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1.1

Why Quantum Mechanics?

A Brief History

In last term’s lectures, you have explored a powerful reformulation of ‘classical me-
chanics’ using the Lagrangian and Hamiltonian formalisms. This is perfectly ade-
quate for a complete understanding of balls, pendulums, springs, and waves, on
macroscopic distance scales familiar to humans.

However, by the early 1900’s there was mounting experimental evidence that the
elementary constituents of matter, at microscopic distances of atoms and molecules,
behave in a wholly different manner. The new theoretical framework that emerged
in this period to describe such phenomena is known as ‘quantum mechanics’. This
has had a profound effect on society: quantum mechanics underpins much of the
technological revolution of the last century.

Ultimately, the framework of quantum mechanics is determined by experimental
facts. However, many features of quantum mechanics are reminiscent of the Hamil-
tonian formulation of classical mechanics, and we will emphasise this connection
throughout the course. You should keep in mind that quantum mechanics is the
more fundamental description of nature, with classical mechanics an approximation
valid at macroscopic distances.

Quantum mechanics has an extremely rich mathematical framework. In this course,
we will encounter techniques from analysis, probability, algebra, and representa-
tion theory. Moreover, ideas and techniques from quantum mechanics have inspired
many exciting developments in pure mathematics in the last half century, partic-
ularly in geometry and topology. This continues to be an active area of research
today.

In this lecture and the next, we will explore some of the inconsistencies between
classical mechanics and experimental facts about nature at microscopic distances.
This will serve as a guide to the development of quantum mechanics in subsequent
lectures.

Introductory lecture, in
which the module is
introduced and motivation is
given that led to the birth of
quantum mechanics.


https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=b842f585-7a30-4f45-9ba4-ae1601110547
https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=b842f585-7a30-4f45-9ba4-ae1601110547
https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=b842f585-7a30-4f45-9ba4-ae1601110547
https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=b842f585-7a30-4f45-9ba4-ae1601110547
https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=b842f585-7a30-4f45-9ba4-ae1601110547

1.2 Bound States

In classical mechanics, a particle has a definite position and momentum (x(¢), p(t))
at each time ¢. We can view this geometrically as a curve in ‘phase space’ parametrised
by time ¢. Given some initial conditions, the shape of the curve is determined by

Hamilton’s equations,

OH OH
y = — ) = —— 1.].
T ap D o7 (1.1

where H is the Hamiltonian. More precisely, Hamilton’s equations specify the tan-
gent space to the curve at each time ¢, as shown below.

bt on_on
op’ Ox

(x(t), p(t))

» T

Figure 1.1: Phase space dynamics of a classical system, driven by the Hamilto-
nian.

* Example. A particle of mass m moving in a potential V' (x) has

2

p
H= -+ V(). (1.2)

The Hamiltonian itself is conserved and equal to the total energy F, given by
the sum of kinetic energy and potential energy. In this case, eliminating the
momentum p from Hamilton’s equations leads back to Newton’s law,

av

P=—— 1.3
mi I (1.3)

In classical mechanics, a ‘bound state’ is a solution of Hamilton’s equations that
is confined to a finite region of phase space. Bound states arise from oscillations
around a local minimum of the potential V' (x).

* Example 1 A simple harmonic oscillator has quadratic potential
1
V(z) = imwQ:cZ, (1.4)

where w is known as the ‘angular frequency’. The general solution of Hamil-
ton’s equations is given by

sin(wt + @),
mw2 (1.5)

V2mE cos(wt + ¢) ,

Many potentials which lead
to a continuum of bound
states in classical mechanics
produce, instead, a discrete
spectrum in the real world,
which can be ‘explained’ by
‘quantisation conditions’.



where the energy £ > 0 and phase ¢ are determined by the initial conditions.

V(z) p

A
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Figure 1.2: Potential energy and phase space dynamics of the simple harmonic
oscillator.

The particle is confined to the region where V(z) < E and cannot escape
to infinity. The curve (x(t),p(t)) forms an ellipse in phase space, which is
confined to a finite region. There is therefore a continuous spectrum of bound
states parametrised by the energy £ > 0.

* Example 2. The effective potential for the radial motion of an electron in a
hydrogen atom is (in convenient units)
JQ 2
-<, (1.6)

2ma?

Vi(x)

where m, e are the mass and electric charge of the electron and J? is the con-
served square of the angular momentum vector. The potential has a minimum
at 2o = .J?/me? and asymptotes to 0 from below as z — oco. There is a contin-
uous spectrum of bound states parametrised by J? and energy V (zo) < E < 0.

Vi(x)
A

\/
8

i o

Figure 1.3: Classical potential energy of the hydrogen atom; there is a classical
bound state for every energy V (z¢) < E < 0.

More generally, any potential V (z) with a local minimum at some point xy will
classically have a continuous spectrum of bound states with energy V(zg) < E <
Ep.x for some maximum energy Foax.

This classical expectation is in striking contradiction with experimental tests of mi-
croscopic systems, which typically have a discrete spectrum of bound states. For
example, from the study of atomic spectra it is known that a hydrogen atom has a



1.3

discrete set of bound states where angular momentum and energy take particular
values

J? = j(j + 1)(27h)? j=0,1,...,
(27r)2me4 (1.7)
E:—W n:1,2,....

The quantity & is a new constant of nature known as the Planck constant. This has
units of ’energy times time’ (just like angular momentum) and is approximately

h~6.63x103kgm?s7!. (1.8)

The notation » = h/(27) is also commonly used, and called the reduced Planck
constant,
hi~1.05x 103 kgm?s!. (1.9

These discrete spectra of bound states cannot be explained in the framework of
classical mechanics. Later in the course, we will show that a discrete spectrum of
bound states is, however, a characteristic feature of quantum mechanics.

In the beginning days of quantum mechanics, people tried to impose these quanti-
sation rules by hand, for instance by imposing that for the harmonic oscillator,

/ pdx =nh, neZ, (1.10)
orbit

where the integral is over one entire orbit. For the harmonic oscillator, we get (see

the problems)
/ pdx = 2TE (1.11)
orbit w

and so with w = 27w, the ‘quantisation condition’ (1.10) produces E = vhn. How-
ever, such quantisation prescriptions clearly do not constitute a ‘theory’, and are
difficult to generalise to more complicated systems.

The Photoelectric Effect

We now consider another important phenomenon that is inconsistent with classical
mechanics. The ‘photo-electric effect’ is the emission of electrons from certain metals
when irradiated by light.

J‘J W
&

€ € €

Figure 1.4: Schematic depiction of the photo-electric effect: when light of fre-
quency w is irradiated onto a metal, it releases electrons.

Light irradiated onto a metal
behaves as if it is made of
discrete constituents
(‘photons’).


https://en.wikipedia.org/wiki/Planck_constant#Value
https://en.wikipedia.org/wiki/Photoelectric_effect

In classical mechanics, light is a wave. This is a fluctuation in the electromagnetic
field that solves the wave equation

2 2
oY 28¢:0, (1.12)

oz~ 9a?
where c is the speed of light. You can think about the real part of the amplitude
Y (x,t) as a component of the electric or magnetic field. Let us assume the light is
monochromatic and accurately described by a plane wave

W(x,t) = g e @D (1.13)

with angular frequency w. This is related to the wavelength by A\ = 27 /w. The ‘in-
tensity’ of the light is the energy carried by the electromagnetic field, averaged over
time. This is proportional to the modulus squared of the amplitude, I ~ |¢(z,t)? =
40|, and is independent of the angular frequency w.

Let us assume an electron in the metal must absorb a minimum amount of energy
Emin from the light to be emitted from the metal. Then the classical description of
light as a wave leads to the following expectation:

* The energy of the emitted electrons depends on the intensity I but is indepen-
dent of the angular frequency w.

* Electrons are emitted even in low-intensity light, but there is a time-delay as
each electron absorbs the minimum energy Epnin.

However, the experimental result is the following:

* The energy of emitted electrons is independent of the intensity I and is linearly
proportional to the angular frequency, hw — Fnin-

* Electrons are only emitted if iw > E,;, and are emitted immediately.

Here % is the same Planck’s constant introduced above. This is shockingly different
to the classical expectation!

In 1905, Einstein made a remarkable proposal that resolved this contradiction: that
light arrives in indivisible packets known as ‘quanta’ or ‘photons’. The energy carried
by each individual photon is

E=hvo, (1.14)

while the intensity is related to the rate that photons are arriving. Assuming an
electron can only absorb one photon at a time, this means that an electron can only
be emitted if iw > Fnn. Its energy is equal to that of the photon it absorbs minus
the energy needed to escape the metal, iw — Epnyin.

10



1.4 These lectures

1.5

We have seen two examples of how the classical mechanics of particles and waves
fails to explain experimental data at microscopic distances. Furthermore, we have
seen hints that light has characteristics of a wave, but arrives in indivisible packets
like a particle. This is known as ‘particle-wave duality’ and is a feature not only of
light but also electrons and all constituents of matter.

In the following chapters, we will explore this idea much more precisely, starting
with the ‘double slit’ experiment, and then gradually developing a mathematical
formalism that can explain the phenomena discussed above.

As we go along, you will discover that quantum mechanics is a hard topic. This is not
only because it requires you to understand a load of new mathematical ingredients,
but mostly because, as a beginner, you will be guaranteed to lack an intuition for it.
Your classical experience with the real world out there is of no use when it comes to
understanding the microscopic world governed by quantum mechanics. So the only
way to ‘gain intuition’ is to solve many problems and slowly get used to the strange
miscroscopic world. To make life easier, we will stick exclusively to one-dimensional
systems in these lectures.

Another aspect which does not make it simpler for a newcomer to grasp the con-
cepts is that there exist three different mathematical formulations of quantum me-
chanics, all equivalent in sofar this can be verified, but radically different in their
notation and even conceptual interpretation. The present notes follow the so-called
Schrodinger wave function approach, which connects most clearly to classical wave
mechanics which was at the root of the development of quantum mechanics origi-
nally.

The first of the other two approaches is the operator approach, which formalises
much of the wave function approach into the language of operators acting on infinite-
dimensional vector spaces. We will touch briefly on this towards the end of the
module. Finally, there is the path integral approach, which is both conceptually and
technically entirely different from the first two. These two other approaches will be
discussed in the Quantum Mechanics III module.

Recommended literature

Three books which these notes to a large extent based on are

¢ Introduction to Quantum Mechanics, David J. Griffiths
A standard textbook. Chapters 1-3 cover the same material as this course but
in a different order. Overall, this is the most appropriate textbook.

* Quantum Physics, S. Gasiorowicz
Chapters 3-7 contain lots of worked examples relevant for this course.

* Principles of Quantum Mechanics, R. Shankar
A popular favourite. Chapters 3-7 cover similar material to this course but at a
more advanced level. A good investment for ambitious students who wish to
progress onto Quantum Mechanics III.

11

In these lectures we will
restrict to one-dimensional
quantum mechanics in the
Schrodinger wave function
approach.

@ YouTube

Feynman on the difficulty of
understanding quantum
mechanics.

Read books! No honestly,
read books! There is no
substitute for solving
problems yourself, but the
next best thing is to read
multiple sources so you get
to see things from different
angles.


https://www.youtube.com/watch?v=BOLVuRgBh2M
https://www.youtube.com/watch?v=BOLVuRgBh2M
https://www.youtube.com/watch?v=BOLVuRgBh2M
https://en.wikipedia.org/wiki/Wave?particle_duality

There are various other books which do get referred to frequently, but which are
somewhat further away from the present course, e.g.:

e Modern Quantum Mechanics, J. J. Sakurai
Another standard book, with a nice motivation for quantum mechanics at the
beginning. It does, however, use the operator approach almost exclusively.

e Feynman Lectures, Volume III, R.P. Feynmann, R.B. Leighton, M. Sands
A classic everyone should have read. Covers a lot more than we will cover in
this module, but the first few chapters are worth having a look at. Available
for free online at https://www.feynmanlectures.caltech.edu.

e Notes on Quantum Mechanics, D.V. Schroeder
A very new book by an extremely good educator. Has a lot of emphasis on
concrete computations, often using Mathematica. Available for free online at
https://physics.weber.edu/schroeder/quantum/.

12
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2.1

The Double Slit Experiment

Particles and Waves

In classical mechanics, you have learned about two distinct things: particles and
waves. In this chapter we will explore the ‘double-slit experiment’. This shows that
the elementary constituents of matter (electrons, photons, any of the elementary
particles) exhibit characteristics of both particles and waves, known as ‘particle-
wave duality’. The experiment also demonstrates that the laws of nature are funda-
mentally probabilistic.

First, a quick reminder about the classical mechanics of particles and waves moving
in one dimension.

* A particle has a definite position and momentum (z(t),p(t)) at each time t¢.
The time evolution of position and momentum is found by solving Hamilton’s

equations,

OH OH
p=—— p=—— 2.1
where H is the Hamiltonian function. For a particle of mass m moving in a
potential V(x) the Hamiltonian is

p2
H=2 4+V(). (2.2)

2m

* A wave is described by an amplitude ¢ (z, t). This might be the displacement of

a string, or a component of the electromagnetic field, as a function of position

x and time ¢. The amplitude is a solution of a partial differential equation,
such as the wave equation

P LY

8t2 v @ O, (23)

where v is the velocity.

Experiments probing microscopic distances show that the elementary constituents of
matter exhibit characteristics of both particles and waves. To see this concretely, we
are going to examine the ‘double-slit experiment’. Although it is very often presented
as a thought experiment, it has actually been performed it in the laboratory, for
instance with electrons. A more extensive account can be found in Volume III of the
Feynman Lectures.

For arguments sake, we will imagine performing this experiment with electrons. We
will first explain the outcome of the experiment according to classical mechanics,

13

Lecture about the double-slit
experiment, going through
the main maths that
describes the interference
pattern.

@3 YouTube
Jim Al-Khalili explaining the
double-slit experiment.


https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=04c07aca-9322-4f2b-b2a9-acac0144104e
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https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=04c07aca-9322-4f2b-b2a9-acac0144104e
https://durham.cloud.panopto.eu/Panopto/Pages/Embed.aspx?id=04c07aca-9322-4f2b-b2a9-acac0144104e
https://www.youtube.com/watch?v=A9tKncAdlHQ
https://www.youtube.com/watch?v=A9tKncAdlHQ
https://en.wikipedia.org/wiki/Double-slit_experiment
https://en.wikipedia.org/wiki/Wave?particle_duality
https://en.wikipedia.org/wiki/Wave?particle_duality
https://en.wikipedia.org/wiki/Double-slit_experiment

2.2

2.3

assuming that electrons are particles and then waves. We will then explain how
electrons actually behave in nature.

Double-Slit : Particles

Let us first suppose that electrons are particles. There is a source emitting these
particles at a uniform rate in random directions towards a screen with two small
slits S7 and S2. The particles that pass through one of the slits arrive one at a time
at a detector D on the other side of the screen.

D
> 51 [ Ii(z)
0 — | I(2)
— SQ IZ(ZE)

Figure 2.1: Outcome of the double-slit experiment if the source emits particles:
intensities add up.

By averaging over a long period of time, the detector measures the rate that parti-
cles arrive per unit area, as a function of the vertical direction x. We call this the
‘intensity’. Suppose that:

* The intensity measured with only S; open is I (z).

* The intensity measured with only S, open is I(z).

* The intensity measured with both S; and S open is I(x).

Since particles arrive at the detector one at a time and must pass through either S;
or S, the intensities add up

I(x) = Ii(x) + Ix(x) . 2.4

The result is thus simply the appearance of one or two peaks, depending on the
separation of the slits and the distance to the screen.

Double-Slit : Waves

Now suppose instead that electrons are waves with amplitude v (x,t). There is a
source emitting waves uniformly towards a screen with two small slits S; and Ss.
The waves pass through the slits and arrive continuously at a detector D.

Suppose that

* The amplitude at the detector with only S; open is 91 (z).

* The amplitude at the detector with only S open is 13(z).

14



* The amplitude at the detector with both S; and S open is ¢ (z).

Let us assume that the wave amplitude obeys a linear partial differential equation.
Then the principle of superposition means that

Y(x) = P1(z) + Pa(x). (2.5)

Note that we are ignoring the dependence on time ¢, which is not important in the
argument that follows.

D

S1 I (z)
)l
So 12(55)

Figure 2.2: Outcome of the double-slit experiment if the source emits waves:
there is a characteristic interference pattern.

By averaging over a long period of time, the detector measures the rate that energy
is deposited per unit area, as a function of the vertical direction x. We again call this
the ‘intensity’. The energy carried by a wave is proportional to the modulus squared
of the amplitude. Ignoring the constant of proportionality,

Lz) = [i(@)]?,  DB(2) =),  Iz)=[@)f,

are the intensities measured by the detector with only S, only S;, and both S; and
Sy open respectively. They are related by

I(z) = ()
= [v1(2) + ¢2()
= [1(2)* + |2 (2)|* + 2Re(¢1 (x) o (x))
=L (z) + Is(x) + 2v/ 11 (x)I2(x) cos(d(x)) ,
where 6(x) is the relative phase of ¥ (x) and v»(x). The additional term compared

to the result for particles is known as the ‘interference’ term. It generates the kind
of interference pattern illustrated in the figure above.

(2.6)

Let us compute the interference pattern more explicitly using a series of approxi-
mations. For familiarity, let us suppose that the amplitude «(x,t) obeys the wave
equation with velocity v. We further assume the slits are very thin, so that we are
effectively dealing with two pointlike sources, producing the two waves

Pr(a,t) = C Pl =y (z,t) = C /b=t 2.7)

where

* (' is a normalisation constant that is unimportant in what follows,

* k = w/v where w is the angular frequency of the wave,
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Figure 2.3: Variables used to compute the interference pattern for the double-slit
experiment.

