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Semi—linear model

y=a'8+g(z) +oe
where
® = (r1,...,2p) and z = (21,...,24)" are multivariate covariates;
® ¢:R?7— R is a smooth, unspecified function.

® the error ¢ follows an unknown distribution F', with E(¢) = 0 and
E(s?) = 1,

® 3, g(-), and o have to be estimated from iid observations

{yi, @i, z;} € RITPH =1 ... n.
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Semi—linear model

y=a'8+g(z) +oe
where
® = (r1,...,2p) and z = (21,...,24)" are multivariate covariates;
® ¢:R?7— R is a smooth, unspecified function.
® the error € follows an unknown distribution F', with E(¢) = 0 and
E(s?) = 1,
® 3, g(-), and o have to be estimated from iid observations

{yi, @i, z;} € RITPH =1 ... n.

Important subcases:
® the linear model for ¢ = 0;
® the nonparametric regression model for p = 0;

® the partial linear model for p > 1 and ¢ = 1.



Example: Onions data (cont.)

® 84 observations from an experiment involving the production of
white Spanish onions in two South Australian locations.

® Plotted is onion yi el d in grammes per plant vs. areal density of
plants (plants per square metre):
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Example: Onions data (cont.)

® Linear model:

log(yi el d;) = Bo + 51l ocati on; 4+ Sodens;

where location; = 1{z’—th obs. from Purnong Landing}-

Linear model fit
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Example: Onions data (cont.)

® Semi-linear model:

log(yi el d;) = By + 61l ocati on; 4+ B2g(dens;)

where location; = 1{z’—th obs. from Purnong Landing}-

Semi-LM fit
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® Consider residual distribution:
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Example: Onions data (cont.

LM residuals
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Example: Onions data (cont.)

® Consider residual distribution:

LM residuals LM: Normal QQ-plot
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® The latter looks more ‘normal’, but can we test for this formally?



Tests for the error distribution

We wish to test for

® the specific parametric form of the error distribution F, i.e.
whether or not it corresponds to a specific family of distributions
such as Normal (or perhaps Laplace);
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Tests for the error distribution

We wish to test for

® the specific parametric form of the error distribution F, i.e.
whether or not it corresponds to a specific family of distributions
such as Normal (or perhaps Laplace);

Why?

® justify the use of inferential tools (confidence intervals, p—values,
etc.)

® check whether the model “fits well”. If rejected, either of
o the model
» the method of estimation
may be inadequate.
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Characteristic functions

Recall that, for ¢ ~ F', the characteristic function of ¢ is given by

¢F<t) — (ez’ts>

Closed expressions exist for a wide range of distributions. For
instance, if F'= N(0,1), then

1,42

P o) (t) = e 2

For observed residuals {&;}" , ¢r(t) can be estimated through the
empirical characteristic function of the residuals,

o 1 A
on(t) = / R, (&) = =) e
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°

Testing for a parametric distribution

Ho . E F().
Construct test by comparing ,,(¢) with ¢ ().

Omnibus test statistic:
T=n / on(t) — dr, (8) Pult)dt,

w(t) is some weight function that is chosen so that T" can be
expressed in closed form.

Specifically, if Fy ~ N(0,1), and w(t) = e~ %", then
I'=1.= %\/§ (Z;’L,k:1 e (E=5x) /4a) + T

g2
J

27 n ~ (2+4a
2\/ Traa (Zj—le e

).
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°

Testing for a parametric distribution

Ho . E F().
Construct test by comparing ,,(¢) with ¢ ().

Omnibus test statistic:
T=n / on(t) — dr, (8) Pult)dt,

w(t) is some weight function that is chosen so that T" can be
expressed in closed form.

Specifically, if Fy ~ N(0,1), and w(t) = e~ %", then
I'=1.= %\/§ (Z;’L,k:1 e (E=5x) /4a) + T

&2
27 n a 2—|—j4a
2\/ T52a (Zj_le( N

The limiting distribution of T}, is unknown, and hard to derive.

_p8



Bootstrapped p-values

Reproduce the sampling distribution of T, via the Bootstrap.
(i) On the basis of data {y;, z;, z;}, compute estimators (3, §(-), &)
and the corresponding residuals é;, i = 1,2, ..., n.
(i) Compute the test statistic T, = T, (€1, ...,én)-
(iii) Repeat B times (typically, B = 200):
» Generate iid. replicates 7,7 = 1,2, ...,n, from Fp, and define
bootstrap observations

y; = &8 + (=)

» Based on {y}, x;, z;}, compute (
corresponding residuals &7, ¢ =1

» Compute the test statistic T, := T, (€7, ..., €},).

