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Motivation

® C(Consider oceanographic data recorded by the German vessel
“Gauss’ in May 2000 southwest of Ireland.

® N = 643 Measurements on water temperature (response), salinity,
water depth, oxygen content.
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Motivation (cont.)

® This is a 3-variate regression problem, with the predictor space
given by salinity, water depth, and oxygen:
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Motivation (cont.)

® This is a 3-variate regression problem, with the predictor space
given by salinity, water depth, and oxygen:
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® \We shade higher water temperatures red.
® Can we make use of the one-(?) dimensional inner structure?

® This is a task for principal curves (Hastie & Stuetzle, 1989).
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Local principal curves (LPCs)

® Idea: Calculate alternately a local center of mass and a first
localized principal component (Einbeck, Tutz, & Evers, 2005).
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® | PC through oceanographic data set, with local centers
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Fitting the LPC
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Fitting the LPC

® | PC through oceanographic data set, with local centers of mass:
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® The curve has yet to be parametrized, and one needs to be able to

project the data points onto it.
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Projecting onto the LPC

® We parametrize the LPC through the arc length of a cubic spline
function laid through the local centers of mass, and project each

data point x; € R? onto the nearest point on the curve, yielding a

one-dimensional projection index t; € R (Einbeck, Evers, & Hinchliff,
2010).
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Regression based on the LPC

® It remains a simple univariate regression problem of type
yi = g(ti) + €.
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Regression based on the LPC

® |t remains a simple univariate regression problem of type
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® This can be fitted any nonparametric smoother; for instance, a
local linear smoother.
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Manifolds of higher order?

® This may be considered as unsatisfactory: The data corresponding
to "hot” temperatures show a branched structure, indicating that
some information relevant for the response is orthogonal to the
principal curve.

® If we deem the predictor space to be of intrinsic dimensionality 2
(rather than 1), we need to fit a principal surface (rather than a
principal curve).

® (Can we extend the local principal curve algorithm towards local
principal surfaces (or manifolds of higher dimension)?
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Local principal surtaces

® We are working now with the “building block™ triangles A.
® |ocal PCA is only used to determine the initial triangle, say Ay.

® Then, the algorithm iterates

(1) For a given triangle A, we glue further triangles at each of its
sides 7 = 1,2, 3.

(2) For j =1,2,3, adjust the free triangle vertex via the mean
shift. We dismiss the new triangle if
s the new vertex falls into a region of small density, or
s the new vertex is too close to an existing one (Delaunay

triangulation).

until all sides of all triangles (including the new ones) have
been considered.
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Local principal surfaces (cont.)

® |llustration: Constrained mean shift on a circle (enforcing
equilateral triangles):
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Local principal surfaces (cont.)

® |llustration: Constrained mean shift on a circle (enforcing
equilateral triangles):

® Extendable to local principal manifolds (LPMs) of arbitrary
dimension > 2 by replacing “triangles” with suitable “tetrahedrons”
or “simplices’.
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Local principal surfaces (cont.)

LPS) for oceanographic data set:

(

® |ocal principal surface




Regression on the surface

Then, how to use this surface for regression?

It seems hard to define a meaningful 2-dim. parametrization on the
surface.

However, we may use distances instead: For each triangle, we can
count the distance d to all other triangles through the smallest
number of triangle borders that have to be crossed to walk from
one to the other.

Assign local weights via discrete distance-based kernel
k(d) = e~/

The parameter A € [0, 00) steers the degree of smoothing on the
manifold: the higher \, the smoother.
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Regression on the surface (cont.)

The entire fitting process is summarized as follows:

(I) Fit a LPS as explained above, yielding a surface with, say, R

triangles.
(I1) Assign each data point @;,i = 1,...,n to their nearest triangle.
(II1) For each triangle r = 1,..., R, compute the mean ¥, over the

response values of all data points assigned to it.
(IV) Compute all pairwise distances d,. s between all triangles on the
surface.

(V) Use the discrete kernel x(-) to smooth over the manifold. The
smoothed response value g, on triangle r is given by

g = Zs K(dr,s)Ys
' > k(drs) |
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® We divide the data into a training and a test data set of size 500

Simulation study

and 143, respectively.

® Squared prediction errors for the additive model (AM), LPC- and

LPS— based regression are given below.

LPS
AM LPC A=02 AX=1 =2
Training mean 0.089 0.326 0.043 0.073 0.144
error median 0.015 0.007 0.001 0.007 0.015
Test mean 0.155 0.310 0.111 0.116 0.175
error median 0.029 0.009 0.004 0.010 0.021

—n. 14/19



® We divide the data into a training and a test data set of size 500

Simulation study

and 143, respectively.

® Squared prediction errors for the additive model (AM), LPC- and

LPS— based regression are given below.

LPS
AM LPC A=02 AX=1 =2
Training mean 0.089 0.326 0.043 0.073 0.144
error median 0.015 0.007 0.001 0.007 0.015
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error median 0.029 0.009 0.004 0.010 0.021

® The LPS for A = 1 performs superior to all other techniques.
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New York Air Quality Measurements

Ozone Solar.R Wnd Te
P High ozone levels = red

1 41 190 7.4 67
24 32 92 12.0 61
25 NA 66 16.6 57
26 NA 266 14.9 58
27 NA NA 8.0 57
28 23 13 12.0 67
29 45 252 14.9 81
30 115 223 5.7 79 o
31 37 279 7.4 76
32 NA 286 8.6 78
33 NA 287 9.7 74
34 NA 242 16.1 67
35 NA 186 9.2 84
36 NA 220 8.6 85
153 20 223 11.5 68
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Air Quality Measurements (cont.)

® Definitely needs a surface rather than a curve!

® Special feature: Lots of missing values in the response (42 out of
153), but few missing predictors (only 7 out 153 rows).

® However, we can estimate the manifold using the complete 146
rows of the predictor space, and then use this manifold to predict
the response.

—pn. 16/19



Air Quality Measurements (cont.

® True response, LPS-fitted (A = 1), Additive Model (AM)-, and
Linear Model (LM)- fitted values:
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Remarks and Outlook

The proposed techniques are neither thought to be “universal” nor
“automatic”, but may be useful in particular circumstances if there

are strong nonlinear dependencies between the involved predictor
variables.

The technique unfolds its real power when considering predictor
spaces of far higher dimension (for instance, spectral data).

For high-dimensional predictor spaces a two-step strategy may be
beneficial: Apply PCA on raw data, and approximate the scores
through the manifold (Einbeck, Evers, & Powell, 2010).

Retrospective post-processing (smoothing) of the manifold possible
via the Elastic net algorithm (Gorban & Zinovyev, 2005).
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Remarks and Outlook

The proposed techniques are neither thought to be “universal” nor
“automatic”, but may be useful in particular circumstances if there
are strong nonlinear dependencies between the involved predictor
variables.

The technique unfolds its real power when considering predictor
spaces of far higher dimension (for instance, spectral data).

For high-dimensional predictor spaces a two-step strategy may be
beneficial: Apply PCA on raw data, and approximate the scores
through the manifold (Einbeck, Evers, & Powell, 2010).

Retrospective post-processing (smoothing) of the manifold possible
via the Elastic net algorithm (Gorban & Zinovyev, 2005).

Desirable:
® Smoothing "within" the triangle (or simplex).
» More "Statistics"...
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