* ry, ro are the distances from the slits S1, Ss to a point on the detector at height
xZ.

With these approximations, the total amplitude is

Y(x,t) = C(efr 4 eihrz)e=iwt (2.8)
and therefore the intensity at a point  on the screen will be given by
I(z) = C?| eihri 4 gikra 2 (2.9
=20? (1 + cos(k(r1 — 2))) (2.10)
= 402 cos? <];(r1 — 7“2)> . (2.1D)

There is constructive interference when k(r; — r2) = 2nm and destructive interfer-
ence when k(r; — r2) = (2n + 1)7 where n € Z, so the intensity will clearly display
an interference pattern.

To determine the intensity function /(x) explicitly is tricky since the distances 71, 72
are complicated functions of x. The two right-angled triangles give
a\?2 a\?2
r%:L2+(g:—§) , r%:L2—|—<:U—|—§) . (2.12)
Taking a square root to obtain r; and r,, we can then subtract these two expressions
to get the phase we have in (2.9). To get some more insight into that expression, it

is useful to expand r; and 7o for small values of a, that is, for a <« z. Using a Taylor
expansion we get

— V2 + 22— ar 2
ri=VL5L*+x 2m+0(a), (2.13)

and similar for r,. Subtracting the two and assuming furthermore that x < L, we
get the simple expression ro — r; = ax/L, and using this in (2.9) thus gives

ka
I(z) = 40% cos? | ——x | . 2.1
(x) C* cos <2L£L‘> (2.14)
The result is thus quite different from that in the previous section: waves give

a characteristic intensity interference pattern, with an approximate separation be-
tween maxima as given above. To plot the full pattern, just use (2.12) directly.
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Figure 2.4: Approximate interference pattern computed using the approxima-
tions ¢ < z and x < L.

2.4 Double-Slit: the real world

Let us summarise our results for particles and waves and compare to the experimen-
tal result for electrons.

Particles

1. Particles arrive one at a time.

2. There is no interference, I = I + Is.
Waves

1. Waves arrive continuously.

2. There is interference, I = Iy + Iy + 2+/I1 15 cosd.
However, when the experiment is performed with real-world electrons, the result
is neither of these two. Despite the fact that we can set up the experiment such

that we can really register the arrival of electrons on the screen one-by-one, there
nevertheless is an interference pattern. So we find that:

17

An experiment by Bach et al.
reported in 2012 clearly
shows how individual
electrons in a double-slit
experiment gradually build
up an interference pattern.
This movie shows the
electron buildup pattern one
electron at a time.
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Real world electrons

1. Electrons arrive one at a time.

2. There is interference, I = Iy + Iy + 2+/I1 15 cosd.

So electrons exhibit characteristics of both particles and waves. They arrive one by
one like particles, but the rate that particles arrive exhibits interference like a wave.

This behaviour cannot be explained in classical mechanics.

In the double-slit experiment,
classical particles would lead
to two peaks, and classical
waves to an interference
pattern. In the real world,

* Electrons arrive at the detector one at a time. the pattern appears
dot-by-dot, but nevertheless
shows interference.

The double experiment is, however, compatible with the following statements:

* Each of them is described by an amplitude (x, t).

* The modulus squared |¢(z,t)|? is the probability distribution for the detector
to find an electron at position z at time t.

* The amplitude v(z,t) obeys a linear partial differential equation to ensure the
principle of superposition.

We must abandon the idea that an electron has a definite position z(¢) at all times.
Instead, we may only predict the probability to measure the position x in a certain
region. The same conclusion applies to momentum, energy and any other measur-
able quantity. The laws of nature are inherently probabilistic!
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3.1

Wave function and Probabilities

Throughout the lecture course, we focus on a particle of mass m moving in one
dimension with potential V' (x). In classical mechanics, the particle has definite po-
sition and momentum (z(t), p(t)), which evolve according to Hamilton’s equations
with Hamiltonian H = % + V(x).

Motivated by the the double slit experiment, however, we must give up the idea that
a particle as a definite position and momentum (z(¢),p(¢)). Instead, the particle
is described by a complex wave function (z,t) that encodes the probability for
a measurement of position or momentum to yield values in a given range. In this
lecture, we consider measurements of position. In the subsequent lectures, we will
consider measurements of momentum and energy.

The Wave function

The wave function ¢ (x, t) is a complex function of position = and time ¢. Putting on
our analysis hat, the wave function defines a continuous function

(o R—C (3.1)
cx = (x,t) (3.2)

at each time t € R. We will discuss to what extent the wave function should be
differentiable later in the course.

A basic postulate of quantum mechanics is that the modulus squared of the wave
function,
Pa,t) = (@, 1), (3.3)

is the ‘probability density’ for a measurement at time ¢ to find the particle at position
x. There are two equivalent ways to say what this means:

* The probability to find the particle between infinitesimally separated points =
and x + dz at time ¢ is P(z,t)dx.

* The probability to find the particle in a finite interval a < z < b is

b
/ P(x,t)dz. 3.4

We find an immediate constraint on the wave function ¢ (z, t) from the requirement
that the probability to find the particle anywhere must be 1. In particular, a physical
wave function v (z, t) should obey

/00 P(z,t)dx =1 (3.5)
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Introducing the wave
function which leads to the
probabilistic character of
quantum mechanics.

The probability density to
find a particle at position =
at time ¢ is given by
Pz, t) = [y(, 1)
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Figure 3.1: A typical wave function (top), having both a real and imaginary
part, and the corresponding probability density (bottom). Also indicated is the

probability to find the particle in a finite interval a < z < b.
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3.2

3.3

3.3.1

at any time ¢. This constraint typically requires that the wave function should decay
fast enough as x — +o00. Some terminology:

* If the above integral exists, the wave function is ‘square-normalisable’.

* If the above integral is equal to 1, the wave function is ‘normalised’.

Expectation Values

As for any probability distribution, the expectation value of a polynomial function
f(z) is given by

(f(@) == / " @) Pty da
> (3.6)

2
— [ r@lp ol a.
— 0
There are two important expectation values that will feature in these lectures:
* First, the expectation value (z) is the mean of position measurements on an
ensemble of particles with the same wave function ¢ (z, t).

* Second, the standard deviation is defined by

Az = \/(2?) — (z)?. (3.7

This is a measure of the spread of the probability distribution around the mean
(). In quantum mechanics, it is therefore customary to call Az the ‘uncer-
tainty’ in the position.

Examples

In the first part of the course, we consider wave functions and expectation values at
a fixed point in time ¢ - how the wave function evolves in time will be considered
later. With this understood, we denote the wave function by ¢ (z).

Gaussian Wave function

Consider the wave function
Y(x) = Ce = /1A% (3.8)

where A > 0 has units of length and C' is a normalisation constant. To determine
the normalisation constant C, we require that the probability to find the particle
anywhere is 1,

— [ Wi 3.9)
_ |0|2/_Oo /22 g (3.10)
_ ,cwm/_oo eV dy (3.11)
|CV2RA? (3.12)
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The mean of measurements
of position, (z), for many
measurements of particles
described by the same wave
function, is given by
weighing the position by the
probability,

(@) = [ alb (a0 de.



3.3.2

where we have used the substitution y = v/2A? and the standard Gaussian integral
o0 2
/ e Vdy=r. (3.13)
—00

We can therefore choose C' = (2rA2)~1/%. Note that we could have multiplied the
normalisation by a constant phase e¢?. This would not change the probability density
or position expectation values, so for convenience we can set it to 1.

A P(x)

» T

Figure 3.2: Gaussian probability density with width A.

The normalised probability distribution is

1 2 2
_ = —z?2A
P(x) = = =¢ (3.14)

which is a standard Gaussian probability distribution. Before doing any computa-
tions, we can immediately say that:

o (22"*1) = 0 for n € Z> since the integrand is an odd function of .
* Since A is the only length in the problem, dimensional analysis tells us that

() oc A for n € Z>o.

In one of the problems, you are asked to verify that (z2) = A? and therefore the
spread Ax = A.

Infinite Potential Well

Consider a particle confined to the region 0 < = < L. You can regard this as a
particle in an infinite potential well,

Vie) = {0 O<w<l (3.15)

oo other

The particle would require infinite energy to be found with z < 0 or x > L. We
therefore require the wave function vanishes in these regions so that the probability
to find it there is zero.

A wave function that meets this requirement is
Cy/x(L—xz) O0<x<L
P(x) = ( ) S (3.16)
0 otherwise
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8

L/2 L
Figure 3.3: Probability density for a particule in an infinite potential well.

To determine the normalisation C, we require that the probability to find the particle
anywhere is 1,

L L3
1= C|2/ x(L — z)dx = |(J|2E : (3.17)
0
and therefore C = /6/L3 €. For convenience, we can choose ¢? = 1.

We can now compute some expectation values. Since L is the only length in the
problem, dimensional analysis means that (z") o« L™ for any n € Z>(. Computing
the first few, we find

L
<x>:53/0 562(L—£C)d$:£

2 )
(3.18)
6 (L 312
2y 3 — = —
<CL‘>—L3/0 z°(L —x)dz T

Since the probability density is symmetric around L/2, we should have expected
(x) = L/2. Finally, the uncertainty is

L

Az = +/(22) — (z)? = ork

(3.19)

This example shows that we will, at some point, have to be more precise about
the continuity and differentiability properties of the wave function. For the infinite
potential well, we see that ¢/(x) is continuous everywhere, and differentiable except
at the edges of the well. Jumping ahead a bit, we will find that this holds in general:
the wave function () will always have to be continuous, and it will have to be
differentiable except at positions x where the potential V' (x) is not finite. We will
discuss and derive these conditions in more detail once we have introduced the
Schrodinger equation.
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The wave function is
continuous. It is also
differentiable, except at
places where V' (z) is not
finite.



3.4 Phases

3.5

In is important to note that if we multiply the wave function (z) by a position-
dependent phase, the probability density is unchanged

P(x) — e@y(x),  Pz) — P(x). (3.20)

This means that measurements of position cannot detect the difference between the
wave functions v (z) and e®)y(z). In the next lecture, however, we will show
that measurements of momentum can detect the difference between these wave
functions, unless #(z) is constant. On the other hand, a constant phase ¢ cannot
be detected by any measurement and the wave functions v (z) and %y (z) describe
the same physical state.

Collapse of the Wave function

We now mention an important subtlety with the interpretation of the probability
density P(z,t) in quantum mechanics compared to other areas of mathematical
sciences.

Suppose a particle has wave function v (x,t) for ¢t < to. Then at ¢t = ¢, the position
of the particle is measured and the particle is found at x = x3. What is the wave
function after the measurement?

P(x) t <ty P(z) t=to

Zo

Figure 3.4: When a measurement of position is made, the wave function ‘col-
lapses’ to one which is sharply peaked at the position where we have found the
particle.

It turns out that another measurement immediately after the first will find the par-
ticle at x = ¢ with probability 1. This is known as wave function collapse. It means
that the act of measurement modifies the wave function to something that is tightly
localised around = = x7. We will describe this phenomenon more precisely in a
future lecture.

This is why we must carefully specify the meaning of expectation values such as (x).
It is not obtained by averaging over repeated measurements of the same wave func-
tion. Instead, it is the average of measurements made on an ensemble of particles
with the same wave function ¢ (z, t).
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When a particle’s position is
measured, its wave function
‘collapses’ to a wave function
which is sharply peaked at
the position where we found
the particle.
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4.1

Momentum and Planck’s constant

In the last section, we understood the probabilistic interpretation of the wave func-
tion v (x,t) for measurements of position = at time ¢. In this lecture we ask the
question: how does the wave function v (x,t) encode information about measure-
ments of momentum?

Momentum in Classical Mechanics

For motivation, we first recall the interpretation of momentum in classical mechanics
as the generator of translations in space.

Recall from last term’s lectures that functions of position and momentum generate
infinitesimal canonical transformations in Hamiltonian mechanics. The infinitesimal
canonical transformation with parameter e generated by a function A(z,p) is

r— 2 =x+e{x, A} 4.1
p—p =p+e{p A} (4.2)
where of 0 97
g g
== - == 3
is the Poisson bracket.
In particular, the canonical transformation generated by the function
A(z,p) =p 4.4
is
r—2=z+e{z,pl=x+e¢ 4.5)
p—p =p+elppt=p. (4.6)
Here we have used that
{a,p}=1. 4.7)

The important lesson is that momentum p generates an infinitesimal translation of
Z.
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On how to extract
information about the
momentum of particles from
the wave function.
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L

Figure 4.1: Infinitesimal translation of a wave function to the right, ¢ans(z) =
¥(x — €) (and note the sign!).

4.2 Momentum in Quantum Mechanics

We now use this idea of momentum to understand momentum in quantum mechan-
ics. Let us consider translating a wave function v (x) by a infinitesimal amount ¢ in
the positive = direction - as shown below. As in the previous lecture, we work at
some fixed moment in time.

The translated wave function is of course ¢ (z — ¢€). To first order in ¢, the change in
the wave function is found by Taylor expanding,

Setp(x) = Yz — €) — Y(x) (4.8)

_ 768%%;) 1 o). 4.9)

If we want momentum to generate translations, this suggests we should identify
momentum p with the derivative with respect to .

Let us therefore define a momentum operator

0
= —ih— .10
such that .
Sop(z) = —e%ﬁw(az) : (4.11)

where 7 is a constant of proportionality. The additional factors of i are introduced
for convenience; we will get back to them shortly. Some comments are in order

1. Note that while the momentum p has units of M LT, 9/0x has units of L.
This means i must have units M L?>T !, or ‘energy-time’.

2. Since the wave function is complex, we could imagine 7 is a complex number.
In a moment, we will show that 7 must be real for momentum measurements

to yield real results. This is why we introduced the extra factor of —i in the  Plancks constant has to be
present 1n quantum

definition. mechanics for dimensional
reasons. It has dimension of
‘energy-time’ or ‘action’.

The constant 7 is known as the (reduced) Planck constant, and pronounced ‘h-bar’.
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4.3

Its value cannot be determined by mathematical arguments. It must be determined
by comparing to experimental data, for example atomic spectra. In our universe,

ha~1.05%103kgm?s!. (4.12)

The smallness of this number, in units that are natural to humans, is why we do
not observe quantum mechanical effects in everyday life. You will in the literature
also find h = 2xh, which is usually called Planck’s constant (without the ‘reduced’
prefix).

A Quick Commutator

In order have position and momentum on an equal footing, we can introduce a
position operator & that simply multiplies a wave function by x. In summary,

r=ux (4.13)
p=—ihg-. (4.14)

The ‘commutator’ of these operators is defined by
[,p] :=2p—pi. (4.15)

Here the operators should always be understood to act on everything to the right.
Acting with this equation on a wave function v (z), we have

[2,p] ¥(z) = 2(pY(x)) — H(E¥(z)) (4.16)
=z (—zh;;qb(:r)) + zh% (z(x)) 4.17)
— ih(a). (4.18)

where the final line follows from the product rule. Since this holds for any wave
function v (x), we can summarise this result by

[Z,p] = ih. (4.19)
This is known as the canonical commutation relation.

The commutator is reminiscent of the Poisson bracket formula {z, p} = 1 from classi-

cal mechanics. In fact, the commutator in quantum mechanics is found by replacing
1

This replacement rule is known as ‘canonical quantisation’. We study it further in
later lectures after introducing some more mathematical machinery.
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4.4 Momentum Expectation Values

Just like position, in quantum mechanics we can only compute the probabilities
of the outcomes of momentum measurements. For now, we satisfy ourselves with
computing expectation values of functions of momentum.

First, recall from the last lecture that the expectation value (z) can be written

(z) = /oo £ ) da (4.21)
= /Oo Y(z,t) 2Y(z,t) do. (4.22)
We now propose, similarly, that the expectation value of momentum is
() = /_ Z Uz, t) p(z,t) do (4.23)
= —ih /_qu,wiw(x,t) de . (4.24)

As for the position expectation value, we emphasise that (p) is interpreted as the
average of momentum measurements on an ensemble of particles with the same
wave function ¢ (z, t).

Let us now return to explain why / must be real. Since the outcomes of momentum
measurements are real numbers, we require (p) € R. Let us imagine for a second
that 7 is complex and compute the complex conjugate of (p),

{p) = ih / Z dx (x, t)aaxzp(x,t) (4.25)
= —ih /_ Z dx a%zp(x, t) (a,t) +ih ([, 2] 7 (4.26)
= —ih /_ Z dzx m(%w(x,t) (4.27)
_ Z@. (4.28)

In the passing second line, we have integrated by parts. In passing to the third line,
we discarded the boundary term because |+/(z,t)|?> must vanish as z — 4oc if the
wave function is square normalisable. Therefore, the momentum expectation value
is real if and only if # is real.

In a similar way, we can compute more general expectation values

oy = [ " ar @D 1) (e ) 4.29)
- / S d @ f (-mé) o, t) (4.30)

Of particular importance is the momentum uncertainty
Ap =/ (p?) = (p)?, (4.31)

which gives a measure of the spread of momentum measurements around (p) made
on an ensemble of particles with identical wave function (x,t).
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4.4.1 Example: Gaussian Wave function
Let us again consider the wave function
(@) = Cem™ /187, (4.32)

with normalisation C' = (2rA2)~1/4. In the last lecture, we showed that the position
expectation values are given by (x) = 0 and (z?) = A2, and therefore the uncertainty
in position is Ax = A.

