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Combustion

Combustion is a sequen
e of exothermi
 
hemi
alrea
tions between a fuel and an oxidanta

ompanied by the produ
tion of heat (light, �ames)Most simple example: 
ombustion of hydrogen and oxygen towater vapor

2H2 +O2 −→ 2H20

A 
ombustion system involving 
hemi
al spe
ies is des
ribed byits thermo
hemi
al statewith 
hemi
al mass fra
tions , and temperature.The (spa
e/time) behavior of is governed by a set of highly
oupled transport equations.For large , this system of equations is usually intra
table.
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ompanied by the produ
tion of heat (light, �ames)Most simple example: 
ombustion of hydrogen and oxygen towater vapor

2H2 +O2 −→ 2H20A 
ombustion system involving p 
hemi
al spe
ies is des
ribed byits thermo
hemi
al state
Φ = [z1, . . . , zp−1, T ],with p− 1 
hemi
al mass fra
tions z1, . . . , zp−1, and temperature

T .The (spa
e/time) behavior of Φ is governed by a set of p highly
oupled transport equations.For large p, this system of equations is usually intra
table.
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Combustion data

Simulated 
ombustion system with 11 
hemi
al spe
ies
H2, O2, O, OH, H2O, H, HO2, H2O2, CO, CO2, HCOFirst three prin
ipal 
omponents of state spa
e Φ (n = 4000):
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It is well-known that the thermo
hemi
al state spa
e of 
ombustionsystems resides on low�dimensional manifolds.This is 
onvenient, as the transport equations based on the redu
edsystem of, say, 3 prin
ipal 
omponents tra
table.
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Combustion data

Compli
ation: The rates of produ
tion (`sour
e terms') of theprin
ipal 
omponents are unknown.In pra
ti
e, they have to be found by regression on the prin
ipal
omponents.

Requires `high��delity' data with tabulated sour
e terms (Sutherland& Parente, 2009):

red=highgreen=low�rst PC sour
e terms.

Clearly, the position on the manifold is informative for the sour
eterms.
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Clearly, the position on the manifold is informative for the sour
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Prin
ipal 
omponent regression

A simple approa
h is to use Prin
ipal 
omponent regression, wherethe �rst three prin
ipal 
omponent s
ores serve as predi
tors, andthe sour
e terms, s, as response:

s = β0 + β1PC1 + β2PC2 + β3PC3 + ǫ(Sutherland & Parente, 2009).Fitted versus true values (R2 = 0.77):
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... turns out to be not good enough!
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Prin
ipal manifolds

Can we make use of the manifold stru
ture more expli
itly?Requires data approximation via prin
ipal manifolds (in 2D:prin
ipal surfa
es).

Lo
al prin
ipal surfa
es, using triangles as building blo
ks (Einbe
k &Evers, 2010):Starting from an initial triangle, iteratively . . .(1) glue further triangles at ea
h of its sides.(2) adjust free vertexes via the mean shift.Dismiss a new triangle if the new vertexfalls below a density thesholdis too 
lose to an existing one.. . . until all triangles have been 
onsidered.Extends to prin
ipal manifolds of any dimension when repla
ingtriangles (2D) by tetrahedrons (3D) or simpli
es (>3D).
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Prin
ipal manifolds (
ont'd)
Neat . . .. . . but the a
tual 
hallengeis to regress the sour
eterms onto the surfa
e.

Fitted lo
al prin
ipal surfa
e to 
ombustion data, with data
ouloured by (true, tabulated) PC sour
e terms:
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Regression on prin
ipal manifolds

Toy example: A prin
ipal surfa
efor bivariate data.
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Next, 
onsider a response .Assume separate regression models for ea
h triangle

where be the 
oordinates of the proje
ted point using thesides of the th triangle as basis fun
tions.
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Regression on prin
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Toy example: A prin
ipal surfa
efor bivariate data.Initially, ea
h data point xi is pro-je
ted onto the 
losest triangle(or simplex), say ti.
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Regression on prin
ipal manifolds

Toy example: A prin
ipal surfa
efor bivariate data.Initially, ea
h data point xi is pro-je
ted onto the 
losest triangle(or simplex), say ti.