If k& of the T¥ exceed T, then p = k/(B + 1) is the p—value of the test.
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Simulation study

Data sets of size n = 100 are generated from the model
y = x +sin(27z) + o€

where both = and z are uniformly distributed in the interval |0, 1], and
o = 0.5. The simulated error distributions are:

(N) Gaussian distribution with mean 0 and standard deviation 1;
(L) Laplace distribution with mean 0 and scale parameter 1.

(SN) Skew-Normal distribution centered at 0, with scale parameter 1 and
skew parameter 10;

(SL) Skew-Laplace distribution centered at 0, with scale parameter 1
and skew parameter 3.
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Simulation study (cont.)

We estimate the model, y = Bx + g(2) + o€, using “backfitting”
with a cubic spline smoother for g, which is calibrated to produce a
nonparametric term corresponding to approximately 4 degrees of
freedom.

For each of the error distributions (N), (L), (SN), and (SL), we

consider the null hypotheses HSN) and Hém, i.e. Normal and

Laplace—distributed error, respectively.

We generate 2000 Monte replications for each test problem and
count the number of rejections of the corresponding null
hypothesis.

The test is compared with the (bootstrapped versions of the)
classical Cramér—von Mises (CM) and Anderson—Darling (AD)
tests, which employ empirical distribution functions (rather than
empirical characteristic functions).
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Simulation study (cont.)

® Percentage of rejection of the null hypothesis H(gm (Normality) for

four different true error distributions.

a=1/2 a=1 a=2 AD CM
(N) «a=0.05 5.0 5.1 5.0 4.3 4.2
a=0.10 9.2 10.0 10.1 9.0 8.8
(L) a=005 779 757 705 711 694
a=0.10  86.5 84.7 815 80.1 795
(SN) a=0.05 845 85.6  85.3 82.6  76.7
a=0.10  90.8 916 91.0 89.1 85.3
(SL) «=0.05 100.0 100.0 100.0 100.0 99.9
a=0.10 100.0 100.0 100.0 100.0 100.0
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Simulation study (cont.)

® Percentage of rejection of the null hypothesis H(gL) (Laplace) for
four different true error distributions.

a=1/2 a=1 a=2
(N) «a=0.05 579 62.0 443
o = 0.10 73.1 755 655
(L) «a=0.05 4.8 4.9 4.6
a=0.10  11.2 104 9.7
(SN) a=0.05 910 95.6  93.9
a=0.10  95.6 97.9  98.0
(SL) «=0.05 100.0 99.9 99.9
a=0.10 100.0 100.0 100.0
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Back to onions data

We fit both the linear and the semi-linear model, and compute the
p—value for testing Hy: Normality of errors.
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One obtains
o for the linear model, p = 0.00 (Normality is rejected).

o for the semi-linear model, p = 0.42 (Normality is not rejected).

We conclude that the semi-linear model fits significantly better
than the linear model.
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Related test problems

® Symmetry test: Hy: F'is symmetric.
» Key idea: Decompose characteristic function of ¢,

or(t) = E(cos(te)) + iE(sin(te)) = C(t) + iS(t)

» ('(t) captures the full information on the symmetric component
of the error distribution.
# Hence, the Fourier formulation of Hj is

H():S(t):(), t € R,

and we use the test statistic

S = n/S?L(t)w(t) dt

with S, (t) = £ >°% | sin(t£;)
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Related test problems (cont.)

® Model specification test: Given covariates v = (&, 2’)’, test
Hy:y=x'B8+g(z)+¢

for some B € RP, g : RP — R.
» Key idea (adapted from Bierens, 1982): Hj is true iff

E{y —2'8—g(2)}e"¥] =0, V t € R, (1)

b L] [] P . / )
which we estimate via F,(t) = % ST £ eit'vi

® Omnibus procedure for specification testing is to reject the null
hypothesis Hy for large values of the test statistic

R= / B, () w(t)dt, o)
Rpr+a
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Related test problems (cont.)

For these tests, the bootstrap routines are not identical to that one
given earlier, but similar in spirit, see Meintanis & Einbeck (2010,

2011).

Results for onions data:

Test of Hy: F' is symmetric
o LM: p=0.12 (close to rejection)

» Semi-LM: p = 0.69 (clearly not rejected).

Specification test for
Hy : E(log(yield|location, dens) = By + B1l ocation + ...

® ...[Bsdens: p=0.07 (LM rejected at the 10% level).
® ...g(dens): p=0.31 (Semi-LM not rejected).
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Conclusion

Empirical characteristic functions are a versatile tool for tackling a
wide range of test problems in the context of semi- and
non-parametric regression.

The limit distribution of the resulting test statistics is difficult to
derive, except for special cases as the linear model, or the univariate
Nadaraya-Watson estimator (Huskova & Meintanis, 2007, 2010).

However, suitably adapted bootstrap routines can be conveniently
employed instead.

The methods achieve generally higher test powers than tests based
on the empirical distribution function (whether these are
bootstrapped or not), and good compliance with the target
significance level.
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