 means that the mean residual length hasbeen redu
ed by 80% when using a prin
ipal 
urve instead of aprin
ipal 
omponent.
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RC (
ont.)

RC has values in (−∞, 1], with

1 
orresponding to the best possible �t,
0 
orresponding to a `bad' �t of the same quality as PCA,negative values 
orresponding to a �t being worse than PCA.Similar in spirit to 
oe�
ient of determination (R2).For instan
e, for the two prin
ipal 
urves �tted to the tra�
 data,one has:

LPC RC = 0.8692

HS RC = 0.8485Both 
urves give a good �t; LPC sightly better.
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Bandwidth sele
tion

Coverage and RC are goodness-of-�t 
riteria. Using these forbandwidth sele
tion would 
learly lead to over�tting.

However, intuitively, if a 
ertain bandwidth leads to a �good�prin
ipal 
urve, then a tube with radius around this
urve should warrant a high 
overage.This leads to the idea of self-
overage: Use the same bandwidth:

where is a lo
al prin
ipal 
urve estimated using bandwidth.Unlike , the 
urve is not ne
essarily monotone, but hasusually lo
al maxima or jumps whi
h 
orrespond to goodbandwidths.

– p. 16/26



Bandwidth sele
tion

Coverage and RC are goodness-of-�t 
riteria. Using these forbandwidth sele
tion would 
learly lead to over�tting.However, intuitively, if a 
ertain bandwidth h leads to a �good�prin
ipal 
urve, then a tube with the same radius h around this
urve should warrant a high 
overage.

This leads to the idea of self-
overage: Use the same bandwidth:

where is a lo
al prin
ipal 
urve estimated using bandwidth.Unlike , the 
urve is not ne
essarily monotone, but hasusually lo
al maxima or jumps whi
h 
orrespond to goodbandwidths.

– p. 16/26



Bandwidth sele
tion

Coverage and RC are goodness-of-�t 
riteria. Using these forbandwidth sele
tion would 
learly lead to over�tting.However, intuitively, if a 
ertain bandwidth h leads to a �good�prin
ipal 
urve, then a tube with the same radius h around this
urve should warrant a high 
overage.This leads to the idea of self-
overage: Use the same bandwidth for
the curve fitting and for the coverage estimation :

S(τ) = C
m(τ)(τ)where m(τ) is a lo
al prin
ipal 
urve estimated using bandwidth

h = τ .

Unlike , the 
urve is not ne
essarily monotone, but hasusually lo
al maxima or jumps whi
h 
orrespond to goodbandwidths.

– p. 16/26



Bandwidth sele
tion

Coverage and RC are goodness-of-�t 
riteria. Using these forbandwidth sele
tion would 
learly lead to over�tting.However, intuitively, if a 
ertain bandwidth h leads to a �good�prin
ipal 
urve, then a tube with the same radius h around this
urve should warrant a high 
overage.This leads to the idea of self-
overage: Use the same bandwidth for
the curve fitting and for the coverage estimation :

S(τ) = C
m(τ)(τ)where m(τ) is a lo
al prin
ipal 
urve estimated using bandwidth

h = τ .Unlike Cm(τ), the 
urve S(τ) is not ne
essarily monotone, but hasusually lo
al maxima or jumps whi
h 
orrespond to goodbandwidths.
– p. 16/26



Self-
overage 
urve

We 
ompute the self-
overage 
urve for the Californian speed-�owdiagram:
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ted bandwidth: h = 0.086The resulting 
urve has RC = 0.8745.
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Generalization

These ideas generalize to other unsupervised learning problems.Examples in
lude density mode dete
tion and 
lustering.The essential devi
e is the 
omputation of the lo
al mean (�meanshift�):

µ̂(x) =

∑

Kh(xi − x)xi
∑

Kh(xi − x)with

Kh(xi − x) =
1

hd
K

(

||xi − x||

h

)

Iterating the mean shift, i.e. x(j+1) = µ̂(x(j)), leads to a lo
almode of the kernel density estimate f̂h of the true density f .(Comani
iu & Meer, 2002).
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Mean-shift based mode dete
tion

Starting from ea
h data point xi, iterate the mean shift until
onvergen
e:
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t modes are dete
ted.
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Mean-shift based 
lustering

By assigning ea
h data point to the mode to whi
h it 
onverged,this turns into a 
lustering te
hnique:
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Bandwidth sele
tion

In 
ontrast to other 
lustering te
hniques (su
h as k-means), meanshift 
lustering does not require pre-spe
i�
ation of the number of
lusters, k.However, one needs to spe
ify a bandwidth h instead.Self-
overage is 
al
ulated as before: The proportion of points in a
ir
le of radius τ , where h = τ is used for the mean shift 
lustering.
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Bandwidth sele
tion

Mean shift 
lustering using bandwidth sele
ted via self-
overage:
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Old Faithful data

Self-
overage 
urve for Old Faithful data:
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Old Faithful data (
ont.)

Don't be greedy.....
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Dis
ussion

Che
king for goodness-of-fit should be separated from model
selection (here bandwidth sele
tion). This is not di�erent than inthe regression 
ontext (supervised learning): The value R2 is agoodness-of-�t 
riterion, and should not be used for modelsele
tion!The goodness-of-�t of prin
ipal 
urves or 
lustering methods 
an beassessed qualitatively (through a 
overage 
urve) or quantitatively(through the relative mean redu
tion in residual length, RC).For bandwidth sele
tion in this 
ontext, a self-
overage measureworks well.
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