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Statistical Learning

® Supervised Learning
s Data (z;,y;) € RPTL i=1, ..., n.
® Aim: Recover a continuous or discrete mapping x; — m(x;),

yielding fitted values g; = m(x;)
(“Regression” or “Classification”, respectively).

» Estimation: Make y; and m(x;) “as close as possible”
(For instance, least squares > " [y; — m(x;)]?).

» The y; play the role of a “teacher’ —
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Statistical Learning

® Supervised Learning
s Data (z;,y;) € RPTL i=1, ..., n.
® Aim: Recover a continuous or discrete mapping x; — m(x;),

yielding fitted values g; = m(x;)
(“Regression” or “Classification”, respectively).

» Estimation: Make y; and m(x;) “as close as possible”
(For instance, least squares > " [y; — m(x;)]?).
» The y; play the role of a “teacher’ —
® Unsupervised Learning
» Data (x;) € RP, i=1, ..., n. No response!

® Aim: Learn “something” about the inner structure of the data
cloud (density, linear summary, clusters, best fitting manifold).

» No “teacher” available = Unsupervised Learning.
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Example: Old Faithful geyser data

n = 272 measurements from the Old Faithful geyser in Yellowstone

National Park, Wyoming, USA:
® the wai ti ng time between eruptions;
® the duration of the er upti ons.
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Parametric estimation

Linear regression

Supervised Learning
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Nonparametric

Nonparametric regression
Supervised Learning
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Principal curves

Descriptively, a principal curve is a smooth curve through the
“middle” of a data cloud X.

A principal curve is symmetric w.r.t. interchanging the coordinate
axes.

As such, a principal curve is a representant of a “nonparametric
unsupervised learning technique’.

Today exist a variety of different notions of principal curves,

roughly dividable in two categories:

‘Top-down’ algorithms ~ start with a globally fitted initial line (e.g.
the 1st PC) and bend this line or concatenate other lines to it
until some convergence criterion is met.
® Hastie & Stuetzle 1989 (HS),...

‘Bottom-up’ algorithms ~ estimate the principal curve locally moving
step by step through the data cloud.
® Einbeck, Tutz & Evers 2005 (LPC), ...

—n. 7/26



Local principal curves (LPC)

® Idea: Calculate alternately a local mean and a first local principal
component, each within a certain radius (“bandwidth™) h.
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® The LPC is the series of local means.
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Second Example: Speed-Flow data

® n — 288 measurements of traffic speed and vehicle flow on a
Californian Freeway, with local principal curve.
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® Compare with HS curve (variables now standardized):
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® How can we measure which curve fits better?
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Coverage

® The coverage Cyn(7) of a principal curve m is the proportion of all

data points lying within a tube around m with radius 7.

® Compute (),(0.05) for the two principal curves fitted before:
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Coverage (cont.)

® Of course, this measure depends on the tube width 7, but we can
compute the coverage curve over all 7.
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® A “good’ coverage curve will be concave and rise quickly.

® Compute left top area, say A, between 7 =0, Cpo(7) = 1, and the
curve.
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Coverage (cont.)

® Of course, this measure depends on the tube width 7, but we can
compute the coverage curve over all 7.
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® A “good’ coverage curve will be concave and rise quickly.

® Compute left top area, say A, between 7 =0, Cpo(7) = 1, and the
curve.

® Small advantage for LPC!
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Interpretation

® Theoretically, this area has an appealing interpretation. Denote
|€;]| = ||x; — m|| the norm of the “residuals”, i.e. the shortest
distance between a point x; and the principal curve m.

® Note that

1 n
Cm(T) =~ D 1gjjeljentll = Fa(r)
1=1

which is the empirical distribution function of the residuals. Then

o0 1 n 00 1 n
A:/ 1 — F,(7))dr = — / Lijle|>smdT = — €;
i ( (7)) n; - Hlledi>n) n;“ |

iIs just the mean length of the residuals!
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Re

® Next, we set this area A in proportion to the corresponding area
Apc which would be obtained when fitting a linear principal
component line (the parametric benchmark). Computing “1 minus
this ratio” yields the coverage coefficient, R

n PC
A s el S (1€ = llell)
n PC o n PC
Apc S 1R S €9

® Hence, R can be interpreted as the mean reduction in residual
length .

® For instance, R = 0.8 means that the mean residual length has
been reduced by 80% when using a principal curve instead of a
principal component.
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R¢ (cont.)

