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Introduction
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Introduction

» Given: univariate count data y1,..., V.

> Is it plausible to assume that yi,...,y, are generated from a
given (hypothesized) count distribution F?

» Specifically, denote F = F(u;,6;), with both p; = E(Yj|x;)
and 6; (possibly) depending on covariates x;.

> Assume that a routine to obtain estimates fi; = E(Yi|x;) and
0; is readily available.

» Denote N(k), for k =0,1,2,..., the number of observed
counts k in y1,...,yn.

> Idea: check whether, for each count k =0,1,2,..., the

A

number N(k) is ‘plausible’ under the distribution F(fi;,0;).



Poisson-Binomial distribution

» The random variable N(k) follows a Poisson—-Binomial
distribution with parameters pi(k), ..., pn(k), where

pi(k) = P(k|pi, 0:)

is the probability of observing the count k under covariate x;
and model F (Chen and Liu, 1997).

» The pi(k) can be estimated by pi(k) = P(k|ji;, ;) from the
fitted model.



Poisson-Binomial distribution

» The random variable N(k) follows a Poisson—-Binomial
distribution with parameters p1(k), ..., pa(k), where

pi(k) = P(k|pi, 0:)

is the probability of observing the count k under covariate x;
and model F (Chen and Liu, 1997).
» The pi(k) can be estimated by pi(k) = P(k|ji;, ;) from the
fitted model.
» For instance, in the special case that F(u;,0;) corresponds to
Pois(11;), one has p;(k) = exp(—/i;)k/k!.
» This scenario was discussed in the previous talk with focus on

the case k = 0.
» This talk generalizes those ideas to general k and F and
proposes a generic diagrammatic tool.



Plausibility intervals for N(k)

» Knowing the distribution of N(k), one can derive intervals of
plausible values of N(k) by considering appropriate quantiles
from this distribution.

» For fixed k, appropriate lower and upper quantiles, say
da/2(k) and q1_q/2(k) of the Poisson—Binomial distribution
can be computed using the R package poibin (Hong, 2013).

» Do this for a range of values of k, and plot intervals
(Gas2(k), G1—a/2(k)) alongside observed values N(k) as a
function of k.



Example: simulated data

» n = 100 observations y1, ..., y, simulated from a
Zero—inflated Poisson (ZIP) distribution with Poisson
parameter u = 1.5 and zero—inflation parameter p = 0.2
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Example: simulated data

» n = 100 observations y1, ..., y, simulated from a
Zero—inflated Poisson (ZIP) distribution with Poisson
parameter u = 1.5 and zero—inflation parameter p = 0.2

» Consider F(u) ~ Pois(u) with i = y.
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Median-adjustment

» The previous graph can be difficult to read if the sample size
is large, and so the bounds get very tight.

» We therefore adjust it by subtracting the medians
M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).
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Median-adjustment

» The previous graph can be difficult to read if the sample size
is large, and so the bounds get very tight.

» We therefore adjust it by subtracting the medians
M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).

k_ N(k) M(k) N(k)-M(k) qo.0s(k)-M(k) qo.os(k)— M(k)
0 38 26 12 7 7
1 28 35 7 -8 8
2 15 24 -9 7 7
3 7 10 -3 -4 6
4 8 3 5 -2 4
5 1 1 0 -1 2
6 2 0 2 0 1
71 0 1 0 0



Median—adjusted bounds

» Diagnostic plot for the accuracy of the Poisson assumption
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Median—adjusted bounds: Variant

» Exchange horizontal and vertical axis:
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Median—adjusted bounds: Variant

» Exchange horizontal and vertical axis:
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» ‘Christmas tree diagram’.




Median—adjusted bounds: Variant

» Exchange horizontal and vertical axis:
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» ‘Christmas tree diagram’.
» Adequate models have the ‘decoration’ inside the tree.



Example: Biodosimetry data

» Frequency of dicentric chromosomes in human lymphocytes
after in vitro exposure to doses between 1 and 5Gy of 200kV
X-rays. The irradiated blood was mixed with non—irradiated
blood in a proportion 1:3 in order to mirror a partial body
exposure scenario.
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Modelling of biodosimetry data

» These are n = 7200 observations of the type (dose;, y;), with
yi being a count in 0,...,8.

» X-rays are sparsely ionizing — the literature suggests a
quadratic dose model in this case.
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Modelling of biodosimetry data

» These are n = 7200 observations of the type (dose;, y;), with
yi being a count in 0,...,8.

» X-rays are sparsely ionizing — the literature suggests a
quadratic dose model in this case.

» Link function:

» Cytogenists prefer identity link.

» Being among Statisticians, | will use the log link.
» Response (count) distribution:

» It is widely accepted that the number of dicentrics in irradiated
blood samples is Poisson distributed.

» However, under a partial body exposure scenario, we would
expect a deviation from the Poisson assumption, towards
zero—inflation.

» Consider the initial model y;|dose; &~ Pois(;) with

wi = E(yi|dose;) = exp (ﬁo + f[idose; + ﬁzdose?)



Diagnostics for biodosimetry data

» _..without median— adjustment:
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Diagnostics for biodosimetry data

» ...with median— adjustment:

0 200
1

-200

-400

N(K)-M(K)
|+
+
it
3
-
-
i

N 4

data value (k)
» much better!



