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Motivation

Consider oeanographi data reorded by the German vessel�Gauss� in May 2000 southwest of Ireland.
N = 643 Measurements on water temperature (response), salinity,water depth, oxygen ontent.
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Motivation (ont.)

This is a 3-variate regression problem, with the preditor spaegiven by salinity, water depth, and oxygen:
34.8 35.0 35.2 35.4 35.6 35.8
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We shade higher water temperatures red.Can we make use of the one-(?) dimensional inner struture?This is a task for prinipal urves (Hastie & Stuetzle, 1989).
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Loal prinipal urves (LPCs)

Idea: Calulate alternately a loal enter of mass and a �rstloalized prinipal omponent (Einbek, Tutz, & Evers, 2005).
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0: starting point,

m: points of the LPC,

1, 2, 3 : enumeration ofsteps.
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Fitting the LPC

LPC through oeanographi data set, with loal enters of mass:
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The urve has yet to be parametrized, and one needs to be able toprojet the data points onto it.
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Projeting onto the LPC

We parametrize the LPC through the ar length of a ubi splinefuntion laid through the loal enters of mass, and projet eahdata point xi ∈ R
d onto the nearest point on the urve, yielding aone-dimensional projetion index ti ∈ R (Einbek, Evers, & Hinhli�,2010).
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Regression based on the LPC

It remains a simple univariate regression problem of type
yi = g(ti) + εi.
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This an be �tted any nonparametri smoother; for instane, aloal linear smoother.
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Manifolds of higher order?

This may be onsidered as unsatisfatory: The data orrespondingto �hot� temperatures show a branhed struture, indiating thatsome information relevant for the response is orthogonal to theprinipal urve.If we deem the preditor spae to be of intrinsi dimensionality 2(rather than 1), we need to �t a prinipal surfae (rather than aprinipal urve).Can we extend the loal prinipal urve algorithm towards loalprinipal surfaes (or manifolds of higher dimension)?
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Loal prinipal surfaes

We are working now with the �building blok� triangles ∆.Loal PCA is only used to determine the initial triangle, say ∆0.Then, the algorithm iterates(1) For a given triangle ∆, we glue further triangles at eah of itssides j = 1, 2, 3.(2) For j = 1, 2, 3, adjust the free triangle vertex via the meanshift. We dismiss the new triangle ifthe new vertex falls into a region of small density, orthe new vertex is too lose to an existing one (Delaunaytriangulation).until all sides of all triangles (inluding the new ones) havebeen onsidered.
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Loal prinipal surfaes (ont.)

Illustration: Constrained mean shift on a irle (enforingequilateral triangles):

Extendable to loal prinipal manifolds (LPMs) of arbitrarydimension by replaing �triangles� with suitable �tetrahedrons�or �simplies�.
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Loal prinipal surfaes (ont.)

Illustration: Constrained mean shift on a irle (enforingequilateral triangles):

Extendable to loal prinipal manifolds (LPMs) of arbitrarydimension > 2 by replaing �triangles� with suitable �tetrahedrons�or �simplies�.
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Loal prinipal surfaes (ont.)

Loal prinipal surfae (LPS) for oeanographi data set:
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Regression on the surfae

Then, how to use this surfae for regression?It seems hard to de�ne a meaningful 2-dim. parametrization on thesurfae.However, we may use distanes instead: For eah triangle, we anount the distane d to all other triangles through the smallestnumber of triangle borders that have to be rossed to walk fromone to the other.Assign loal weights via disrete distane-based kernel

κ(d) = e−d/λThe parameter λ ∈ [0,∞) steers the degree of smoothing on themanifold: the higher λ, the smoother.
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Regression on the surfae (ont.)

The entire �tting proess is summarized as follows:(I) Fit a LPS as explained above, yielding a surfae with, say, Rtriangles.(II) Assign eah data point xi, i = 1, . . . , n to their nearest triangle.(III) For eah triangle r = 1, . . . , R, ompute the mean ȳr over theresponse values of all data points assigned to it.(IV) Compute all pairwise distanes dr,s between all triangles on thesurfae.(V) Use the disrete kernel κ(·) to smooth over the manifold. Thesmoothed response value gr on triangle r is given by

gr =

∑
s κ(dr,s)ȳs∑
s κ(dr,s)

.
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Simulation study

We divide the data into a training and a test data set of size 500and 143, respetively.Squared predition errors for the additive model (AM), LPC� andLPS� based regression are given below. LPSAM LPC λ = 0.2 λ = 1 λ = 2Training mean 0.089 0.326 0.043 0.073 0.144error median 0.015 0.007 0.001 0.007 0.015Test mean 0.155 0.310 0.111 0.116 0.175error median 0.029 0.009 0.004 0.010 0.021

The LPS for performs superior to all other tehniques.
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New York Air Quality Measurements
Ozone Solar.R Wind Temp

1 41 190 7.4 67

...

24 32 92 12.0 61

25 NA 66 16.6 57

26 NA 266 14.9 58

27 NA NA 8.0 57

28 23 13 12.0 67

29 45 252 14.9 81

30 115 223 5.7 79

31 37 279 7.4 76

32 NA 286 8.6 78

33 NA 287 9.7 74

34 NA 242 16.1 67

35 NA 186 9.2 84

36 NA 220 8.6 85

...

153 20 223 11.5 68

High ozone levels = red

Temp
Wind

Solar.R
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Air Quality Measurements (ont.)

De�nitely needs a surfae rather than a urve!Speial feature: Lots of missing values in the response (42 out of153), but few missing preditors (only 7 out 153 rows).However, we an estimate the manifold using the omplete 146rows of the preditor spae, and then use this manifold to preditthe response.
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Air Quality Measurements (ont.)

True response, LPS-�tted (λ = 1), Additive Model (AM)-, andLinear Model (LM)- �tted values:
ozone^{1/3}
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Remarks and Outlook

The proposed tehniques are neither thought to be �universal� nor�automati�, but may be useful in partiular irumstanes if thereare strong nonlinear dependenies between the involved preditorvariables.The tehnique unfolds its real power when onsidering preditorspaes of far higher dimension (for instane, spetral data).For high-dimensional preditor spaes a two-step strategy may bebene�ial: Apply PCA on raw data, and approximate the soresthrough the manifold (Einbek, Evers, & Powell, 2010).Retrospetive post-proessing (smoothing) of the manifold possiblevia the Elasti net algorithm (Gorban & Zinovyev, 2005).

Desirable:Smoothing "within" the triangle (or simplex).More "Statistis"...
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