A P(x)

> T

Figure 4.2: Gaussian wave function with width A.

The action of the momentum operator on this wave function is

I
(@) = 5rg v U(@) 433)
2 h? Z
P(r) = 55 ¥(@) — v v(@) (4.34)

Note that the result is always a polynomial in x times the original wave function.
This means we can recycle our results for position expectation values to compute
momentum expectation values. For example,

- .
)= 333 | _alb@F = 5350) =0 (435
and similarly
) h2 9] ) h2 [e'e) ) )
) =553 [ WP - 57 [ aota) (4.36)
A
= 9az Al (4-37)
h2

The momentum uncertainty is therefore Ap = %.

Note that the product of position and momentum uncertainties is independent of A,

h
Ax Ap = 3 (4.39)

This means that if we attempt to localise the particle in space by making Ax smaller,
the the uncertainly in momentum Ap necessarily increases, and vice verse.
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4.5 Heisenberg’s Uncertainty Principle

This example illustrates an important result known as Heisenberg’s uncertainty prin-
ciple. This states that for any normalised wave function,

AzAp > g ) (4.40)

We will prove this result later in the course. It shows that there is a fundamental limit
in quantum mechanics on the degree we can simultaneously reduce the uncertainty
in position and momentum. The Gaussian wave function saturates this limit: it is a
‘minimal uncertainty’ wave function.

Remember that % is an extremely small number in human units. So while we cannot
arrange for both Ax and Ap to vanish, both uncertainties can be simultaneously
small in human units. This goes some way to explaining why in everyday life, objects
appear to have a definite position and momentum.
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5.1

Schrodinger’s Equation

In this lecture, we begin to understand how the wave function evolves in time in
quantum mechanics. The basic question is: given an initial wave function v (x, 0),
what is the wave function ¢ (z, t) at later times ¢ > 0? This will allow us to determine
how statistical predictions for the outcomes of measurements evolve in time. For
example, we can determine how expectation values of observables such as (x), (p),
(H) depend on time.

Time Evolution in Classical Mechanics

In the Hamiltonian formulation of classical mechanics, a particle is described by
a definite position and momentum (x(t¢), p(t)), which evolve in time according to
Hamilton’s equations

i=4—  p=—— (5.1)
D

D 4 <8H 8H)

Figure 5.1: Time evolution in phase space is generated by the Hamiltonian.

It is useful to reformulate time-evolution as a canonical transformation. First, we
note that Hamilton’s equations can be expressed as

t={r,H} p={p,H}, (5.2)
where DAOB  9AOB
{A,B} = E%_Fp% (5.3)

is the Poisson bracket. This shows that an infinitesimal time evolution ¢ — ¢ + ¢ of
position and momentum can be expressed

z—r+et=x+e{zr,H} 5.4)
p—p+ep=p+elp H}, (5.5)
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5.2

which is an infinitesimal canonical transformation generated by the Hamiltonian H.
In other words, the Hamiltonian is the generator of time translations.

This is similar to the statement that momentum is the generator of translations
in space from lecture 3. We will follow the same logic here to understand time-
evolution in quantum mechanics.

Schrodinger’s Equation

We now use the idea of the Hamiltonian as the generator of time translations to
understand time-evolution in quantum mechanics.

Let us consider a wave function (x, t). The small change in the wave function due
to an infinitesimal time translation ¢ — ¢ + € is

5€¢($,t) :¢(xvt+6) —¢($at) (5.6)
= eawéj’t) + O(€?). 5.7

We want this transformation to be “generated" by the Hamiltonian operator H. This
means the change in the wave function is proportional to the action of the Hamilto-
nian H on the wave function,

Sap(,t) = éH (@, t). (5.8)
where « € C is an unknown constant of proportionality.

Equating the two expressions for the change in the wave function under the in-
finitesimal time translation ¢ — ¢ 4 ¢, we find
Ip(x,t)

o = Hp(z,t). (5.9)

How can we determine the constant of proportionality o € C?

1. Dimensional Analysis. The hamiltonian has units of energy M L?>T~2, while
the derivative 9; has units 7!. The constant of proportionality o therefore
has units of angular momentum M L?>T~!. Note that these are the same units
as .

2. Conservation of Total Probability. The probability to find the particle any-
where in space should be 1 at any time. This requires that the normalisation
J ¥*(z),¢(x)dz is constant in time for any square-normalisable wave func-

tion,
0=0 /w*w de (5.10)
_ / By dz + / o Oyp da 5.11)
:/(;ﬁ¢)*¢dz+/¢*;ﬁ¢dx (5.12)
_ (1 N 1) / Wt Ep da (5.13)
(6% a
— M/¢*H¢ dz . (5.14)
|af?
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5.3

In passing to the fourth line, we have used the fact that we know the form of
H in terms of derivatives with respect to z. We can integrate by parts with
respect to those, and hence show that you can ‘move’ the operator H from the
v factor to the 1) factor. We thus conclude that & = —a and therefore « is
imaginary.

These observations suggest the constant of proportionality is a = ih where A is
Planck’s constant - this is indeed the value chosen by nature!

In summary we have
m%";’” = Hy(x,t) (5.15)
or written out in full

op(x,t) _fi 0% (z, 1)

ih ot 2m  Ox2

+ V(x)y(x,t). (5.16)
This is the “Schrodinger equation”. It is a linear partial differential equation for the
wave function v (z,t). This is probably the most profound equation you will come
across in your degree: it is the most fundamental description of nature we have at
short distances.

Note that there is also something called the “time-independent Schrodinger equa-
tion”, which is essentially what you get when 0 (x,t)/0t evaluates to a constant
times 1 (z, t). We will return to that special case in the chapter on “stationary states”.

Properties

The following properties of Schrédinger’s equation are very important in the devel-
opment of quantum mechanics.

1. 1st Order in Time. Schrodinger’s equation has only a first order time deriva-
tive. This means that if we know the initial wave function (x, 0), Schrédinger’s
equation uniquely determines the wave function (x, t) for ¢t > 0.

2. Linearity. Schrodinger’s equation is linear PDE for the wave function ¢ (z, t).
This means that given two solutions ; (x, t) and 2 (x, t), any linear combina-

tion

arp1(z,t) + azepa(z, t) (5.17)
with constants a;,as € C is another solution. This is known as the “principle
of superposition”.

The combination of these two properties, together with the decomposition of a wave
function ¢ (x, t) into orthonormal eigenstates of the Hamiltonian H provides a pow-
erful and systematic method of solving Schrodinger’s equation. The next lecture is
dedicated to explaining this method. For now we look at some simple examples.
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5.4 Example: Plane Waves

5.5

Consider a wave function of the form

1. ,
1) = esz/hesz(p)t/h ’
vt = o
where E(p) is some function of momentum p € R. Then,
L 0Y(x,t
mng) = E(p)i(z, 1) (5.18)
72 0% (x,t p?
" 2m 85:2 ) - 2mw(x’t>' (>-19)

If we choose E(p) = p?/2m then

LO(t) _ h? 0u(et)
ot T T 2m 922
We have therefore found a solution of Schrodinger’s equation with V' (x) = 0. This

corresponds to plane wave solution for a free particle of mass m.

(5.20)

Example: Ground State in Infinite Potential Well

Now consider the wave function

P(x,t) = ¢y (x)e E1/A (5.21)

12 . /7x  hm?
=\ sin (f) exp (—zwt> (5.22)

in an infinite potential well 0 < z < L.

We find
L oY(z,t h2n?
th ét ) = QmLQIZ)(l‘vt) (5.23)
B2 0% (x, t B2 /a2
‘zma(ﬂ) == (3) v (5.24)
and therefore 2 2
S 0U(,t) B OP(x,t) (5.25)

ot 2m  Ox?
so 1 (z,t) is a solution of Schrodinger’s equation in the infinite potential well. Note
that ¢(x,0) = ¢1(z) is the ground state Hamiltonian eigenfunction with lowest
energy

h? /2 h2m2
By =5 (7) = iz (5:26)
The wave function v (z, t) is therefore the unique time evolution of ¢ (z).
These examples have something in common: they are both of the form
W(x,t) = p(z)e B (5.27)

where ¢(x) is an eigenfunction of the Hamiltonian H with eigenvalue E. We will
see later (chapter 11) why this is always a solution of Schrodinger’s equation and
that any solution can be expressed as a linear combination of such solutions.
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5.6 Wave function continuity and differentiability

When we first introduced the wave function, and discussed its form in an infinite
potential well, we mentioned in passing that the wave fuction is always continuous,
and differentiable except at points where V() is not finite. We are now in a position
to back up this claim.

First look at differentiability. You can prove this formally by writing down the
Schrodinger equation for a state of the form (5.27). Re-arranging a bit, this gives

L b() = (B~ V(@)o(a). (5.28)

Now integrate both sides over a small interval interval around a point of interest. If
E—V (z) remains finite, the right-hand side goes to zero in the limit of infinitesimally
small interval, so the left-hand side should too. That means that the 2nd derivative
of ¢(z) has to remain finite, which can only be true if the 1st derivative is continuous.

You have seen a counterexample of this when we discussed the infinite potential
well, where V() is infinite outside the range 0 < x < L. Another counterexample
which we will see later is the delta-function potential.

For the continuity of ¢(x) itself, consider what happens if you have the simplest type
of discontinuity, namely a step,

a forxz <0,
P(z) = (5.29)
b forxz > 0.

Then ¢/'(x) = (b — a)d(x), which you may still be happy with, but the second deriva-

tive is then undefined, and you will struggle to make sense of (5.28) above. For this
reason, we take the wave function to be continuous.
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6.1

The Hilbert Space

We now begin to develop the mathematical structures underlying quantum mechan-
ics more systematically. In this lecture, we introduce the idea of wave functions
as elements of a complex vector space with Hermitian inner product. With a few
additional assumptions, this is known as a ‘Hilbert space’.

Linear Algebra

Consider a finite-dimensional complex vector space V = C~. The most important
property is that of taking linear combinations: ajv1 + agvy € V for any vy,v € V
and complex numbers a1, as € C.

A Hermitian inner product on V' is a map

(«,):VxV—=>C 6.1)

s (v1,v2) = (v1,v2)

that obeys

v, w) = (w,v)

(

* (v,a1w1 + agwz) = a1 (v,w1) + az(v, wa)
(a1v1 + agva,v) = a1 {vy,v) + az(ve,v)
(

v,v) > 0 with equality iff v = 0.

It is often convenient to introduce an orthonormal basis {e;} such that
<€i, €j> = 5ij (62)

and any vector can be expressed

N
v = Z vj€j . (6.3)
j=1

Computing the inner product with e;, the components of the vector are v; = (v, ¢;).
The Hermitian inner product can then be expressed in component form as

(v,w) = Z vjwj . (6.4)
J

In particular, the squared norm of a vector is |v|? := (v,v) = Z |v; 2.
J
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6.2

6.3

Wave functions Revisited
At a fixed time ¢, a wave function is a continuous function

Yv:R—C (6.5)
cx—(x).

In order for the wave function to have a probabilistic interpretation, we require it to
be square-normalisable,
o0
/ [0 (z)]2da < oo (6.6)
—0o0
This means that by multiplying by a constant, we can ensure that the probability to
find the particle anywhere is 1.

The set of continuous square-integrable wave functions forms a complex vector
space. That is to say, for any square-integrable ¢, 1» and complex numbers a1, as €
C, the wave function a1 + a2ty is square-integrable. This can be shown as fol-
lows. It is immediate that if ¢ is square-integrable then a is square integrable for
any complex number a € C. We can therefore focus on the sum ¢ + 1. At each
point x € R we have

91 + al® = |1 ]* + |2]? + 2Re(Y1¢2) 6.7)
< i1 + |92 + 2[¢P1eha (6.8)
< [r]? + Jpal? + 20 el (6.9)

where we used the properties of complex numbers, Re(z) < |z| and |z1 22| = |21]22]-
We also have the elementary inequality

20p[[a] = [p1|* + ool * = (Jebn| — [ba])? (6.10)
< |h1f? + [12]? . (6.11)
This implies
W1 + 2| < 20h1 |2 + 2)uhe)? . (6.12)
and therefore
/ da |1hy + 1b2|* < 2/ dz [¢1]? + 2/ dax 2o . (6.13)

This makes it clear that if the wave functions v); and v, are square-integrable then
the sum ¢ + 19 is square-integrable.

Inner Product

Let us define

(1, 19) = /Oo dz )y (x) () . (6.14)

—0o0

We claim this is a Hermitian inner product:

o (Y1,12) = (12,¢1)
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6.4

o (W3, a191 + aghe) = a1 (Y3, Y1) + as (s, o)
o (a191 + agt)e, 3) = ar {1, ¥3) + as (o, ¥3)
* (¢,1) > 0 with equality iff ¢ (z) =

The first three properties follow immediately from the definition. To prove the final
property, note that

W= [ deolil@)P (6.15)
and that the integrand is everywhere non-negative, |(z)|?> > 0. This immediately
implies (1,%) > 0. Now suppose (1,%) = 0. Then |¢(z)|? vanishes everywhere
except a set of measure zero. However, since |¢(x)|? is a continuous function, we
must have [)(z)|> = 0 everywhere and therefore ¢ (z) =

The Hermitian inner product obeys another property known as ‘completeness’. We
will not need the definition in this course. Including this property, the vector space
of wave functions together with the Hermitian inner product form a ‘Hilbert space’.

Orthonormal Bases

It is frequently useful to introduce an orthonormal basis of wave functions. In a later
lecture, we will explain that there are natural orthonormal bases that are ‘continu-
ous’ or ‘discrete’ in nature and arise from eigenfunctions of operators associated to
observables such as position, momentum and energy.

For now we define an orthonormal basis to be a discrete set of wave functions
{¢n(z)} such that

and any continuous square-integrable wave function can be uniquely expressed
x) = Z cndn (), (6.17)
where -
n= (om )= [ deGn(@)v(o). (6.18)
The Hermitian inner product can be expressed in terms of the coefficients,
W) = [ deint@) =X uncan 6.19)
while the the squared norm becomes (v, 1)) = / dz [Y(x Z len .
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®1 ¢3

P2

Figure 6.1: The first three basis functions for a particle in a box.

6.5 Example: Particle in a Box

Let us consider an infinite potential well in the region 0 < = < L. We therefore
restrict to continuous square-integrable wave functions that vanish for x < 0 and
x > L. In this case, we may replace everywhere

o) L
/ dox — / dx. (6.20)
—00 0

Pn(z) = \/zsin (ﬂ;) neZsp. 6.21)

These wave functions are orthogonal with respect to the inner product

Let us define

L
(Gms 6n) = / B ()b (2) (6.22)
=2 [Maran () i (T)
L
— i/o dx <cos < > ( mt n)Trx)) (6.23)

= (5m n 5m,—n (624)
= Smm (6.25)

where in passing to the final line, we dropped the second contribution because
n + m = 0 is impossible for n,m € Z~.

The fact that any continuous square-integrable wave function has a unique expan-
sion of the form

x) = Z nn(z) = \/EZ Ccp sin (nLﬂ) , (6.26)
n=0 n=1

is the content of Fourier’s theorem. The Fourier coefficients are found by taking the
Hermitian inner product with ¢, (=

cn = (¢n, \/>/ dz sm ) U(x). (6.27)

The norm squared of the wave function is
) =/0 e ZW
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which is precisely the statement of Parseval’s theorem.

()

A

3
L

-

L/2 L
Figure 6.2: The ‘pyramid’ wave function for a particle in a box.

As an example, consider the ‘pyramid’ wave function displayed above. With the
correct normalisation, this wave function is

i 0<ac<£
12 ) L - T2
=4/ = 6.28
v =TT (628)
—<z<L
L 2 - =

The Fourier coefficients ¢,, are computed as follows,

Cn = \/>/ sm n7r:1: Y(x)dz (6.29)
- Li(/OL/QLSI (nz )d +/Lj2(1—§)sin<nzm>dx>

24 n L2 o . /NTT
- (-1 )/0 Zsm( . )dx (6.30)
n+1
—1) =2
= V24(1 - (—1)”)(”2;2 (6.31)
\/%(_1)7114-1 )
_{ Gmripe fon=2mtl (6.32)
0 otherwise

In passing to the final line, the summands are non-zero only when n is odd, so we
introduced n = 2m + 1. As a consistency check,

9 o0
(W, 0) =D leal” = — Z 2m+ =1, (6.33)

so the wave function is indeed correctly normalised.
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7.1

Hermitian Operators

In the previous lecture, we introduced the mathematical structure behind wave func-
tions. We showed that continuous square-integrable wave functions form a complex
vector space with Hermitian inner product, called the Hilbert space. In this lecture,
we study the mathematical structures behind observables such as position, momen-
tum and energy.

More Linear Algebra

We begin with a quick review of some more linear algebra. As before, we first
consider a finite-dimensional complex vector space V' with Hermitian inner product
(-, -) and an orthonormal basis {e;}.

A linear operator is a map A : V' — V such that
A - (a1v1 + agve) = a1(A-v1) + az(A - vg) (7.1)

for any vectors v1, vy € V and complex numbers a1, a; € C. Any linear combination
a1 A1 + azAs and composition A; - A5 of two linear operators A;, As is again a linear
operator. The matrix elements of a linear operator in an orthonormal basis {e;} are
defined by Aij = <€i, A- 6j>.

