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Statistial Learning

Supervised LearningData (xi, yi) ∈ R
p+1, i=1, ..., n.Aim: Reover a ontinuous or disrete mapping xi 7→ m(xi),yielding �tted values ŷi = m̂(xi)(�Regression� or �Classi�ation�, respetively).Estimation: Make yi and m̂(xi) �as lose as possible�(For instane, least squares ∑n

i=1[yi − m̂(xi)]
2).The yi play the role of a �teaher� =⇒ Supervised Learning.

Unsupervised LearningData , i=1, ..., n. No response!Aim: Learn �something� about the inner struture of the dataloud (density, linear summary, lusters, best �tting manifold).No �teaher� available Unsupervised Learning.
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Example: Old Faithful geyser data
n = 272 measurements from the Old Faithful geyser in YellowstoneNational Park, Wyoming, USA:the waiting time between eruptions;the duration of the eruptions.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

– p. 4/26



Parametri estimation

Linear regression PCASupervised Learning Unsupervised Learning

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

1.5 2.0 2.5 3.0 3.5 4.0 4.5

4
5

6
7

eruptions

w
ai

tin
g

– p. 5/26



Nonparametri estimation

Nonparametri regression Prinipal urveSupervised Learning Unsupervised Learning
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Prinipal urves

Desriptively, a prinipal urve is a smooth urve through the�middle� of a data loud X.A prinipal urve is symmetri w.r.t. interhanging the oordinateaxes.As suh, a prinipal urve is a representant of a �nonparametriunsupervised learning tehnique�.Today exist a variety of di�erent notions of prinipal urves,roughly dividable in two ategories:
‘Top-down’ algorithms start with a globally �tted initial line (e.g.the 1st PC) and bend this line or onatenate other lines to ituntil some onvergene riterion is met.Hastie & Stuetzle 1989 (HS),...
‘Bottom-up’ algorithms estimate the prinipal urve loally movingstep by step through the data loud.Einbek, Tutz & Evers 2005 (LPC), ...
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Loal prinipal urves (LPC)

Idea: Calulate alternately a loal mean and a �rst loal prinipalomponent, eah within a ertain radius (�bandwidth�) h.
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The LPC is the series of loal means.
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Seond Example: Speed-Flow data
n = 288 measurements of tra� speed and vehile �ow on aCalifornian Freeway, with loal prinipal urve.
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Speed-Flow data (ont.)

Compare with HS urve (variables now standardized):
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Coverage

The overage Cm(τ) of a prinipal urve m is the proportion of alldata points lying within a tube around m with radius τ .Compute Cm(0.05) for the two prinipal urves �tted before:
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Coverage (ont.)

Of ourse, this measure depends on the tube width τ , but we anompute the overage urve over all τ .
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A �good� overage urve will be onave and rise quikly.Compute left top area, say A, between τ = 0, Cm(τ) = 1, and theurve.

Small advantage for LPC!
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Interpretation

Theoretially, this area has an appealing interpretation. Denote
||ǫi|| = ||xi − m|| the norm of the �residuals�, i.e. the shortestdistane between a point xi and the prinipal urve m.Note that

Cm(τ) =
1

n

n
∑

i=1

1{||ǫi||≤τ}|| ≡ Fn(τ)

whih is the empirial distribution funtion of the residuals. Then

A =

∫ ∞

0
(1 − Fn(τ))dτ =

1

n

n
∑

i=1

∫ ∞

0
1{||ǫi||>τ}dτ =

1

n

n
∑

i=1

||ǫi||

is just the mean length of the residuals!
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RC

Next, we set this area A in proportion to the orresponding area
APC whih would be obtained when �tting a linear prinipalomponent line (the parametri benhmark). Computing �1 minusthis ratio� yields the overage oe�ient, RC

RC ≡ 1 −
A

APC = 1 −

∑n
i=1 ||ǫi||

∑n
i=1 ||ǫ

(PC)
i ||

=

∑n
i=1

(

||ǫ

(PC)
i || − ||ǫi||

)

∑n
i=1 ||ǫ

(PC)

i ||Hene, RC an be interpreted as the mean reduction in residual
length .For instane, RC = 0.8 means that the mean residual length hasbeen redued by 80% when using a prinipal urve instead of aprinipal omponent.
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RC (ont.)

RC has values in (−∞, 1], with

1 orresponding to the best possible �t,
0 orresponding to a `bad' �t of the same quality as PCA,negative values orresponding to a �t being worse than PCA.Similar in spirit to oe�ient of determination (R2).For instane, for the two prinipal urves �tted to the tra� data,one has:

LPC RC = 0.8692

HS RC = 0.8485Both urves give a good �t; LPC sightly better.
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Bandwidth seletion

Coverage and RC are goodness-of-�t riteria. Using these forbandwidth seletion would learly lead to over�tting.

However, intuitively, if a ertain bandwidth leads to a �good�prinipal urve, then a tube with radius around thisurve should warrant a high overage.This leads to the idea of self-overage: Use the same bandwidth:

where is a loal prinipal urve estimated using bandwidth.Unlike , the urve is not neessarily monotone, but hasusually loal maxima or jumps whih orrespond to goodbandwidths.
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Self-overage urve

We ompute the self-overage urve for the Californian speed-�owdiagram:
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Generalization

These ideas generalize to other unsupervised learning problems.Examples inlude density mode detetion and lustering.The essential devie is the omputation of the loal mean (�meanshift�):

µ̂(x) =

∑

Kh(xi − x)xi
∑

Kh(xi − x)with

Kh(xi − x) =
1

hd
K

(

||xi − x||

h

)

Iterating the mean shift, i.e. x(j+1) = µ̂(x(j)), leads to a loalmode of the kernel density estimate f̂h of the true density f .(Comaniiu & Meer, 2002).
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Mean-shift based mode detetion

Starting from eah data point xi, iterate the mean shift untilonvergene:
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for h = 0.05, six distint modes are deteted.
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Mean-shift based lustering

By assigning eah data point to the mode to whih it onverged,this turns into a lustering tehnique:
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for h = 0.05, six distint lusters are deteted.
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Bandwidth seletion

In ontrast to other lustering tehniques (suh as k-means), meanshift lustering does not require pre-spei�ation of the number oflusters, k.However, one needs to speify a bandwidth h instead.Self-overage is alulated as before: The proportion of points in airle of radius τ , where h = τ is used for the mean shift lustering.
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Bandwidth seletion

Mean shift lustering using bandwidth seleted via self-overage:
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Old Faithful data

Self-overage urve for Old Faithful data:
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Old Faithful data (ont.)

Don't be greedy.....
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Disussion

Cheking for goodness-of-fit should be separated from model
selection (here bandwidth seletion). This is not di�erent than inthe regression ontext (supervised learning): The value R2 is agoodness-of-�t riterion, and should not be used for modelseletion!The goodness-of-�t of prinipal urves or lustering methods an beassessed qualitatively (through a overage urve) or quantitatively(through the relative mean redution in residual length, RC).For bandwidth seletion in this ontext, a self-overage measureworks well.
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