Next, 
onsider a response yi.Assume separate regression models for ea
h triangle j

yi = c(j)(xi)
′β(j) + ǫi for all i with closest triangle ti = j,where c(j)(xi) be the 
oordinates of the proje
ted point using thesides of the j−th triangle as basis fun
tions.
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Penalized regression

Fitting totally unrelated regres-sions within ea
h triangle is
learly unsatisfa
tory.
– p. 9
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Fitting totally unrelated regres-sions within ea
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tory.Therefore, we apply an 
ontinu-ity penalty whi
h whi
h penal-izes di�eren
es between predi
-tions of neighboring triangles atshared verti
es.
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Penalized regression

Fitting totally unrelated regres-sions within ea
h triangle is
learly unsatisfa
tory.Therefore, we apply an 
ontinu-ity penalty whi
h whi
h penal-izes di�eren
es between predi
-tions of neighboring triangles atshared verti
es.Additionally, we apply a smooth-ness penalty whi
h penalizes dif-feren
e in regressions at adja
enttriangles.
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Penalized regression (
ont'd)

De�nethe parameter ve
tor β′ =
(

β′
(1),β

′
(2), . . .

),the design matrix Z (whi
h is a box produ
t of (c(ti)(xi))1≤i≤nand an adja
en
y matrix);appropriate penalty matri
es D and E.Then the entire minimization problem 
an be written as

‖Zβ − y‖2 + λ‖Dβ‖2 + µ‖Eβ‖2. (1)Though the matri
es Z, D and E 
an be very large, they are alsovery sparse, whi
h allows for qui
k 
omputations.The solution is given by
β̂ = (Z′Z+ λD′D+ µE′E )−1Z′y.
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Ba
k to 
ombustion problem

Using this te
hnique, the sour
e terms si, i = 1, . . . , n areregressed onto the prin
ipal surfa
e.
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Simulation study

Fitted versus true response for 4000 training data (top) and 4000test data (bottom), using PC regression (left) and manifoldregression (right):
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Simulation study (
ont'd)

For 
omparison, we 
onsider a wider range of regression methods:Traditional methods:Linear (prin
ipal 
omponent) regression:
si = β0 + β1PC1,i + β2PC2,i + β3PC3,i + ǫiAdditive models:

si = f1(PC1,i) + f2(PC2,i) + f3(PC3,i) + ǫi

Modern �bla
k�box� methods:Multivariate adaptive regression splines (MARS);Support ve
tor ma
hine (SVM);Penalized prin
ipal�manifold�based regression (as explained).Lo
alized prin
ipal�manifold�based regression (Einbe
k & Evers,2010).
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Simulation study (
ont'd)

Boxplots of test data residuals,

log((si − ŝi)
2),for all six regression te
hniques:

LM AM MARS SVM Man−Pen Man−Loc
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Clear eviden
e in favour of the manifold.
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Con
lusion

For the 
ombustion problem, the estimation of sour
e terms is oneof a series of steps towards the 
onstru
tion of a pra
ti
al
ombustion model (for Dire
t Numeri
al Simulation, et
).The next step is the numeri
al solution of the redu
ed set oftransport equations.Results depend on type of s
aling before PCA (Isaa
 et al, 2012).Our predi
tions tend to give ex
ellent results for most of thepredi
tor spa
e, but quite `bad' results for a few small subregions(usually at manifold tails and boundaries). In our appli
ation, those`bad' predi
tions 
ould be tra
ed ba
k to the burn�in�pro
ess.Other appli
ations of prin
ipal manifolds in: astrophysi
s,neuroimaging, parti
le physi
s, o
eanography, . . .Working paper (Evers & Einbe
k, 2012) and R pa
kage (lpmforge)available on request.
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