The adjoint A' of a linear operator A is defined by
(v1, A - vg) = (AT - vy, v9) (7.2)

for any pair of vectors v1,vs € V. Let us compute the matrix elements of A with
respect to an orthonormal basis,

Al = (e;, Aej) (7.3)
= (A e ej)
=(ej, A e) (7.4)
— 4. (7.5)

On other words, the matrix elements of operators A and A' are related by taking
the conjugate transpose of the matrix.

The adjoint operation has the following basic properties

o (a1A; + ag o)t = @1AJ{ + (_1214;

o (A1Ag)t = AjAl
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7.2

It follows from these properties that (A”)" = (A")” and therefore f(A)! = f(A") for
any polynomial function f(a).

A Hermitian operator is a linear operator that is equal to its adjoint, A = Af. An
equivalent way to say this is that a Hermitian operator obeys

(v1, A-v2) = (A-v1,v2) (7.6)

for any vi,v2 € V. The matrix elements A;; of a Hermitian operator form a Hermi-
tian matrix, A;; = A;;, hence the name! We will see that Hermitian operators play
an incredible important role in quantum mechanics.

As an aside: mathematicians tend to call Hermitian operators ‘symmetric operators’,
and reserve the word Hermitian for matrices. There are subtle issues related to the
fact that the domain of A may not be equal to the domain of Af, in which case
the operator is symmetric but not ‘self-adjoint’. For a lot of physics applications the
theory around this is more complicated than the solution, but we may touch on
some of this in a problem later. However, if this is your thing and you cannot wait,
read [4] (all four volumes of it).

Linear Differential Operators

We now return to quantum mechanics of a particle moving in one dimension = € R.
In the previous lecture, we learnt that continuous square-integrable wave functions
1 (x) form a complex vector space with Hermitian inner product

(Y1,1h2) = /_OO 1 (x)ho(x)de . (7.7)

Furthermore, it often convenient to introduce a discrete orthonormal basis of wave
functions {¢,(x)}. Remember that the index n may run over a set with an infinite
number of elements, for example n € Z-.

A linear operator now corresponds to a linear differential operator A built from
derivatives with respect to x. We have already encountered two important examples
of linear differential operators:

* The position operator & = x

0
* The momentum operator p = —ihé—
z

We define the matrix elements of A in a discrete orthonormal basis by
A i= (o A 60) = [ Gl (A- 60(0)) 7.8)

If there is an infinite number of wave functions ¢, (z) in the orthonormal basis, this
will be an infinite-dimensional matrix.

The adjoint of a linear differential operator is defined by

(th1, AT -apo) = (A -4y, 4h) (7.9)
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7.3

and has the same properties as above. It has matrix elements given by the conjugate
transpose, Amn = Apm.

A Hermitian operator again satisfies AT = A or equivalently

(1, A - 1pa) = (A -1, 42) . (7.10)

for any continuous square-normalisable wave functions v, (z ) o ) The matrix

elements of a Hermitian operator form a Hermitian matrix A,,, = A,n,

Position, Momentum and Energy

Let us prove the position and momentum operators are Hermitian. First, using the
fact that x is real we have (on the real line)

(T - 91,92) —/OO xip(x) Yo (z) da (7.11)
/ 1 () 292 (z) do
= (V1,2 - 1) . (7.12)

Second, integrating by parts we find

(D Y1,12) = /_OO —ihawalix)%(ﬂﬂ) dz (7.13)

- / "0 ) ar
w ( pl0le )) do+ih [p1(@)a(@)]  (714)
wl,p o) . (7.15)

In passing to the final line, we have discarded the boundary term from integrating
by parts since the wave functions v (x), ¥2(z) vanish as * — +oo as a necessary
condition for square-normalizable.

More general Hermitian operators can be constructed from polynomials in the posi-
tion and momentum operators. An important example is the Hamiltonian operator

~2

2 b
H = 5 +V(z) (7.16)
n* 92
T 2m 922 + Vi), @17

corresponding to measurements of energy. This suggests that perhaps all measurable
quantities are represented by Hermitian operators in quantum mechanics. We will
explain why this is the case in upcoming lectures.
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7.4 Example: Particle in a Box

Let us consider an infinite potential well in the region 0 < x < L. In the last lecture,
we introduced a basis of square-integrable wave functions

On(x) = \/gsin (ﬂ;) n € Zso. (7.18)

The first few of these functions are displayed in figure 7.1; note how they satisfy the
boundary conditions that the wave functions vanish at the edge of the box.

We will now compute the matrix elements of position, momentum and Hamiltonian
operators in this basis.

A ¢ 1 ¢3
>

P2

Figure 7.1: Basis of square-integrable wave functions in a box.

7.4.1 Position
First, for position we find

= /OL T Om () Pp(z)dx (7.20)
= E/Lxsin (?) sin (?) dz
0

_ i/oLx [Cos <(m_L”)”> — cos (W)] de | (7.21)

It is convenient to introduce y = 7z/L and use

(-1~ 1

/ y cos(ny)dy = e n#0, (7.22)
0

which you can prove by integration by parts. Combining the two contributions to
the integral we find

% if m=n 7.23)
Lmn = mn m—+n ; ’ .
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which is a Hermitian matrix

L _16L 0
2 %71'2
_% L _ 48L2
N B %7‘( B 1%8[/2 ?iwr
mrem 39r 25’” _ 96L
225712 4972
7.4.2 Momentum
Second, for momentum we find
Pmn = <¢maﬁ : ¢n>
L
. —— O¢n ()
— —ih d
1 /0 Om () D x

'h2 /L . (mm;) nmw (mmc)d
= —ih— sin — COs T
L J L L L

_ _ith /OL [sin (W) +sin (W)] dz.

It is convenient to introduce y = wz/L and use

1— (~1)"

/ sin(ny) dy =
0

to find

0
Pmn = 7 mn m+n
{QLR(mQ—nZ) ((_1) - 1)

This is again a Hermitian matrix

ik 16ih
OA 3L 0 15L
__8ih 0 24ih, 0
3L 5L
0 _ 24ih 0 48ih
. 5L . 7L
__16ih 0 __48ih 0
7L

15L

7.4.3 Energy
The Hamiltonian operator is

. ~2 h2 82
=P _

2m  2mox?’

in the region 0 < x < L. The matrix elements of the Hamiltonian are then

Hpyy = <¢maH an

/ (@) 0260 (z) d

32L

T 22572

_ 96L

4%;”2

|

n#0
if m=n
if m#n’

= h;mLQ . E/OL sin (m;m:) sin <n2x) dz

= En0mn -

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
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where
h2m%n?
" omI?
This is a diagonal Hermitian matrix. In fact, the above computation shows that the

wave functions ¢, (z) in our orthonormal basis are in fact ‘eigenfunctions’ of the
Hamiltonian operator,

(7.35)

H - pn(z) = Enon(z). (7.36)

More about eigenfunctions in the next chapter.
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8.1

The Spectrum of a Hermitian Operator

In this lecture we further develop the properties of Hermitian operators and why
they are important in quantum mechanics. In particular we study the eigenfunctions
and eigenvalues of Hermitian operators and the difference between a discrete and
continuous spectrum.

Hermitian Differential Operators

Recall that a linear differential operator A is Hermitian if

(1, A 1ha) = (A -1, 99) 8.1

for all continuous square normalisable wave functions v (x), ¥2(x). More succinctly,
a Hermitian operator obeys AT = A. We demonstrated last time that position, mo-
mentum and energy are represented by Hermitian differential operators,

A h? 02
T=ux, p:—zh%, H:—%@ﬁ-‘/(x). (8.2)

Our working assumption is that all measurable quantities are represented by Her-
mitian differential operators in quantum mechanics.

A wave function 1, (z) is an eigenfunction of a Hermitian differential operator A
with eigenvalue « if it obeys

A y(x) = ae(z) . (8.3)

Such wave functions play a distinguished role in quantum mechanics due to the
following observations.

* Expectation values: let us first compute the expectation value of measure-
ments of A. Assuming 1, (z) is normalised, we find

<A> = <77Z)aa A- ¢a> = (lba, a¢a> = a<¢aa¢a> =a. (84)
Similarly, (A™) = a™ for any positive integer n > 0.

* Uncertainty: the uncertainty in measurements of A is therefore
AA = /(A?) — (A)2 =+V/a?> —a®>=0. (8.5)

This is therefore a wave function with a definite value a for the measurable quantity
A. In other words, measurements of A should yield the result a with probability 1.
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8.2

In addition, the eigenfunctions and eigenvalues of Hermitian operators have the fol-
lowing important properties.

Theorem: Let A be a Hermitian operator.

(i) The eigenvalues of A are real: a € R.

(ii) Two eigenfunctions v (z), ¥2(x) of A with distinct eigenvalues a; # ag are
orthogonal.

Proof: Suppose 11 (z), 12(z) are eigenfunctions of A with eigenvalues a;, as,

A-1(x) = aqhr(x) A - ha(x) = aghe(x) . (8.6)

Then
(1, A~ t2) = (Y1, anthe) = az (Y1, ¥2) 8.7)
(A1, 2) = (@11, o) = a1 (Y1, ¥2) - (8.8)

Subtracting these two equations we find 0 = (a1 — a2) (1, 12).

(i) First suppose that as = as = a and 1 = 13 = ¢. Then we find

Recall that (,v) = 0 if and only if ¢/(x) = 0 identically. Therefore, provided
the eigenfunction is not zero, we have a = a or equivalently a € R.

(ii) Second suppose that a; # ae. Importing the result from part (i) we now have

(a1 — az)(¥1,1h2) =0 (8.10)
and therefore (¢, 12) = 0.

Furthermore, an extension of the second part of this theorem is that the eigenfunc-
tions of a Hermitian operator can be chosen to form an orthonormal basis. However,
what we mean by “orthonormal basis" depends on whether the spectrum of eigen-
values is discrete or continuous.

Discrete Spectrum

Suppose A has a discrete spectrum of eigenvalues {a,, } labelled by an index n. We
will for simplicity assume the spectrum is non-degenerate: there is one linearly
independent eigenfunction ¢, (z) for each distinct eigenvalue a,,.

In this case, we can choose the eigenfunctions ¢,,(x) to form a complete orthonormal
basis in the standard sense. This means that as well as eigenfunctions with different
eigenvalues being orthogonal, all of the eigenfunctions are normalised. In summary,
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where 4,,, is the unit matrix. Furthermore, any continuous square-integrable wave
function has a unique expansion

V(@) =Y cndu() (8.12)
with coefficients ¢,, € C (yes, there are subtleties here which we ignore for now).

1. The coefficients are found using the inner product and orthonormality,

(Dms ) =D Cn(bm> bn) = D Cndmn = - (8.13)

2. The norm of a wave function is

(W, 0) = EmCnldm, dn) = > leal”. (8.14)

3. If the wave function is normalised,

(W) = leal* =1. (8.15)

This suggests that we interpret |c,,|? as the probability for a measurement of A
to yield the result a,,: these probabilities should add up to 1.

Example: Energy in an Infinite Square Well

Consider the Hamiltonian operator for an infinite potential well in the region 0 <
x <L,
) 2 92
P = 0
H=—=———. 8.16
2m 2m Ox? ( )

It is straightforward to see that

2
On(x) = \/z sin (ﬂLx) n e Zsg (8.17)
are Hamiltonian eigenfunctions with eigenvalues
h? 2
o= (7)) (8.18)

We have already shown that these eigenfunctions are orthonormal. The fact that
any continuous wave function can be expressed uniquely as a linear combination of
these wave functions is the content of Fourier’s theorem.

In particular, if we expand any wave function

Y(@) =Y cndn(z) (8.19)

n>0

then |c,|? is the probability that a measurement of energy will yield the result £,,.
The fact that these probabilities sum to 1 is Parceval’s theorem.
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8.3 Continuous Spectrum

A Hermitian operator A can also have a continuous spectrum of eigenvalues, say
a € R, or some interval in R. In this case, we cannot choose the eigenfunctions to
form a complete orthonormal basis in the standard sense - we need a “continuous”
version of the unit matrix 6,,,.

For this purpose, we will introduce the Dirac delta function, denoted by §(a). This
is not a function but a ‘distribution’. This means it behaves as a function inside
integrals. You can think about it roughly as a function with

5(a) = {0 a7 0 (8.20)

00 a=20

but where the area under the function is 1,
oo
/ d(a)da=1. (8.21)
— 0o
A more precise definition is as a limit of a Gaussian function

—a?/e? (8.22)

Figure 8.1: A Gaussian function becomes a Dirac delta function in the limit that
the width goes to zero.

For the calculations that we need to do in this course, we will accept the following
important properties of the Dirac delta function.

* For any continuous function f(a),
/ " S(a—d)f(a')dd = f(a). (8.23)

This is the continuous analogue of the discrete formula ) 6, fn = fm and
so d(a — a’) is a continuous analogue of the unit matrix d,,,.

* The Dirac delta function is the Fourier transform of 1, The Dirac delta is for a

continuous basis what a
Kronecker delta is for a

1 .
1) (Cl) / e da/ . (824) discrete basis.

:% .
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* It follows from the above that §(a) = 6(—a) = d(a).

For a Hermitian operator A with a continuous spectrum, it is possible to find a basis
of eigenfunctions ¢, (x) with eigenvalues a € R such that

(Gas por) =6(a—d'). (8.25)

This means the eigenfunctions ,(z) are not square-normalisable since (¢4, 1,) =
oo. Nevertheless, any square-normalisable wave function can still be uniquely ex-
panded

vla) = [ ela) du(w) da. (8.26)

with complex coefficients ¢(a) depending continuously on a.

1. The coefficients can be calculated using the inner product,

(6ust) = [ ea) (66} (8.27)
_ / ~ (d)) 6(a — ') da’ (8.28)
=c(a). (8.29)

This is the continuous analogue of the discrete result (¢,,, ) = ¢,,.

2. The norm of a wave function can be expressed

(P, ) = / - c(a)e(d ) ba, por) dada’ (8.30)
= /OO c(a)e(d)d(a — a') dadd’ (8.31)
_ /OO le(a)|? da. (8.32)

This is the continuous analogue of the discrete result (1, ) = >, |en |2

3. For a normalised wave function
W= [P da=1. (8.33)
This suggests that we should treat |c(a)|? as a probability distribution for mea-
surements of A.
Example:

An example is the momentum operator p = —ihd, for a particle moving in one
dimension. It is straightforward to see that the eigenfunctions are plane waves
e?*/" with eigenvalue p. We choose the normalisation

1

¢;D(x) = meipr/h . (8.34)
T
so that . -
(p &p) = 5 = E /Mgy = §(p —p'). (8.35)

as required.

Expanding a wave function as a linear combination of momentum eigenfunctions

51

Eigenfunctions of an
operator with continuous
spectrum are not
unit-normalisable, but can be
‘delta-function normalised’.



we find

vie) = [ er)oy)dp (8.36)
_ 1 * ipz/h
= /_OC c(p)e dp. (8.37)

This is nothing other than the Fourier transform (we will see later that this is the
Fourier transform between the position and momentum space wave functions).

52



Postulates of Quantum Mechanics

In this lecture, we bring together everything that we have learned so far to describe
the postulates of quantum mechanics. These are the assumptions about how the
maths relates to the physics.

9.1 Statement of Postulates

1.

A particle is described by a normalised wave function v (x). Recall that the
space of square-normalisable wave functions forms a complex vector space
with Hermitian inner product

Wre) = [ deTi@lino). ©.1)
In this notation, a normalised wave function obeys (¢, 1)) = / h [ (x)]? = 1.

. Measurable quantities or observables are represented by Hermitian operators

A(z,p) constructed from polynomial or real analytic functions of the elemen-
tary position and momentum operators,

T=x (9.2)
b= —ih— 9.3)

For example, the Hamiltonian operator is H = % + V(z).
m

. The possible outcomes of a measurement of A are its eigenvalues a. How we

assign probabilities to these outcomes depends on whether the spectrum of
eigenvalues is discrete or continuous:

* Discrete: {a;}. Choose a basis of eigenfunctions 1;(x) that obey (¢;, ¢;) =
6;;- The probability to find the eigenvalue a; is Pj := [(¢;,)|*.

* Continuous: a € R. Choose a basis of eigenfunctions ,(z) that obey
(ha, dar) = 0(a — a'). The probability density for measurements of the
observable is P(a) := |(¢a, )|

. If a measurement of A yields the result a; (or a for a continuous spectrum),

the wave function immediately after the measurement is ¢;(x) (or ¢4(x) for a
continuous spectrum).

. As long as no measurements are made, the wave function evolves in time

according to the Schrédinger equation,

mawg’t) = Hip(x,t). 9.4)
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9.2

Of these, the 4th postulate is perhaps the least understood and the most mysterious.
It has led to various interpretations of quantum mechanics. For actual computations,
it often does not matter how this postulate is interpreted, and we will not go into
these matters here.

Discussion of Postulates

Let us emphasise some important observations / consistency checks:

¢ The outcomes of measurements are real numbers. This is consistent with the
fact that observables are represented by Hermitian operators, whose eigenval-
ues are real numbers.