Christmas tree diagram: Poisson hypothesis
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Christmas tree diagram: Poisson hypothesis
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» We clearly observe zero—inflation (and associated 1-deflation);



Christmas tree diagram: Poisson hypothesis
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» We clearly observe zero—inflation (and associated 1-deflation);



Christmas tree diagram: ZIP hypothesis

» Do all the same as before, but now compute fi;, f;, and pi(k),
using the zero—inflated Poisson (ZIP) model as the
hypothesized model.
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Christmas tree diagram: ZIP hypothesis

» Do all the same as before, but now compute fi;, f;, and pi(k),
using the zero—inflated Poisson (ZIP) model as the
hypothesized model.
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> indicates a good fit.



Christmas tree diagram: NB hypothesis

» Repeat the procedure using the negative Binomial model as
the hypothesized model.
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Christmas tree diagram: NB hypothesis

» Repeat the procedure using the negative Binomial model as
the hypothesized model.
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» indicates that the NB model does not capture the data well.



Christmas tree diagram: PIG hypothesis

> Repeat the procedure using the Poisson inverse Gaussian
(PIG) model as the hypothesized model.
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Christmas tree diagram: PIG hypothesis

> Repeat the procedure using the Poisson inverse Gaussian
(PIG) model as the hypothesized model.
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» the PIG model does not capture the data well either.



Alternative data set: Whole body exposure

» Counts of dicentric chromosomes in 4400 blood cells after in
vitro ‘whole body' exposure with 200kV X-rays from 0 to
4.5Gy.
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» Counts of dicentric chromosomes in 4400 blood cells after in
vitro ‘whole body' exposure with 200kV X-rays from 0 to
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Alternative data set: Whole body exposure

» Counts of dicentric chromosomes in 4400 blood cells after in
vitro ‘whole body' exposure with 200kV X-rays from 0 to

4.5Gy.
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» indicates that Poisson model is fairly reasonable.



Multiple testing ?

» |If considered as a series of statistical tests over counts
k=0,1,2,..., one can argue that multiple testing issues arise.

» For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.



Multiple testing ?

» |If considered as a series of statistical tests over counts
k=0,1,2,..., one can argue that multiple testing issues arise.

» For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

» One could adjust this through a Bonferroni correction etc.

» However, we do believe that the corresponding inflated
boundaries would be rather meaningless.



Multiple testing ?

>

If considered as a series of statistical tests over counts
k=0,1,2,..., one can argue that multiple testing issues arise.

For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

One could adjust this through a Bonferroni correction etc.

However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.



Multiple testing ?

>

If considered as a series of statistical tests over counts
k=0,1,2,..., one can argue that multiple testing issues arise.

For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

One could adjust this through a Bonferroni correction etc.

However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.

That is, exceeding the boundary limits once or twice should
not necessarily be interpreted as rejection of the hypothesized
count distribution, as long as the ‘decoration’ is reasonably
consistent with the tree.



Comparison with score tests

> Alternatively, one can carry out traditional score tests.

» For instance, consider Hy: Poisson versus Hy: ZIP or Hi: NB.

» Score test statistic T = ST J71S, where S and J are the score
function and Fisher Information matrix (resp.) evaluated
under the Poisson model. Asymptotically, T ~ y2(1).

> Resulting values of T, to be compared with X%,0.95 = 3.84
(Oliveira et al, 2016):

Test Body exposure
Partial  Whole

Pois/ZIP  1996.30 1.00

Pois/NB  6009.35 0.90

» Confirms that Poisson is adequate for whole body exposure
but inadequate for partial body exposure.



Comparison with score tests

> Alternatively, one can carry out traditional score tests.

» For instance, consider Hy: Poisson versus Hy: ZIP or Hi: NB.

» Score test statistic T = ST J71S, where S and J are the score
function and Fisher Information matrix (resp.) evaluated
under the Poisson model. Asymptotically, T ~ y2(1).

> Resulting values of T, to be compared with X%,0.95 = 3.84
(Oliveira et al, 2016):

Test Body exposure
Partial  Whole

Pois/ZIP  1996.30 1.00

Pois/NB  6009.35 0.90

» Confirms that Poisson is adequate for whole body exposure
but inadequate for partial body exposure.

» ...but the score test does not tells us whether it's at all the
zero's which cause the problem, nor whether the data are
zero—inflated or —deflated!



Conclusion

>

We have provided a simple diagrammatic tool to assess the
adequacy of any given count data model.

Essentially, it is verified whether the frequency, N(k), of each
count, k, is plausible given the hyptothesized model.

Can be used for with or without covariates.

Only requires computation of fitted values, and the resulting
plausibility intervals via the Poisson—Binomial distribution.

Estimation of model parameters when the model is inadequate
can possibly be tricky!
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consistent with a Poisson distribution, an improved mean
estimator [i; has been proposed in the previous talk.
» More work required for the more general case of an arbitrary
count/distribution.



Conclusion

>

We have provided a simple diagrammatic tool to assess the
adequacy of any given count data model.

Essentially, it is verified whether the frequency, N(k), of each
count, k, is plausible given the hyptothesized model.

Can be used for with or without covariates.

Only requires computation of fitted values, and the resulting
plausibility intervals via the Poisson—Binomial distribution.

Estimation of model parameters when the model is inadequate
can possibly be tricky!
» For the work carried out in this talk, all parameters have been
estimated under the hypothesized model.
> In the special case of checking whether the number of 0's is
consistent with a Poisson distribution, an improved mean
estimator [i; has been proposed in the previous talk.
» More work required for the more general case of an arbitrary
count/distribution.

Be aware of multiple testing: It is a diagram, not a test.
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