Rc has values in (—o0, 1], with

» 1 corresponding to the best possible fit,

» 0 corresponding to a ‘bad’ fit of the same quality as PCA,

® negative values corresponding to a fit being worse than PCA.

Similar in spirit to coefficient of determination (R?).

For instance, for the two principal curves fitted to the traffic data,
one has:

LPC R¢ = 0.8692
Rc = 0.8485

Both curves give a good fit; LPC sightly better.
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Bandwidth selection

® Coverage and R are goodness-of-fit criteria. Using these for
bandwidth selection would clearly lead to overfitting.
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Bandwidth selection

® Coverage and R are goodness-of-fit criteria. Using these for
bandwidth selection would clearly lead to overfitting.

® However, intuitively, if a certain bandwidth A leads to a “good”
principal curve, then a tube with the same radius h around this
curve should warrant a high coverage.
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Bandwidth selection

Coverage and R are goodness-of-fit criteria. Using these for
bandwidth selection would clearly lead to overfitting.

However, intuitively, if a certain bandwidth h leads to a “good”
principal curve, then a tube with the same radius h around this
curve should warrant a high coverage.

This leads to the idea of self-coverage: Use the same bandwidth for
the curve fitting and for the coverage estimation

where m(7) is a local principal curve estimated using bandwidth
h=r.
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Bandwidth selection

Coverage and R are goodness-of-fit criteria. Using these for
bandwidth selection would clearly lead to overfitting.

However, intuitively, if a certain bandwidth h leads to a “good”
principal curve, then a tube with the same radius h around this
curve should warrant a high coverage.

This leads to the idea of self-coverage: Use the same bandwidth for
the curve fitting and for the coverage estimation

where m(7) is a local principal curve estimated using bandwidth
h=r.

Unlike Cp,(7), the curve S(7) is not necessarily monotone, but has

usually local maxima or jumps which correspond to good
bandwidths.

—n. 16/26



Self-coverage curve

® We compute the self-coverage curve for the Californian speed-flow
diagram:
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® Selected bandwidth: A = 0.086
® The resulting curve has R = 0.8745.
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°

Generalization

These ideas generalize to other unsupervised learning problems.
Examples include density mode detection and clustering.

The essential device is the computation of the local mean (“mean
shift”):
_ ZKh(wz — ZB)Q?Z

Kp(x; —x) = Ly <wi_$||)

()

with

hd h

lterating the mean shift, i.e. Ut = fi(x)), leads to a local

mode of the kernel density estimate f}, of the true density f.
(Comaniciu & Meer, 2002).
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Mean-shift based mode detection

® Starting from each data point x;, iterate the mean shift until

convergence:

N
-

1.0

Spe
0.8

0.6

0.4

0.2

=t

o

/W 7 f{/

0.2

0.4

0.6

Flow

0.8

® for h = 0.05, six distinct modes are detected.
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Mean-shift based clustering

® By assigning each data point to the mode to which it converged,
this turns into a clustering technique:
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® for h = 0.05, six distinct clusters are detected.

—n. 20/26



Bandwidth selection

® In contrast to other clustering techniques (such as k-means), mean
shift clustering does not require pre-specification of the number of
clusters, k.

® However, one needs to specify a bandwidth A instead.

® Self-coverage is calculated as before: The proportion of points in a
circle of radius 7, where h = 7 is used for the mean shift clustering.

0.7
1

S(1)

0.5

0.4

0.0 0.1 0.2 0.3 0.4 0.5
—n. 21/26



Bandwidth selection

® Mean shift clustering using bandwidth selected via self-coverage:

h=0.176
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® h =0.176 corresponds to k = 3 clusters.
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Old Faithful data

® Self-coverage curve for Old Faithful data:
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® peaks at h = 0.287.
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Old Faithful data (cont.)

® Don't be greedy.....

h=0.287 h=0.25
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Reo = 04577 Rco= 0.5065
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Discussion

® Checking for goodness-of-fit  should be separated from model
selection (here bandwidth selection). This is not different than in
the regression context (supervised learning): The value R? is a
goodness-of-fit criterion, and should not be used for model
selection!

® The goodness-of-fit of principal curves or clustering methods can be
assessed qualitatively (through a coverage curve) or quantitatively
(through the relative mean reduction in residual length, R¢).

® For bandwidth selection in this context, a self-coverage measure
works well.
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