* To compute probabilities it is convenient to expand the wave function in an
orthonormal basis of eigenfunctions of A

— Discrete: If we expand the wave function
Y(x) = cigi(x), (9.5)
J
where ¢; = (¢;, ). The probability to measure a; is therefore the modu-
lus squared of the coefficient,
Py = [{gg, ) = le*. (9.6)

Consistency requires that the total probability is 1. This follows from the
normalisation of the wave function,

(W)= P = P=1. 9.7)

J J

— Continuous: We expand the wave function
vla) = [ daclayéula), ©.8)

where c(a) = (¢4, 7). The probability distribution is therefore the modu-
lus squared of the coefficient function,

P(a) = [{¢a, ¥)|* = |c(a)]?. 9.9)

Consistency requires the total probability is 1. This follows from the nor-
malisation of the wave function,

(Y, ) = /_OO da |c(a)]? = /_OO daP(a)=1. (9.10)

* A measurement of A that yields an eigenvalue a; / a causes the wave function
to immediately collapse to the corresponding eigenfunction,

Y(x) = (@) /() (9.11)

in the discrete / continuous case. In the continuous case, you should be con-
cerned that the wave function immediately after the measurement is a not
square-normalisable,

(ba, Pa) = 00. (9.12)
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This assumes an “idealised" measurement of a continuous parameter where
the outcome is determined with infinite accuracy. A real-world measurement
will always have some experimental uncertainty e. The wave function imme-
diately after the measurement is then a square-normalisable wave function

/da/ Se(a —a)pu(x), (9.13)

where §.(a — a’) is sharply peaked around ¢’ = a with width e. The idealised
measurement corresponds to the limit € — 0 where d.(a —a’) — d(a—a’). This
is a convenient and useful mathematical ideal.

9.3 Expectation Values

The expectation value of a Hermitian operator is defined by

0o The definition
_ _ . A) = (1, A) is backed
<A> - <¢’ A1/1> - /_OO dz l/J(I) A 1/J(LE) ’ (9.14) I<3y >a corgﬁutaticin of the °

expectation value using a

This expectation value can be computed by acting with the differential operator A ?ecomposition of t};e wave
. . o, . . . unction 1n terms o

and evaluating the integral. However, it is often more convenient to first expand  ejgenfunctions of A.

the wave function in an orthonormal basis of eigenfunctions of A. This leads to the

expected formulae using the probabilities P; or probability distribution P(a).

- Discrete: The expectation value is

(A) = eici(di A-6)) (9.15)

1j
= a;éici(di, 6;) (9.16)

ij
= >yl (9.17)
- Zj: a;P; . (9.18)

J

- Continuous: The expectation value is

() = [~ dadd Ta ()0 A 60) 9.19)
= / O; dadd’ d' c(a) c(a’)(ba, da’) (9.20)
_ [ dadd d c(a) c(a')d(a — a) (9.21)
_ / ~ daale(a)? 9.22)
- / ~ daaP(a). (9.23)

A similar result holds for the expectation value of any real analytic function f(A).

These expressions make it manifest that we are computing an average, because we
are summing/integrating the possible outcomes of the measurement — the eigenval-
ues — with the probabilities to find the system in the state corresponding to each
eigenvalue.
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9.4 Position Revisited

The position operator & multiplies a wave function by x. The spectrum of the posi-
tion operator is continuous with an orthonormal basis of eigenfunctions

o () = 6(x — ) (9.24)
labelled by 2’ € R.
They form eigenfunctions because
2 pp(x)=a6(z—2") =2'0(x —2) =2 pp(x) (9.25)

and are orthonormal,

(Gors Do) = / 0z G, (2) by (2) 9.26)

—00

= /OO dzd(z — x1)0(z — x2)

—0o0

= 5(.%'1 — ZCQ) . (927)

As mentioned above, these wave functions are not square-normalisable: (¢, ¢,/) =
oo. Nevertheless, we regard ¢,/ (x) as the wave function immediately after an “ide-
alised" measurement that measures the position 2’ with infinite accuracy.

P ()

; T
T

Figure 9.1: An eigenstate of the position operator, with eigenvalue z’.

We can expand any wave function in this basis,

W) = / " dde(a) b () 9.28)

—00

X

= /OO da'c(2")d(x — o)
(), (9.29)

so the coefficient function is the wave function itself. The probability density for
position measurements according to the postulates is

2

P(a) = | () = | [ arse )| =@k 630

This recovers our original probabilistic interpretation of the wave function!
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Eigenfunctions of the

9.5 Momentum Revisited momentum operator are

plane waves, which are not
unit-normalisable on the real

The momentum operator is p = —ihd,. In the last lecture we showed that the ' lineeither
spectrum of the momentum operator is continuous with an orthonormal basis of
eigenfunctions labelled by p € R,

1.
bp() = —==e"I". (9.31)
7T
In particular,
1o
(¢p, b)) = 27rh/ dp '@ Pl = §(p — p'). (9.32)

As above, these wave functions are not square-normalisable, but arise from an “ide-
alised" measurement that determines the momentum with infinite accuracy.

We can expand any wave function in the momentum basis

¥(w) = / 20t 9.33)
dp c(p zpm/h . (9.34)
\/7
The coefficients can be computed using the inner product and orthonormality,
c(p) = (P, ¥) (9.35)
= / e Gy ()0 () (9.36)
d:L‘ P(x)e P/h, (9.37)
\/7

The momentum probability density is

P(p) = le(p)[* . (9.38)
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10.1

10

Commutators and Uncertainty Principle

This lecture is motivated by the question:

* Suppose I measure an observable A, such as position, momentum or energy. How
does that measurement affect subsequent measurements of another observable B?

To answer this question, we introduce the commutator [A, B] of two Hermitian op-
erators and explore its physical interpretation. We will prove a generalisation of
Heisenberg’s uncertainty principle, which is a fundamental limitation on the preci-
sion that observables A and B can be determined simultaneously.

The Commutator

Suppose we have two linear operators A and B, such as position z, momentum p or
the Hamiltonian H. The commutator is defined by

[A,B] := AB — BA. (10.1)

It has the following properties:

* Anti-symmetry: [A, B] = —[B, A].

* Linear: [a1 A1 + agAg, B] = a1[A1, B] + as[As, BJ.

* [A, ] is a derivation: [A, BC] = B[A,C] + [A, B]C.

* Jacobi identity: [A[B,C]] + [B, [C, A]] + [C, [A, B]] = 0.

The commutator plays an important role in quantum mechanics due to the following
theorem:

Theorem: “Two commuting matrices are simultaneously diagonalizable." If A and B
are Hermitian operators with [A, B] = 0, it is possible to find an orthonormal basis
of wave functions that are simultaneous eigenfunctions of A and B.

Proof: To keep things simple, we will assume the spectrum of eigenvalues {a;} of
A is discrete and non-degenerate. This means that up to normalisation there is a
unique solution to A ¢;(x) = a;¢;(x) for each eigenvalue a;. The normalisation can
be chosen to make the basis orthonormal, (¢;, ¢;) = d;;.
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10.2

We want to prove that ¢;(x) is simultaneously an eigenfunction of B. The commu-
tator [A, B] = 0 is equivalent to AB = BA. This means

A(B¢;) = B(Adj) = B(ajo;) = a;j(B ¢;) (10.2)

so B ¢; is also an eigenfunction A with eigenvalue a;. But such wave function is
unique up to normalisation and therefore

B ¢j(z) = bjp;(x) (10.3)

for some b; € R. So ¢;(x) is simultaneously an eigenfunction of B.

Compatibility

This theorem motivates the following definition.

* Definition: Two observables represented by Hermitian operators A and B are
called “compatible" if their commutator vanishes, [A, B] = 0.

Let us first determine whether the observables we have encountered so far are com-
patible. Recall that the position and momentum operators are

b=z pe—inl (10.4)
or
while
. ]32 2 82 .

1. Position and Momentum. Let us compute the commutator of position and
momentum acting on a generic wave function,

mmw=x<4ﬁ?

T

) “hai (z0)) = ihap. (10.6)

This is the “canonical commutation relation”
[z,p] = ih, (10.7)
which shows position and momentum are not compatible.

2. Momentum and Energy. A similar computation shows that

L oV(x
1, = V(),p] = i (108)
X
So momentum p and energy H are compatible only if V' (z) is constant. We

will return to this result later in the course.

3. Position and Energy. From the commutator of position and momentum,

1, 1 ih
[H, 2] = o—[p" 2] = 5 (plp. a] + [p. alp) = =, (10.9)
so position and energy are never compatible.
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10.3

10.4

Compatibility and Measurement

To understand the physical significance of compatibility, suppose we measure A and
find the eigenvalue a;. Then the wave function immediately after the measurement
is the eigenfunction ¢;(z).

* What happens if we make another measurement of A immediately afterwards?
As ¢;(x) is an eigenfunction of A, the measurement will again find a; with
probability 1. Correspondingly, the uncertainty of a normalised eigenfunction

vanishes,
(A4)? = (4%) — (4)? (10.10)
= (¢, A%¢;) — (B4, ;)" (10.11)
= aj{($;,¢5) — (aj{(0;,¢;)) (10.12)
=aj —aj =0. (10.13)

* What happens if we make a measurement of B immediately afterwards?

- If [A,B] =0, ¢;(z) is also an eigenfunction of B with eigenvalue b;. So
a measurement of B will find b; with probability 1. Correspondingly, the
same argument as above shows that AB = (. In other words, we can
simultaneously determine the values of both A and B.

- If [A,B] # 0, ¢;(x) is not an eigenfunction of B and there are multiple
potential outcomes. Suppose the measurement of B yields a particular
eigenvalue, say b. Then the wave function jumps to the corresponding
eigenfunction of B with AB = 0. But now AA > 0.

It is important to emphasise that the subsequent measurements discussed in this
section are measurements without time between them. A generic eigenstate of an
operator will not stay an eigenstate under time evolution, so a measurement of A,
followed by a delay and then another measurement of A, will typically still lead to a
non-zero spread. Only eigenstates of the Hamiltonian operator, or operators which
commute with it, remain eigenstates under time evolution.

The Generalised Uncertainty Principle

If [A, B] # 0, we cannot necessarily find simultaneous eigenfunctions of A and B
with both AA = 0 and AB = 0. In fact, there is a fundamental limitation in
quantum mechanics on the how small we can simultaneously make the uncertainties
AA and AB. This is quantified by the “Generalised Uncertainty Principle”:

Theorem: For any square-normalisable wave function,

AAAB > %|<[A, Bl (10.14)

Proof: We will assume here that (A4) = (B) = 0 for the wave function in question.
This will simplify the argument without losing any of its essence. The translation to
(A) # 0, (B) # 0 as an exercise for the interested reader.
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With our assumption, the uncertainty in A can be expressed,
(AA)? = (A%) = (i, A%)) = (A, A) = (Y4, 9a) , (10.15)
where 14 := A -1. There is an identical statement for B and therefore we can write

(AA)*(AB)? = (Ya, ) (¥B, ¥n) - (10.16)

We can now use the Cauchy-Schwarz inequality,

(ba,ba)(Wp,bB) > [(Wa,vB)|* . (10.17)

This result holds for any Hermitian inner product. It is analogous to the standard re-
sult |a|?|b|? > |a- b|? from real euclidean geometry, which follows from the formula
a-b = |a||b| cos(f) for the dot product.

The right-hand side of this inequality can be expressed as

(Ya,¢p) = (AB) (10.18)
= (4B~ BA)) S((AB + BA)) (10.19)
= J(AB) + ({4, BY) (10.20)

where [A, B] := AB — BA is the commutator and {A, B} := AB + BA is the “anti-
commutator". It is straightforward to check that,

1. [A, B] is anti-Hermitian = ([A, B]) € iR.

2. {A, B} is Hermitian = ({4, B}) € R.

so the commutator and anti-commutator provide the imaginary and real parts of
(14, B). Recalling the formula |z|?> = 22 +y? for the modulus squared of a complex
number z = x + iy, we have

ea ) = 2114, BI + \<{A, BY)? (10.21)

> —[([A, B])*. (10.22)

—

W

This concludes the proof.

1. Position and Momentum. For position and momentum,
h
Az Ap > 3 (10.23)

which is Heisenberg’s uncertainty principle.

2. Momentum and Energy. For momentum and energy,
[y
ApAH > S (V'(x)), (10.24)

which vanishes automatically when V'(z) is constant.
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3. Position and Energy. For position and energy,

h
AxAH > —(p). (10.25)
2m
This implies that square-normalisable Hamiltonian eigenfunctions must have
(p) = 0. In fact, square-normalisable Hamiltonian eigenfunctions may always
be chosen real, compatible with this statement.

Note that what is derived here is a statement which is different from the one in
the previous section: the generalised uncertainty principle as derived above says
nothing about subsequent measurements (see also [1]).

It should be emphasised that this is a fundamental feature of quantum mechanics.
Only in the classical limit, # — 0, can we simultaneously determine exactly the
values of non-compatible observables such as position and momentum.
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11.1

Energy Revisited

In the last two lectures, we summarised the postulates of quantum mechanics and
revisited what we learnt earlier in the course about measurements of position and
momentum. In this lecture, we will do the same for measurements of energy and
prove a couple of very important theorems about the spectrum of the Hamiltonian
operator.

Reminder about Energy Measurements

Given the wave function ¢ (x) of a particle moving in some potential V'(z), the basic
question we want to answer is: how can we determine the possible outcomes of a
measurement of energy and their probabilities?

The starting point is to construct an orthonormal basis of eigenfunctions of the
Hamiltonian operator H. For now, let’s assume the spectrum of the Hamiltonian
has the following properties:

1. Discrete: There is a discrete set of eigenvalues {E;}.

2. Non-degenerate: There is a unique eigenfunction ¢;(x) solving

H-¢j(x) = Ej;(x) (11.1)

for each eigenvalue E;.

In this case, we can choose the eigenfunctions to be orthonormal,

(Vi) = 035 - (11.2)

We then expand the wave function

P(x) = cid(x) (11.3)

J

and, provided the wave function is normalised, the probability to measure energy £
is P; = |cj|%. As a consistency check, it is straightforward to check that 3 ;Pi=1

Finally, we can compute expectation value of energy measurements by summing
the possible outcomes of an energy measurement weighted by their probabilities,

<H> :EijEj'
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11.2 Examples with Bound States

Examples of bound states

The Hamiltonian could in principle have a continuous spectrum or both discrete and Suggesi_fwof“glllportam

. . . . . . properties of the energy
continuous eigenvalues. It may also be degenerate with multiple linearly indepen- spectrum which hold in a
dent eigenfunctions with the same eigenvalue. It is therefore important to qualify ~ variety of situations (but not

. . . . . all).
when the assumptions made in the previous section are valid.

For concreteness, let us consider a particle of mass m moving on a line with potential
V(z). The Hamiltonian operator is then

A2

g P
H = o=+ V(x) (11.4)
L2 92
=553 V(z) (11.5)

and Hamiltonian eigenfunctions are solutions to the differential equation
h? 0% (x)
2m  Oz?

that satisfy appropriate boundary conditions as x — +oco and at any discontinuities
in the potential V().

+ V(z)y(z) = Ey(x) (11.6)

The Hamiltonian operator typically has a discrete spectrum for energies £ where
the corresponding classical solutions x(¢) would be bounded in space. For this rea-
son, the corresponding eigenfunctions are sometimes called “bound states". This is
perhaps best illustrated with examples.

* Infinite square well. Consider the potential

V(z) = {O O<w<L (11.7)

oo other

The classical motion is certainly bounded for any energy £ > 0: the parti-
cle bounces back and forth from the walls of the box. The spectrum of the
Hamiltonian is indeed discrete and non-degenerate with eigenvalues

h2

" om

(”%)2 neZsg. (11.8)

* Simple harmonic oscillator. Consider the quadratic potential

V(z) = %muﬂxz. (11.9)

The classical motion is bounded: the particle oscillates with angular frequency
w for any finite energy £ > 0. Later in the course, we will show that the
spectrum is again discrete and non-degenerate with eigenvalues

1
FE, =hw <n + 2) ness. (11.10)

* Hydrogen Atom: The effective potential of an electron in a hydrogen atom is

2 2
S (11.11)

C2ma?

V(x)

64


https://en.wikipedia.org/wiki/Degenerate_energy_levels

11.3

»

Figure 11.1: Simple harmonic oscillator potential.

V(x)
\

ol |

V

Figure 11.2: Effective potential of an electron in a hydrogen atom.

The classical motion is bounded for £ < 0 and unbounded for £ > 0. Cor-
respondingly, there is a discrete set of bound states with energy £ < 0, given

by
me4

2hn2
There is also a continuous spectrum of “scattering states" with £ > 0 that will
also be studied later in the course.

E, = neZsg. (11.12)

These examples illustrate some important universal features of a particle moving on
a real line:

1. The Hamiltonian eigenvalues obey E > V[, where 1} is the minimum of the

potential V(x).

2. The spectrum of the Hamiltonian is non-degenerate.

We prove these properties in the following sections.

Minimum Energy

Suppose the potential is bounded below, meaning V(z) > Vj for all x € R. The
point zo where V' (z() = V} is typically a local minimum.

In classical mechanics there is a continuum of bound states with energy E > Vj with
the minimum energy configuration £ = V|, corresponding to a stationary particle at
x = zp. In contrast, in quantum mechanics we must have £ > Vj.
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To

Figure 11.3: A potential with a local minimum at z = .

Theorem: If the wave function is normalised, (H) > V.
Proof: The energy expectation value is

(H) = (1, Hy) (11.13)
_ L
|

since the momentum operator p is Hermitian. The first term is necessarily non-
negative,

o) = [ tpe@Pde= [~ @) ar0 (11.16)
and therefore
)=z V) = [ VeR@Paz [ p@lda=%.  aL17)

We therefore conclude that (H) > Vj.

