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Combustion

Combustion is a sequence of exothermic chemical
reactions between a fuel and an oxidant

accompanied by the production of heat (light, flames)

Most simple example: combustion of hydrogen and oxygen to

water vapor
2H9 + O9 — 2H50
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Combustion

Combustion is a sequence of exothermic chemical
reactions between a fuel and an oxidant

accompanied by the production of heat (light, flames)

Most simple example: combustion of hydrogen and oxygen to
water vapor

2Hy + Oy — 2H50

A combustion system involving p chemical species is described by
its thermochemical state

P = [21, e o ,Zp_l,T],
with p — 1 chemical mass fractions 21, ..., 2,_1, and temperature
T

The (space/time) behavior of ® is governed by a set of p highly
coupled transport equations.

For large p, this system of equations is usually intractable.
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Combustion data

® Simulated combustion system with 11 chemical species

Hsy, Os, O, OH, H,O, H, HO9, HyO49, CO, CO4, HCO
® First three principal components of state space ® (n = 4000):
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Combustion data

® Simulated combustion system with 11 chemical species

Hsy, Os, O, OH, H,O, H, HO9, HyO49, CO, CO4, HCO
® First three principal components of state space ® (n = 4000):

PC1

PC3

PC2

® It is well-known that the thermochemical state space of combustion
systems resides on low—dimensional manifolds.

® This is convenient, as the transport equations based on the reduced
system of, say, 3 principal components are tractable.
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Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.
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Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.

® Requires ‘high—fidelity’ data with tabulated source terms (Sutherland
& Parente, 2009):
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Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.

® Requires ‘high—fidelity’ data with tabulated source terms (Sutherland
& Parente, 2009):
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® C(learly, the position on the manifold is informative for the source
terms.



Principal component regression

® A simple approach is to use Principal component regression, where

the first three principal component scores serve as predictors, and
the source terms, s, as response:

s = Bo + B1PCy 4 B2PCa + B3PC3 + €

(Sutherland & Parente, 2009).

® Fitted versus true values (R? = 0.77):

PCR

fitted

true source terms

® .. turns out to be not good enough!
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Principal manifolds

® Can we make use of the manifold structure more explicitly?

® Requires data approximation via principal manifolds (in 2D:
principal surfaces).
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Principal manifolds

® Can we make use of the manifold structure more explicitly?

® Requires data approximation via principal manifolds (in 2D:
principal surfaces).

® | ocal principal surfaces, using triangles as building blocks (Einbeck &
Evers, 2010):

Starting from an initial triangle, iteratively ...
(1) glue further triangles at each of its sides.

(2) adjust free vertexes via the mean shift.
Dismiss a new triangle if the new vertex

» falls below a density theshold |
® is too close to an existing one. o

... until all triangles have been considered.
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Principal manifolds

® Can we make use of the manifold structure more explicitly?

® Requires data approximation via principal manifolds (in 2D:
principal surfaces).

® | ocal principal surfaces, using triangles as building blocks (Einbeck &
Evers, 2010):

Starting from an initial triangle, iteratively ...
(1) glue further triangles at each of its sides.

(2) adjust free vertexes via the mean shift.
Dismiss a new triangle if the new vertex

» falls below a density theshold |
® is too close to an existing one. o

... until all triangles have been considered.

® Extends to principal manifolds of any dimension when replacing
triangles (2D) by tetrahedrons (3D) or simplices (>3D).
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Principal manifolds (cont'd)

Fitted local principal surface to combustion data, with data
couloured by (true, tabulated) PC source terms:

® Neat ...

® .. but the actual challenge
s to regress the source
terms onto the surface.
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Regression on principal manifolds
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Regression on principal manifolds

® Toy example: A principal surface

for bivariate data.

® |nitially, each data point x; is pro- _
jected onto the closest triangle

(or simplex), say ;.

principal surface with projections
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Regression on principal manifolds

® Toy example: A principal surface
for bivariate data.

® Initially, each data point x; is pro- el etiala]l o
. . o "o .Nu o 'ao v 5y ”cls » e
jected onto the closest triangle % °;.*.'ﬂ;.ﬁ,fﬂ:}q,’ﬁfa}ai’.° N
i O -0 “oi . 0" ‘g o o
(or simplex), say ;. );%j.#;’ S D’
-
%
® Next, consider a Vi

® Assume separate regression models for each triangle j
Yi = c(j)(xi)’ﬁ(j) + € for all ¢ with closest triangle t; = 7,

where cU)(x;) be the coordinates of the projected point using the
sides of the j—th triangle as basis functions.
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Penalized regression

® Fitting totally unrelated regres- j

"N
sions within each triangle is .

clearly unsatisfactory.
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.

® Additionally, we apply a smooth-
ness penalty which penalizes dif-
ference in regressions at adjacent
triangles.
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Penalized regression (cont'd)

Define
» the parameter vector 3’ = (6’(1),5’(2), . )

» the design matrix Z (which is a box product of (C(ti)(Xi))lgign
and an adjacency matrix);
® appropriate penalty matrices D and FE.

Then the entire minimization problem can be written as

1ZB — y|I” + A[DB|* + ulEB|*. (1)

Though the matrices Z, D and E can be very large, they are also
very sparse, which allows for quick computations.

The solution is given by
B=(Z'7Z+)\D'D+uE'E )" 'Z'y.
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Back to combustion problem

® Using this technique, the source terms s;,72 = 1,...,n are
regressed onto the principal surface.
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Simulation study

® Fitted versus true response for 4000 training data (top) and 4000
test data (bottom), using PC regression (left) and manifold
regression (right):
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Simulation study (cont'd)

For comparison, we consider a wider range of regression methods:

® Traditional methods:
» Linear (principal component) regression:
si = Bo + B1PC1; + B2PCo ;i + B3PCs; + ¢
o Additive models:
s; = f1(PCiy) + f2(PCa) + f3(PCs) + €
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Simulation study (cont'd)

For comparison, we consider a wider range of regression methods:
® Traditional methods:

>

Linear (principal component) regression:
si = PBo + B1PCyi; + B2PCo; + B3PC3; + ¢

o Additive models:

s; = f1(PCi;) + f2(PCa;) + f3(PC3;) + ¢

® Modern “black—box’ methods:

K

i
»
»

Multivariate adaptive regression splines (MARS);
Support vector machine (SVM);
Penalized principal-manifold—based regression (as explained).

Localized principal-manifold—based regression (Einbeck & Evers,
2010).
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Simulation study (cont'd)

® Boxplots of test data residuals,

for all six

log((s; — 8;)%),

regression techniques:
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Simulation study (cont'd)

® Boxplots of test data residuals,

log((

for all six regression techniques:

S; — 54
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® C(Clear evidence in favour of the manifold.
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Conclusion

For the combustion problem, the estimation of source terms is one
of a series of steps towards the construction of a practical
combustion model (for Direct Numerical Simulation, etc).

The next step is the numerical solution of the reduced set of
transport equations.

Results depend on type of scaling before PCA (Isaac et al, 2012).

Our predictions tend to give excellent results for most of the
predictor space, but quite ‘bad’ results for a few small subregions
(usually at manifold tails and boundaries). In our application, those
‘bad’ predictions could be traced back to the burn—in—process.

Other applications of principal manifolds in: astrophysics,
neuroimaging, particle physics, oceanography, ...

Working paper (Evers & Einbeck, 2012) and R package (Ipmforge)
available on request.
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