The next step is to rule out equality. A necessary condition for equality is (py, pyp) =
0. From positive definiteness of the inner product, this would require that pi) = 0
and therefore

()

ox
where ¢ € C is constant. However, square-normalisability requires ¢)(z) — 0 for
x — 400 and hence ¢ = 0, so such a wave function would vanish identically. We
therefore conclude that (H) > V4.

—ih

=0 = ) =c, (11.18)

Corollary: If ¢(z) is a normalized eigenfunction of H with eigenvalue FE, then
E > V.

Proof: This is a simple consequence of the above theorem: (H) = (¢, HY) =
E(,) = E > 0.

This means that states with the minimum energy in classical mechanics, £ = V,
corresponding to a stationary particle, cannot exist in quantum mechanics. This is
compatible with our intuition from Heisenberg’s uncertainty principle. It is a very
important result.

The smallest eigenvalue £ > 1} is sometimes known as the ‘zero-point energy’ in
quantum mechanics. This is a characteristic feature of quantum mechanics that
leads ultimately to some of the greatest mysteries in theoretical physics.
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11.5

Non-degeneracy

Theorem: The spectrum of the Hamiltonian is non-degenerate.
Proof: Consider a pair of square-normalizable eigenfunctions with the same eigen-
value,

H - iy (x)

Evy(x) (11.19)
E(x). (11.20)

We will prove that ¢ (z) o ¥2(x), which implies there is a unique normalised eigen-
function for each eigenvalue E.

Expanding out, we have
o BB (@) + V(@) (2) = B (2) (1.21)
o BRun(w) + V ()ale) = Bis(a) (11.22)

Subtracting the top equation multiplied by () from the bottom equation multi-
plied by ¢ (x), the contributions propotional to V(x) and E vanish and we find

0 = 1024hy — 1ha02ihy (11.23)
Therefore,
Y10z1P2 — 20,01 = c € C. (11.25)

But since the wave functions are normalizable, ¢, (z), ¥2(x) necessarily vanish at
x — +oo. Evaluating the equation at infinity, we therefore determine that ¢ = 0. We
can then solve the equation,

Y10z — Y2021 =0 (11.26)
8x¢1 8x¢2
- = 11.2
- (03 (5 0 (11.27)
= 0, (log 1 —logie) =0 (11.28)
= log L2y (11.29)
(0

= 1 = e Mo, (11.30)

for some constant A € C. This shows that +; (z) and 2(z) are the same eigenfunc-
tion.

The Evader

We have encountered a potential counterexample to the above theorem: a free par-
ticle moving on a circle of circumference L with potential V(x) = 0. There is an
orthonormal basis of Hamiltonian eigenfunctions

Gtn(x) = \%eﬂ”m/L nez (11.31)
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with eigenvalues

h2 [27n)\ 2
En:2m<7£n> . (11.32)

The spectrum is degenerate because FE,, = F_,. The above proof fails at the stage
where we required the wave function to vanish as x — +o00. Here, instead we have

imposed periodic boundary conditions ¢)(z + L) = ¢(x), which is not strong enough
to determine the constant ¢ = 0 in (11.25).
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12.1

Stationary states

We have seen that the generic time-evolution of the wave function is governed by
the Schrodinger equation,

Ip(x,t)
ot
which is a PDE for the wave function, and takes the explicit form

L0z, t) B 9PP(x, i)

It is linear and 1%t order in time.

ih

= Hy(,1), (12.1)

In this lecture, we will introduce a powerful method to find the unique solution for
the wave function v (z,¢) given an initial condition (x,0). This is known as the
method of “separation of variables".

Stationary Wave functions

A simple class of solutions to Schrodinger’s equation may be found by assuming that
the dependence on position and time is factorised,

P(z,t) = p(x)T(t). (12.3)
Substituting into Schrédinger’s equation we find
. or(t)  h* 1 9?¢(x)

T ot~ 2mo(x) 02
The left hand side is now a function of ¢ only, while the right hand side is a function
of x only. Since Schrédinger’s equation holds for all x and ¢, we conclude that both
sides are equal to the same constant,

V(z). (12.4)

L1 or@t)

mT(t)Tt =E (12.5)
Rt 1 9%p(x) B
om0 V(z)=E. (12.6)

where for now E € C. Notice we have implicitly assumed the potential V (x) is
independent of time - this will always be the case in this course.

The first equation can be immediately solved,
T(t) = e Ft/R (12.7)

up to a normalisation that we can absorb into ¢(x). The second equation says that
¢(x) is an eigenfunction of the Hamiltonian H with eigenvalue F. In particular,
since H is a Hermitian operator, £ € R.
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12.2

* Summary: we have found a class of solutions to Schrodinger’s equation
Y(x,t) = p(x)e B (12.8)
where ¢(x) is an eigenfunction of the Hamiltonian with energy F,
H¢(x) = E¢(x). (12.9)

This is the time evolution of an initial wave function ¢ (z,0) = ¢(z). Equa-
tion (12.9) is also often called the “time-independent Schrodinger equation”.

We have encountered a number of examples in the previous lecture. The key prop-
erty of such solutions is that probabilities of measurements of any observable are
independent of time ¢, since the contribution from the overall phase e~*#*/" always
cancels out. For example,

* Position: The probability density for position is
P(x,t) = [¢(x, )" = |p(x)e P02 = |p(x)|*. (12.10)
* Energy: The probability to measure energy F is

Pp = [(6,9)]* = (¢, ¢)e EVR2 = (g, 4)|* = 1. (12.11)

For this reason, such solutions are known as “stationary wave functions". They are
the unique time-evolution of Hamiltonian eigenfunctions.

Complete Solution

The stationary wave functions are simple but extremely important. Due to the
fact that Schrodinger’s equation is linear, we can build all possible solutions of
Schrodinger’s equation by taking linear combinations of stationary wave functions!

Suppose we have an initial wave function v (x,0). We now provide a recipe for con-
structing the solution of Schrédinger’s equation v (z, t) at later times ¢ > 0.

1. Step 1: As always, we first construct an orthonormal basis of Hamiltonian
eigenfunctions ¢;(x) with eigenvalues F;. We assume here that the spectrum
is discrete and non-degenerate. We then have stationary wave functions,

Pi(x,t) = pj(x)e Eit/h, (12.12)

These wave functions remain orthonormal for all time ¢ as the dependence on
the phase e~*%3t/" cancels out,

(i, 05) = /PR (g ) = P FG, 5 = 5y (12.13)

2. Step 2: We expand the initial wave function ¢ (x, 0) as a linear combination of
the orthonormal basis of Hamiltonian eigenfunctions,

¥(x,0) = ¢;;(z). (12.14)
J

The wave function is correctly normalized if (¢, ¢)) = 3 _; | = 1.
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12.3

3. Step 3: We promote this to the wave function,

Y, t) =Y ey, ) (12.15)
J

= cidj()eFtn, (12.16)
J

Since Schrodinger’s equation is linear, this is automatically a solution by the
principle of superposition. Furthermore, it coincides with the initial wave func-
tion ¢ (z,0) at ¢ = 0. Since Schrodinger’s equation is first order in time, we
expect the initial wave function to uniquely determine the solution for ¢ > 0.
We therefore claim that the solution is unique.

How do probabilities and expectation values depend on time?

* Energy. The probabilities of energy measurements are always independent of
time because the phases e~*%*/" cancel out

Py = [(¢, ) = |eje P = |57 (12.17)
The expectation value (H) = 3, P;E; is therefore also independent of ¢.
* Position and Momentum. The probability distributions and expectation val-

ues of position and momentum will typically vary in time.

Let us see this explicitly in some examples.

Example: Sum of Two Eigenfunctions

Consider a normalized initial wave function

¥(2,0) = c161(2) + ca2(x) (12.18)

with |c1]? + |e2|? = 1. The wave function at later times is
Y(x,t) = cr1(x, t) + cob(x, t) (12.19)
= 11 (2)e P 4 ey ()e RN (12.20)

The outcomes of energy measurements and their probabilities are independent of ¢,

Ey : P =|gf (12.21)
Ey : Py= |02|2.
On the other hand, the probability density is
P(x,t) = |ih(x,t)|? (12.22)
= |1 ()e PR 1 oy (a)eE21/M)2 (12.23)
= le1 |1 (@) + |2l |2 () (12.24)
+2Re <c152¢1(m)@(x)e*l’(EI*E?)t/h) . (12.25)

Due to the final “interference term", the position probability density and position
expectation values oscillate in time with frequency

w=(Ey— Ey)/h. (12.26)
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12.4 Example: Infinite Square Well

Let us consider the infinite square well 0 < x < L with initial wave function
1
V2

The unique solution of Schrodinger’s equation is

P(r,0) = —=(d1(7) + ¢2()) . (12.27)

1

Qz[)(x? t) = ﬂ

(61(@)e P 1 () B

The outcomes of energy measurements and their probabilities are independent of ¢,

B . P— % (12.28)
1
EQ . P2 = 5 .
On the other hand, the probability density is
P(z,t) = [¢(z, 1) (12.29)

= %‘¢1(m)|2 + %|¢2(a:)12 + % (qbl (z)ga(z)e (B =F2R 4 c.c.)

_ 1 si 2(E)+s' 2 (21T + 2si (E>s 2ne cos(wt)
= I 11 I 111 I 111 I 1n I w N

(12.30)
which oscillates with frequency

Ey—E 3h?
_ o Ohm (12.31)

w h 2mL2?’
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Case Study: The Free Particle

This lecture is an extended example consisting of a “free particle" moving on a line. E
This means that the potential V() = V} is a constant. In this lecture, we assume

. . . . . . . .. . Determining the full time
for simplicity that the potential vanishes Vj = 0. You might think this is the simplest  yoiution of a free particle

possible example, but it exhibits a number of important subtleties. wave function, illustrated on
a Gaussian.

* Classical Mechanics. The classical solutions of Hamilton’s equations are

2(t) = o + %t (13.1)
p(t) =po - (13.2)

where (zg,po) are the initial position and momentum. In the absence of a
force, we have uniform motion with constant velocity py/m.

* Quantum mechanics. Suppose we have an initial wave function (x, 0) with
expectation values (x) = x( and (p) = pp. Then we would like to determine
the wave function ¢ (z, t) at later times ¢ > 0. We follow the recipe introduced
in the previous lecture!

13.1 Step 1: Hamiltonian Eigenfunctions

Once we know the

The starting point for understanding is to construct an orthonormal basis of eigen- = decomposition of an initial
. . . Gaussian wave function in
functions of the Hamiltonian operator terms of energy
eigenfunctions, we can
R ]32 h2 82 compute its time evolution.
H= —=—+—75.
2m 2m Ox

In this case, it is first convenient to first discuss the momentum operator p. This is
because an eigenfunction of the momentum operator p with eigenvalue p is automat-
ically an eigenfunction of the Hamiltonian operator H with eigenvalue E = p?/2m.

The momentum eigenfunctions are solutions to the differential equation

.0
—zh%d)p(x) = pop(x) . (13.3)
The solutions are )
dp(z) = —— he"’””/h (13.4)
V 4T
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for any p € R. The momentum operator therefore has a continuous spectrum and
correspondingly the normalisation is chosen so that

<¢p’¢p’> :/ ¢p(l‘)¢p’($)d$ (13.5)
1 &0 . /
- —i(p—p")z/h
=5 _Ooe p=p dz (13.6)
=d(p—p). (13.7)

The spectrum of the momentum operator is also non-degenerate: there is a unique
eigenfunction ¢,(x) for each eigenvalue p € R.

The same wave functions are also Hamiltonian eigenfunctions

A n? 92
H - ¢p(x) = —%@%(Jf) = Ep¢p()
where )
_r
P om

However, the spectrum of the Hamiltonian is degenerate since ¢,(x) and ¢_,(x)
have the same energy since E, = E_,. This is a consequence of “parity" symmetry
x — —z that sends

Pp(2) = dp(—2) = dp(2),
while leaving the Hamiltonian operator I invariant. Nevertheless, the wave func-
tions ¢,(x) can be taken as an orthonormal basis of Hamiltonian eigenfunctions.

13.2 Step 2: Stationary Solutions

We can immediately promote the Hamiltonian eigenfunctions ¢,(x) to stationary
solutions of Schrodinger’s equation,

Up(,t) = pp(x)e Ert/h (13.8)
_ ;hez’@wm/h. (13.9)
Y

These stationary wave functions correspond to plane waves. In particular, v, (z,t)
and ¢_,(x,t) are plane waves with equal magnitude of momentum in opposite di-
rections and therefore equal energy.

13.3 Step 3: Time Evolution of Wave function

We now return to the problem at hand: how to determine the solution of Schrodinger’s
equation v (x, t) given an initial wave function ¢ (z, 0).

We expand ¢ (z,0) as a linear combination of the Hamiltonian eigenfunctions. In
this case, the spectrum of the Hamiltonian operator is continuous and the expansion
becomes an integral

Y(x,0) = / dp c(p) dp(x) (13.10)
— 1 > ipx/h
\/%/—oo dpc(p)e . (13.11)
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The coefficients function ¢(p) is computed via the inverse relation,

c(p) = F / da(x,0) e P2/ (13.12)

This is of course the Fourier transform between the initial wave function ¢ (x, 0) and
the initial momentum space wave function, ¢(p) = ¥ (p,0)

To compute the wave function at later times, we promote the Hamiltonian eigen-
functions ¢, (z) to stationary wave functions,

la,t) = / dp c(p) (. ) (13.13)
dpc ) P/ =ip*t/2mh (13.14)

We can express this in terms of the initial wave function ¢ (z,0) by substituting in
the inverse Fourier transform for the coefficients ¢(p) and interchanging the order
of integration,

1 [e'e] oo .y . .
Y(z,t) = 5 | dp (/ da’(2’,0) e "P* /h> ¢iPe/hg—ip*t/2mh (13.15)
m —00
= 21h d:z; W(a',0) / dp e®(e=2")/he=ip*t/2mh. (13.16)

The integral over momentum can now be computed using the standard Gaussian

integral formula
/ dye~ov*+8y = [T oB%/1a (13.17)
oo o'

With the substitution

it (x — ')
pu— 1 .1
b B=i P (13.18)
we find
) 1/2
/ dp ez p(z—z')/h —zp2t/2mh (27r72m> eim(ac—:v’)2/2fat ) (13.19)
oo i
We therefore have
m\1/2 im(x — a')?
bz, t) = (%hu) /_ da’ (', 0) exp (m , (13.20)
which allows us to compute (x, t) from the initial wave function ¢ (z,0). The object
fon L m\ /2 im(x — a')?

G(z,x';t) = (27rhit) exp (2ht (13.21)

is sometimes called the “propagator”.

* Important Subtlety. The Gaussian integral above converges for Re(a) > 0
whereas our « is purely imaginary. A more careful analysis would add a small
imaginary time ¢ — ¢ — ie and consider the limit ¢ — 0, or deform the contour
of integration slightly into the complex p-plane. This will not be necessary
in this course - the above formulae will be correct for all examples we come
across. An example is the Gaussian wave function, which we now turn to.
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13.4 Example: Time-Evolution of Gaussian

Consider an initial Gaussian wave function
P(x,0) = CePor/he=a"/187 (13.22)

with normalisation C' = (2rA2)~1/4, The initial probability distribution is

P(z,0) = [1(z,0)[ (13.23)
1 2 2
= ——— " /A (13.24)
e .
V21 A2
The initial wave function has the characteristic properties
() =0 Az = A (13.25)
h
= Ap = —. 13.2
(p) =po P=5x (13.26)

In particular, Heisenberg’s uncertainty principle is saturated, AzAp = h/2.

Y P(z,0)

» T

Figure 13.1: Probability density for a Gaussian wave packet with width A.

The wave function at later times is

m_\Y/2 [ im(z — 2')?
Vi) = (27rhit> / dz’ exp <(2ht>> ¥(a',0) (13.27)
_ m 1/2 oo ’ Zm(l' — $/)2 ipowl/h —$,2/4A2
=¢ (27rhit) /_Oo dz” exp <2m € e . (13.28)

This can be evaluated by performing another Gaussian integral with parameters

m iht
O = Sint (1 + zmm> (13.29)
m pot
= (z-22). 13.
B=—2 <x m) (13.30)

Notice that Re(a) > 0 so the Gaussian integral converges and there is no subtlety
in computing it. After some simplification, the final result for the wave function at
later times is

_[oraz int \1"* . pot —(z — pot/m)?
L/J((E,t) = |:2’/TA <1 + W>:| exp [lpo <$ - 2?71):| exXp |:4A2<1 + zht/QmAQ)
(13.31)
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The probability distribution is particularly simple,

_ 1 a(t)?
P = e o 1A (13:52)
where
t h2t2

This is a time-dependent Gaussian characterised by

_ Do _
(x) = - Az = A(t) (13.34)
h
(P) = po Ap= 1 D (13.35)

b o >

Time-evolution of a free
Gaussian wave packet with
non-zero momentum py.
Note how the wave packet
width A increases in size
over time.

Figure 13.2: Probability density for a moving Gaussian wave packet with width A
and momentum po.

* (x), (p) obey the classical equations of motion: the centre of the wavepacket
(x) is moving with constant velocity po/m. In a later lecture, we will prove
this result in generality.

* The position uncertainty A(t) is increasing in time. Intuitively, the initial un-
certainty in momentum (and therefore velocity) leads to an increasing uncer-
tainty in position over time.

* Heisenberg’s uncertainty principle is saturated AzAp = % for all ¢: the wave
function remains Gaussian.

e For a macroscopic object of mass 1g = 10~3kg with initial position determined
up to uncertainty A ~ 10~'m equal to the width of a proton, it would take
300, 000 years for the uncertainty in position to grow to A ~ 1lmm = 10™3m.
It is therefore reasonable to treat macroscopic objects classically over long
periods of time.
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14.1

Two-particle systems

We have so far only looked at the quantum mechanics of a single particle in one
dimension. That certainly provided some interesting results and contrasts with clas-
sical mechanics. But the full glory of quantum mechanics only becomes visible if we
allow ourselves to look at somewhat more complicated systems, with more degrees
of freedom. The system which is closest to what we have analysed so far is that of
two particles in one dimension. The mathematics is not all that much more compli-
cated than what we have seen so far, but the results we get out will challenge our
intuition, as we touch on the important concept of entanglement.

Two-particle wave functions

If we have two particles in one dimension, our system is described by two positions
(and classically, two momenta). So instead of having a wave function (x), we
will now need a wave function ¢ (z1,z2), and a probability density P(z1,z2) =
]w(xl, x2) \2. It is important to understand what this probability density describes.
It gives us, for any pair of positions of the first and second particle, the probability
density of finding the system in that particular situation (state). Whereas for a single
particle we had

b
probability to find particleina <z <b = / P(x)dx, (14.1)

we now have a

robability to find particle 1ina < 1 < b b pd
P v P @=n ://P(xl,xg)dxldxg. (14.2)

and particle 2 in ¢ < z2 < d

Note that this is probabilitity density is constructed from one function of two vari-
ables. You may have thought that a system of two particles requires two wave func-
tions, one for the first and one for the second particle. But that is not how things
work. You have one wave function, which maps any point in the space of classical
configurations (with points labelled by (x1, x2)) to a single complex number.

If you are only interested in the probability density of one of the particles, we need
to integrate the density over the position of the other. So we can write

P(x;) = /P(:z:l,xg)dxg, (14.3)
and similar for P(x2). Intuitively this should make sense: if you do not care about
where particle 2 is located, you need to ‘collect’ all situations which lead to particle 1

being at position 1.
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14.2

By analogy with the one-particle situation, you will not be surprised to learn that if
you measure both the positions of particle 1 and particle 2 to be 1 and Z-, the wave
function collapses to the product of position eigenstates of the two particles,

wbefore(xla:'@) — Q/)af'cer(xla -TQ) 8 5(1'1 - f1)5($2 - -%2) (14.4)

What happens if you decide to only measure the position of, say, particle 1, but not
measure particle 2? Well, in that case the wave function collapses according to

wbefore(xhl?) — wafter(3317$2) X 5(1'1 - jl)wbefore(xlax2)
(14.5)

= (5(1‘1 - til)wbefore(i'la .%'2) .

That is to say, the wave function now is a ‘slice’ of the original wave function, taken
at the position where we found particle 1.

Hamiltonian eigenfunctions in a box

To keep things concrete, let us now assume that our two particles are put in a box
of size L, so that the positions 27 and x5 satisfy 0 < 1 < L and 0 < z9 < L. We
will also assume that the potential vanishes. The Hamiltonain for two free, or non-
interacting, particles is simply the sum of two single-particle Hamiltonians. If they
have equal masses, then we have

IR
2m ox?  2m o3’

. 1 1
H=_—"p%+_—"—p?%= (14.6)
2m 2m

It is therefore easy to find eigenfunctions: they are simply products of single-particle
eigenfunctions. So

d(x1,29) = %Sin (nle) sin (m7£$2) (14.7)

is a unit-normalised eigenfunction of (14.6) for any two integers m and n. The
time-dependence can be found easily by using our knowledge of stationary states.
We simply need to find the eigenvalue of this wave function, and then the time-
dependence is a simple factor exp(—iFEt/h). The Hamiltonian acting on the wave
function above gives

- h? w2 9 9

Hp(xq,20) = o 12 (n +m ) o(z1,2). (14.8)
and the energy eigenvalue is simply the sum of the eigenvalues of the individual
particle wave functions.

A wave function of the type (14.7) is called ‘separable’, as it separates into a product
of an x1-dependent function and an z2-dependent function.
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Non-separable wave

14.3 Non-separable wave functions: entanglement functions describe entangled

particles, for which
measurement of the position

Interesting things happen when we add two basis functions (14.7) together (remem- of];me particle influences thfe
w1 . . . . subsequent measurement o
ber, Schrodinger’s equation is linear, so we can do that). An example is a

the position of the other.
181 3 1 3 9
Y(21,22) = \/> 5L [Sin (%) sin < WLM> + gsin ( 77Lm1> sin < T2>] .
(14.9

This is no longer a separable wave function; you cannot write it as the product of
one function of only x; and another one of only 5. The probability density is plotted
in the figure on the right below.

Figure 14.1: A separable wave-function on the left (the first term in (14.9)),
versus a non-separable wave function on the right (both terms of (14.9)), for the
two-particle system. Lighter colours indicate larger probability density P(x1,z2).
The horizontal axis corresponds to x1, the vertical to x2. We have set L = 1 for
simplicity.

The probability density of the position of particle 1 is obtained as above by integrat-
ing over x,. This computation gives

L
2
Phefore T2 measurement(ml) = /0 ‘w(‘rh 1’2)} dzs . (14.10)

However, if you first measure the position of particle =5 to be %5, the wave function
collapses to ¢ (x1, Z2). In this case the probability density is

~ 2
Patrer 2 measurement(xl) X ‘1/)(3317372)‘ . (14.11)

The probability density (14.10) integrates, for every value of x; the density along
a vertical line in the plot. The density (14.11), on the other hand, simply takes a
horizontal slice through the plot. These clearly do not have to agree. To make this
concrete, the density for our example state (14.9) before the measurement is

2 .
Byefore 9 measurement($1) = 57 Sln(7"'$l)2 6+ 2 COS(271'$1) + COS(47T$1)] . (14.12)

On the other hand, if we measure, for example, the position of particle 2 to be x5 =
L/3, then the density for the other particle after that measurement will be

2 .
Pateer x2 =L/3 measurement(xl) = Z Sln(37r:c1)2 : (14.13)
This clearly is not the same.

We thus see that the measurement of one particule influences the subsequent mea-
surement of the other particle. Quantum states with that property are called entan-
gled states. Non-separable wave functions thus describe entangled particles.
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Figure 14.2: Probability density P(z1) before (solid curve) and after (dashed
curve) the measurement of 2 = L/3, for the example wave function used in this
section (L = 1 for convenience).

-20
-20 -10 0 10 20 -20 -10 0 10 20

Figure 14.3: A separable and a non-separable two-particle wave function, built
by multiplying and adding single-particle Gaussian wave functions.

Now that you have seen how one-particle wave functions can be used to build two-
particle wave functions, you can of course apply knowledge from previous chapters
to construct more interesting two-particle states. One useful example is the combi-
nation of Gaussian wave functions. A Gaussian for two particles is given by

This is clearly a separable state. It can be considered an initial wave function, and
its time evolution then follows by using the results computed in the previous chap-
ter. More complicated wave functions can be obtained by linear superposition. A
separable and a non-separable example are given in the figure below.

More complicated things happen when we consider interacting particles, that is,
systems for which V' (x1, z2) # 0. Needless to say, solving the Schrodinger equation
for such systems is even more complicated than for a single particle with a non-zero
potential, and this almost always requires numerical techniques. This goes beyond
the scope of the current module. We may touch on these briefly in a problem session
later.

For further reading on the topic in this chapter, see [3], and also see Schroeder’s
book.
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15.1

Simple Harmonic Oscillator

The simple harmonic oscillator potential is

V(z) = %mw2x2 (15.1)

where w is known as the “angular frequency”.

V(z)

> T

Figure 15.1: Potential of the simple harmonic oscillator

In the present chapter we will see how many quantum mechanical properties of a
particle in a harmonic oscillator potential can be found exactly using very simple
methods, without recourse to approximations.

Importance

The harmonic oscillator potential is an extremely important example in mathemati-
cal physics and quantum mechanics in particular:

* It can be solved exactly!

* It is universal: any physical system involving small fluctuations around equi-
librium is described by a collection of simple harmonic oscillators. Concretely,
we can expand a potential around a local minimum x = z as

V(z) = V(o) + %V”(aro)(x C o) (15.2)

Provided the distance |z — x| remains small this is well approximated by a
simple harmonic oscillator with

mw? = %V”(xg). (15.3)

* It is prototypical: the techniques we will introduce to in solving the simple
harmonic oscillator can be applied to a wide range of other problems.
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15.2

15.3

Classical Solution

Hamilton’s equation for the simple harmonic oscillator are

s _p (15.4)
op m
ox
with general solution
2F .
x(t) = p— sin(wt + 0) (15.6)
p(t) = V2mE cos(wt + 9) . (15.7)

The conserved energy £ > 0 and phase ¢ are determined by the initial conditions

(2(0),p(0)). The motion oscillates between the points z = + 7552 where the kinetic
energy vanishes and V(z) = E.

= T

Figure 15.2: Motion in the simple harmonic oscillator potential turns around at
the points where E = V (z).

Energy Spectrum - First Attempt

In quantum mechanics, the basic question is to determine the spectrum of eigenval-
ues and eigenfunctions of the Hamiltonian operator

o) 2 92

N D he 0
H: - = —_——
+V(z) 2m Ox?2

2m
There can gain some information on the spectrum from general theorems we proved
in lecture 11 about square-normalisable Hamiltonian eigenfunctions.

+ V(). (15.8)

1. The Hamiltonian eigenvalues obey £ > Vi, where Vi, is the minimum value
of the potential. We immediately conclude that £ > 0.

2. The spectrum is non-degenerate: there is one linearly independent eigen-
function for each energy E > 0.

Furthermore, our experience with confining potentials leads us to expect that the
spectrum will be discrete.

To make further progress, we could try to construct the Hamiltonian eigenfunctions
and eigenvalues using the following method.
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15.4

* Look for solutions to the differential equation
R 0% 1 4,
*%ﬁ + Qmw xr d)(x) = ng)(l‘) . (15.9)

* Determine £ > 0 such that there exist square-normalizable solutions ¢(x).

This is perfectly reasonable but unilluminating.

Ladder Operators

Instead, we follow a more powerful approach using “ladder operators”. We em-
phasise that this method is completely algebraic: we can find the spectrum of the
Hamiltonian operator without solving any differential equations!

Recall that physical observables in quantum mechanics are represented by Hermitian
operators obeying A = af. For example, position & and momentum p. Let us now
introduce the ladder operators,

1
4= ——— (mwi +1p) , (15.10)
vV 2hmw ( P)

at— L (mwi — ip) . (15.11)

vV 2hmw

They are not Hermitian operators, rather &' is the adjoint of a.

Why did we introduce these strange combinations? The reason is it allows the
Hamiltonian operator to be expressed in a particularly useful form. To see this, we
first invert these relations to express position and momentum in terms of the ladder
operators,

(a+a'), (15.12)

h
p= —i\/—rgw(a—dh. (15.13)

We then write the Hamiltonian operator

n2

. 1

= ;’—m + 3mw’d” (15.14)
1 hmw 1 h

=————(a—a")?+ Zmuw? i+ a2 15.15

5D (a—a") +2mw 2mw(a+a) ( )

- %‘“’ ((A rah? - (afeﬁf) (15.16)

- %‘" (aa' +ata) . (15.17)

This form of the Hamiltonian operator will allow us to determine tge spectrum of
eigenvalues F. First, however, it is important to understand the relation between
the combinations aa' and afa appearing in the Hamiltonian. In other words, we
need to compute the commutator [, a'].
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15.5

15.6

Commutators
Recall that the commutator is defined by
[A,B] := AB — BA. (15.18)

Using the canonical commutator between position and momentum, [z, p|] = ih, we
can compute the commutation relations between the ladder operators,

1
P . .
[a,a'] DY [mwz + ip, mwx — ip] (15.19)
1
— — ; 15.2
o (—ile.p] + ilp, ) (15.20
_q, (15.21)
in addition to [@,a] = [a',a] = 0. This is known as a the Heisenberg algebra. We

can use it to express the Hamiltonian operator in two more equivalent ways

X 1 1
H = hw (a*a + 2) = hw (&a* - 2) . (15.22)

Finally, let us compute the commutators between the Hamiltonian and ladder oper-
ators using [a, a'] = 1. We find

[H,a] = hwld'a, a] (15.23)
= hw(a'[a,a] + [a', ala) (15.24)
= —hwii, (15.25)
and similarly
[H,a'] = hwlata, a] (15.26)
= hw(a'la,a’] + [a', af]a) (15.27)
= hwa . (15.28)

These equations are extremely important to determine the spectrum.

Energy Spectrum Revisited

Now, suppose ¢(z) is a Hamiltonian eigenfunction with energy F. Then we can
construct more eigenfunctions by acting with the ladder operators. For example,

Halp = [H,a'lp+a'Ho (15.29)
= hwilgp+ a'E¢ (15.30)
= (E+hw)d'e, (15.31)
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and similarly,

Hap = [H,al¢ + aHo (15.32)
= —hwae + aEd (15.33)
= (£ —hw)ag. (15.34)

By induction, we find

¢ (a")"¢(z) is a Hamiltonian eigenfunction with energy E + nhw.

* a"¢(x) is a Hamiltonian eigenfunction with energy £ — nhw,

For this reason, a' and & are sometimes called ‘creation’ and ‘annihilation’ operators
respectively: they create and annihilate energy in units of hw.

However, recall that normalizable eigenfunctions must have E > 0. This means we
cannot act indefinitely with a because the eigenvalue £ would eventually become
negative. There must therefore exist an eigenfunction ¢y(x) with the property that
it is annihilated by a,

apy=0. (15.35)

We have proven that square-normalisable Hamiltonian eigenfunctions are non-de-
generate, so this wave function is unique up to normalisation.

al al al

a a a
2

2 2

Figure 15.3: Action of the ladder operators of the simple harmonic oscillator.
Since the Hamiltonian can be expressed
H=rhw(@a+3), (15.36)

we immediately find that ¢o(z) has eigenvalue 3fiw. It is known as the “ground
state” of the simple harmonic oscillator. We can then construct eigenfunctions
(ah)"¢o(x) with eigenvalues hw(n + %) where n > 0 by acting with the creation
operator a'. They are known as “excited states”.

In summary, the spectrum of the Hamiltonian operator for the simple harmonic
oscillator is

E, =hw(n + %) ne”Zsg. (15.37)

This is the key result of this lecture. We will construct the corresponding Hamilto-
nian eigenfunctions and study their properties more systematically next.
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We can write down

15.7 Normalisation unit-normalised

eigenfunctions purely in
terms of ladder operators.
Let us first determine the normalisation of the wave functions ¢, (z) systematically.

We are going to proceed by induction on n. We therefore first assume that the
ground state wave function is correctly normalized, (¢g, ¢9) = 1. We then introduce
constants C,, such that

AT pp_1(z) = Cppu(x) (15.38)
and therefore
Pn(x) = C}n&*qﬁn_l(x) (15.39)
: (15.40)
= Cn_l,,cl(&*)%o(:c» (15.41)

We want to determine C), such that ¢,,(z) is normalised for all n > 0.

Let us assume that the (n—1)-th wave function is correctly normalized, (¢,,—1, ¢n—1) =
1, and compute the normalisation of the n-th wave function. Using the inner product

notation,
(bns ) = (-t G151 6) (15.42)
ny, Pn) = Cna nflacna n—1 .
1 .
=1e |2<¢n_1,aaT¢n_1> (15.43)
1 g 1
= |Cn’2 <¢7’l—17 (FL(,U + 2) (bn—l) (15'44)
1
= Wn«bnil? ¢n—1> (15.45)
1
= c ’271. (15.46)
We can therefore choose C,, = \/n giving the normalisation
fu(@) = \/%(awwo(g;) . (15.47)
The action of the ladder operators on the wave functions ¢, is
T (2) = Vn+ 1 dnp (), (15.48)
adn(z) = vVnon_1(x). (15.49)

The first equation is our definition of C,. The second equation follows from the
first by acting with a, expressing the result in terms of the Hamiltonian operator
H = hw(aa® — }), using the fact that ¢,(v) is a Hamiltonian eigenfunction with
energy E, = hw(n + 1) and finally shifting n — n — 1.

Notice that
il () = non(x). (15.50)
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15.8

15.9

For this reason, afa is sometimes called the “number operator”. In particular, we can
recover the correct Hamiltonian eigenvalues

Hop(x) = hw(ala + %)%(x) (15.51)
= hw(n + %)gﬁx(w) (15.52)
= En¢n(z), (15.53)

as expected.

Orthogonality

In the lecture on Hermitian operators, we proved that square-normalisable eigen-
functions of a Hermitian operator with different eigenvalues are orthogonal. It is
worth verifying this fact here using the ladder operators.

Without loss of generality, we will show that (¢, ¢,) =0 foralln > 0and j > 0.
Since the result must vanish, we do not keep track of the normalisation. Therefore,

(Gt s D) o (1) o, pn) (15.54)
= (0, a" ) (15.55)
o (o, @ o) (15.56)
=0, (15.57)

since a ¢o(x) = 0. In summary, we indeed find that

(s dm) = Onm (15.58)

for any n,m € Z>.

Expectation Values

We can now compute the expectation value of physical observables A(x,p) in any
Hamiltonian eigenfunction. First, we express of position and momentum in terms
of the ladder operators,

&=/ —(a+al), (15.59)

p= fz',/h’;w(afﬁ). (15.60)

Using this result, we can express A(z,p) in terms of the ladder operators a, a'. Fi-
nally, (A(z,p)) can be computed using the known action of 4, ' (or the Hamiltonian
H if it is more convenient) on ¢, (z) and the orthonormality of ¢, (x).

For example, let us compute the expectation value of position in the n-th stationary
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wave function as follows

() =/ %(% (a+a')pn) (15.61)

= \l 2L<¢na \/ﬁd)nfl +vn+ 1¢n+1>
mw

| h
= %(\/ﬁ 6n7n—1 +vn+ 1 5n7n+1) (15.62)
—0. (15.63)

The expectation value of position squared is computed similarly,

(x?) = %«bm (@+a") ¢n) (15.64)
= %wbn, (a2 + a'? + aa’ + a'a)gn)
= %wn, (6® +a™ +2a%a + 1)¢n) (15.65)
= %(m&z,n—Q + vV +1)(n+2)0nnro + (20 +1)8,,) (15.66)
= %(% +1) (15.67)
= % (n + ;) : (15.68)

By similar computations, the expectation values of momentum and momentum
squared are

(p) =0, <p2> = hmw <n + ;) . (15.69)

Note the following points:
* We have AzAp = fi(n + 1), compatible with Heisenberg’s uncertainty princi-

ple. Furthermore, Heisenberg’s uncertainty principle is saturated for n = 0.
Indeed, we show below that ¢((x) is a Gaussian.

* As a consistency check, we can reproduce the expectation value of the Hamil-

tonian,
(H) = —— (%) + =mu?(a?) (15.70)
2m 2
— %hmw (n + ;) + %muﬂ% <n + ;) (15.71)
= hw <n + ;) (15.72)
=FE,. (15.73)
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The (complicated) wave
H functions of the simple
1 5 ° 1 O Wave fun(:tlons harmonic oscillator can be
constructed by acting with
Everything in the simple harmonic oscillator can be computed using the properties  the differential operator form

A A 2 . . of the creation operator on
of @, a', H and how they act on the wave functions ¢, (z). That said, we could not g, ground ate oo

finish without briefly exploring what these wave functions look like! gmcti?n ;which isa
aussian).

First, using the momentum operator p = —ifd,., the ladder operators become differ-
ential operators acting on wave functions

1 0
= — —_— ]_ .
a S <mwx+hax> , (15.74)
1 0
ol = ——— —h—. 15.75
a S (mwx 830) (15.75)

The defining equation avy(x) = 0 for the ground state wave function becomes a
differential equation,

(mwx + h(,i) ¢o(x) =0, (15.76)
whose normalised solution is the Gaussian
mw\ 1/4 2
_ —mwz* /2R
$o(r) ( — ) e : (15.77)

This explains the observation that the ground state wave function saturates Heisen-
berg’s uncertainty principle.

The normalized exited state wave functions are then given by

1 1 o\"
on(x) = 7l @hmw) (mw:p - hax) oo(z) . (15.78)

They take the form of a polynomial in z, known as a “Hermite polynomial”, multi-
plying a Gaussian wave function. Some comments:

* The wave functions are even or odd: ¢(—z) = (—1)"¢(x). This explains why
(x) = 0.

* The wave functions are real. This explains why (p) = 0.

90



Figure 15.4: The first three energy eigenstates of the simple harmonic oscillator.
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16.1

The Continuity Equation

In various earlier lectures, we have discussed how expectation values such as

(x) = / dzx P(x,t) (16.1)
depend on time. In this lecture, we investigate how the probability density P(x,t)
depends on time ¢. This question leads us to introduce the probability current J(z, t),
which measures the flow of probability and prove the continuity equation

P+ 0,J =0. (16.2)

This important equation expresses the idea that probability cannot be created and
destroyed but flows from one region to the next. This is known as the local conser-
vation of probability. It is an important concept when we come to discuss scattering
and tunneling in the following chapters.

The Continuity Equation

Our starting point is the probability density

P(x,t) = [, )| (16.3)
We would like to understand how the probability density depends on time ¢. Let us
therefore first recall Schrédinger’s equation for the wave function and its complex
conjugate,

4 2

ouile,t) = —+ (;mag + V(x)) W t), (16.4)
_ i h2 _

() = 1 (502 4 V(@) ) Uwnt). (16.5)

where we recall that the potential V'(z) is a real analytic function. We can now
compute the time derivative of the probability density,

OP = Oyl v|? (16.6)
=Y (Op)) + ¥ (8p) (16.7)
i n? A
=29 <—2ma$ + v) =30 (-maz + V> 0. (16.8)
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16.2

Note that the dependence on the potential V'(x) cancels out between the two terms
and the remainder becomes

HP = 2i (v 924 — 2 O2¢) (16.9)

mt
= SR, (00, — Dou) (16.10)

mi
=—0,J, (16.11)

where the symbol J,
ho- _
mi

is known as the “probability current density”. The result
OP+0,J =0, (16.13)

is known as the “continuity equation”.

Physical Interpretation

To understand the physical interpretation of J(z,¢) and the continuity equation it is
convenient to integrate it over an interval. Let us define

b
Puy(t) :/ P(z,t)dz (16.14)

to be the probability to find the particle in the interval a < x < b. The time deriva-
tive of this probability can be expressed in terms of the probability current at the
boundaries of the interval,

b
jtPab(t):/ O P(t,x)dx (16.15)
b
:—/ O J (t,z) dx (16.16)
— J(a,t) — J(b,1). (16.17)

This has the following interpretation:

* J(z,t) is the rate that probability is “flowing” from left to right at x.

* The rate of change of the probability P,;(¢) to find the particle in the interval
a < x < bis equal to the rate that probability is flowing in at the boundaries
x=aand x =b.

Put simply, this expresses the conservation of probability: probability cannot be
created or destroyed but flows from one region to the next.

It is illuminating to consider the following limits:
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1. Sending a — —oo and b — oo, the equation becomes
d o0
dt/ P(z,t)dz =0, (16.18)

since if the wave function is normalizable then ¢)(z,¢) — 0 and hence J(z,t) —
0 as x — +o00. We therefore recover the conservation of the total probability to
find the probability. In particular, if the wave function is normalised at ¢ = ¢,

/ P(z,t=ty)de =1, (16.19)

this will remain normalised for ¢ > 0. This is an important property that you
proved in one of the problems in the chapter where we first introduced the
Schrodinger’s equation.

2. Setting a = x and b = z + dz we find
O P(x,t)dx = J(x,t) — J(x + du,t). (16.20)

In the limit dz — 0, we recover the continuity equation 9, P(x,t) + 0, J(z,t),
which therefore expresses the local conservation of probability in the neigh-
bourhood of the point x.

16.3 Example: Stationary Wave functions

Let us consider a stationary wave function, Normalisable stationary
wave functions have
—iEt/h 2 vanishing probability current
P(x,t) = p(x)e F . H(z) = Eg(). T f

density: no probability flows
in or out of any given region.
The probability density and current are independent of time,

P(x,t) = |¢(z)|?, (16.21)
T, ) = o (B()0r6(r) — 9(2)0ed(x)) (16.22)

The continuity equation tells us that 0,J(z,t) = 0 and therefore J(x,t) = Jy is
constant. Furthermore, if ¢(x) is square-normalizable then J(z,t) — 0 as x — +o0.
However, if J(x,t) is constant, then it must vanish J(z,t) = 0.

As an explicit example, suppose we have a Hamiltonian eigenfunction in the infinite

potential well 0 < = < L,
2 . /nwx
o(x) = \/z sin (T) , (16.23)

for some n € Z-. Since ¢(x) is a real function,

ho o ~_h
J =5 (W0 = $0:0) = 5 (002 — 60:9) = 0, (16.24)
as required.

In fact, square-normalizable Hamiltonian eigenfunctions can always be chosen real
(up to a constant phase) and this argument is completely general. It provides an-
other proof of J(z,t) = 0 for a square-normalisable stationary solution.
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16.4 Example: Sum of Two Stationary Wave functions

16.5

Now consider the normalized sum of two stationary wave functions,
1
V2

where we assume the Hamiltonian eigenfunctions ¢;(z), ¢2(z) are normalized and
real with energy eigenvalues E;, E». Introducing the frequency

b(x,t) = (gb1($)e_iE1t/h+¢2(x)6_iE2t/h) : (16.25)

BB
w= —7
the probability current is
ho, - -
T(@,1) = 5 (4 0t) =9 0ut)) (16.26)
h , .
= I (010201 + 320002 + $1002 € " + G2Opr €' —cc.)  (16.27)
h
=5 (20201 — P10,2) sin(wt) . (16.28)

The probability current therefore oscillates in time with frequency w.

Example: Plane Waves

Now consider the stationary plane wave solution for a free particle on a line,

Ypla,t) = C =Bt/ (16.29)

where E, = p?/2m. The probability density and current are constant
P(z,t) = |CP, (16.30)
J(z,t) = |C\2%. (16.31)

Note that the probability current is equal to the probability density multiplied by
the velocity p/m of the wave. This is consistent with the continuity equation. It
evades the statement that J(x,t) = 0 for a stationary wave function because it is not
square-normalisable.

Despite the fact that they are not square-normalizable, plane wave solutions are
useful in “scattering problems” in quantum mechanics. This will be the starting
point for the next lecture.
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17.1

17.2

Scattering Problems

Introduction to Scattering Problems

Consider a potential that becomes constant as  — +oo. For instance,

0 — —
Viz) — { T (17.1)
Vo T — +00.
In a scattering problem, we ask the question: what is the fate of a particle with
energy E incoming from z = —oc0?

Figure 17.1: A classical particle incident on a potential barrier. It either reflects
(if the energy is smaller than Vinax), or it passes over the barrier.

The answer in classical mechanics is simple. Let Vipax denote the maximum value of
the potential. Conservation of energy tells us that:

* If £ < Vhax, the particle will be “reflected” back to x = —oo with probability
1.

* If £ > Vpax, the particle will be “transmitted” to z = oo with probability 1.

The answer in quantum mechanics is much more interesting!

Scattering Wavepackets

What do we mean by the scattering of particles in quantum mechanics? The proper
answer is to consider the scattering of “wavepackets”, which you can imagine as
Gaussian wave functions.

* For t — —oo, the wave function has the form of an incoming wavepacket,
Pz, t) = Yr(e,t). (17.2)

* The incoming wavepacket will then “scatter” from the potential and as ¢ — oo,
the wave function tends to a sum of reflected and transmitted wavepackets,

U(x,t) = Yr(z,t) + Yp(x,t). (17.3)
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Quantum particles scattering
off a potential barrier
typically have both a
non-zero probability to
reflect as well as a non-zero
probability to transmit.

A quantum-mechanical wave
packet incident on a
potential barrier will split
into a reflected part and a
transmitted part, in contrast
to classical mechanics.
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Figure 17.2: A quantum mechanical wave packet incident on a potential barrier.
Part of it reflects, and part of it gets transmitted.

In the limit ¢ — oo, the reflected and transmitted wavepackets are completely sep-
arated in space and show no interference. The probability for the particle to be
reflected or transmitted is then defined by

R = lim /ysz(x,t)y?dx, (17.4)
t—o0
T = lim /|¢T(:U,t)]2d:v, (17.5)
t—o00
such that
R+T=1 (17.6)

if the total wave function is correctly normalized.

For a general potential V' (z) and incoming wave function v;(x, t), computing R and
T is extremely hard. Fortunately, we do not need to solve this problem in general to
answer important questions about scattering experiments.

Scattering Plane Waves

Scattering experiments typically involve incoming particles with a small energy un-
certainty AFE. This suggests that instead it is useful to consider stationary wave
functions with energy F > 0,

P(a,t) = pla)e PR H.(x) = E¢(x). (17.7)

It is straightforward to find the form of the Hamiltonian eigenfunction ¢(z) in the
asymptotic regions where the potential is constant: these are plane waves.

e For x — —oo, Hamiltonian eigenfunctions obey

8?;;(255) _ —k2¢(x) : k= \/m (17.8)

The general solution is

o(x) = ehT 4 peihT (17.9)

This is a superposition of incoming and reflected waves. Since the wave func-
tions are not square-normalizable, the overall constant is not physically mean-
ingful: for convenience we have set the coefficient of the incoming wave to
1.
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* For ¢z — +o0, V(x) = Vj. For scattering problems we assume that £ > V.
The Hamiltonian eigenfunctions are solutions to

0% (x)
0x?

= —k%(z), K= \/Qm(E —Vo)/h?. (17.10)

We consider the solution '
P(z) = te' (17.11)

. . . . sl .
corresponding to a transmitted wave. There is another solution e~**'®. which
corresponds to a wave incoming from 2 = +o0o. We discard this solution as we
only want waves incoming from z = —oc.

In summary we have asymptotic plane waves,

etke 4 pe—ikz T — —00
o) > { . (17.12)
teik'e x — +00

How do we extract physical information from these wave functions? To answer this
question, we consider the probability current. For stationary solutions this takes the
form

= (V00 — $0u)) (17.13)

_
2m

h
=5 (9029 — ¢029) (17.14)
where the phase e “#*/" has cancelled out. For a plane wave ¢(z) = e'**  the
probability current is

- h
J(d = thxy _
(¢ = ™) 2ma

. . . X hk
(e—zkxazezkx o ezkxame—zk:c> — E . (1715)

(once again, this does not violate the statement that the probability current vanishes
for square-normalisable stationary solutions because plane waves are not square-
normalisable). The probability current in the asymptotic regions is therefore

J[ — JR T — —00
J(z) — (17.16)
Jr z — +o00,

where

hk hk
Jr = —, Jp = m|r|2 Jp =

/
hk MQ
m

(17.17)

are defined such that J;, Jg, Jr > 0. They are the contr1but1ons to the probabil-
ity current in the asymptotic regions from the incident, reflected, and transmitted
waves.

There is an immediate constraint on these currents from the continuity equation
OP + 0,J = 0. Since the the wave functions are stationary, 9;P = 0, and the
probability current is constant in space. We conclude that

J(—00) = J(c0) (17.18)
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17.4

and therefore

Jr—Jr = Jr. (17.19)
This means that if we define
Jr 2 Jr_ K o
R:=—= T:=— = —|t 17.20
=1 =l (17.20)

then R+ T = 1.

This suggests we interpret R and T as the probability for an incoming particle with
definite energy E > Vj to be reflected and transmitted by the potential. This in
fact coincides with a careful analysis of the scattering of wavepackets in the limit
AFE — 0 of small uncertainty in energy. We are therefore justified in using the
simpler definition in terms of plane waves.

For more information, see section 5.4 of [5].

Example: Finite Step Potential

Let us consider the finite step potential

0 z <0
Vi(z) = (17.21)
Vg xr > 0

where we assume that V5 > 0. This is a simple approximation for a more realistic
smooth potential interpolating between 0 and Vj. It might represent the boundary
between two different materials.

E

Vo

=0

Figure 17.3: A finite step potential.

There are two cases to consider: E > Vj or E < V. The “scattering problem”
considered above corresponds to £ > V. However, 0 < E < Vj is also extremely
interesting and is known as the “tunnelling problem”. We consider it further in the
next lecture.

Let us therefore restrict here to £ > V}. In this example, the asymptotic plane wave
solutions considered above are valid all the way up to = = 0. In summary,

etk | pe—ikz <0
) =49 : (17.22)
tetk'= x>0

We now need to impose boundary conditions at the discontinuity in the potential at
x = 0. Since the potential remains finite we require that both ¢(z) and 9,¢(x) are
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continuous across = = 0. This requires
l+r=t k(1-r)=FkKt. (17.23)

We have two equations for two unknowns r, ¢t and the solution is unique

k—k 2k
= — = — 17.2
ity AR (17.24)
and hence
k—E\? Ko(o2k \®  4kK
R= T=——) =——=. 17.25
<k+ﬁ>’ k<k+w> (k+ k)2 (17.25)
As a consistency check we see that R + T = 1 as required.
T T
T
R
0 > E/VO
1

Figure 17.4: The transmission and reflection probabilities for scattering of a
quantum plane wave of energy F off a finite-step potential of height V5.

The reflection and transmission probabilities as a function of the dimensionless ratio
E/Vj are shown above. There are two important limits:

* AsE — ocorVy — 0we find R — 0 and T — 1: the potential step effectively
disappears and the incoming particle is transmitted with probability 1. Note
that this coincides with the classical expectation for particles with £ > V4.

* As E — Vj from above we find R — 1 and 7" — 0: the incoming particle is
reflected with probability 1. This coincides with the classical expectation for
particles with E < V4.

As mentioned above, an important question is what happens in quantum mechanics
when E < Vj;. We will address this problem in the next lecture!
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Tunnelling

Consider the potential barrier shown below. In classical mechanics, an incoming
particle with energy £ < Vj,ax is reflected with probability 1 and cannot reach
x = +o00. In quantum mechanics, there can be a non-zero probability for the particle
to be transmitted through to + = +oc. This phenomenon is known as “quantum
tunnelling”.

0

Figure 18.1: When E < Vmax a quantum mechanical wave packet will still par-
tially tunnel through the barrier, while a classical particle would be fully reflected.

18.1 Finite Step Revisited

Let us revisit the finite step potential,

Vy=4° =<0 (18.1)
) x>0

where we assume Vj; > 0. We consider incoming particles of definite energy £ > 0.
There are two regimes to consider:
1. “Scattering” : E > Vj.

2. “Tunnelling” : 0 < E < V}.

18.1.1 Scattering on a step

The scattering regime E > 1}y corresponds to the case where classically an incoming
particle would be automatically transmitted. We covered this in the last lecture so
we summarise the results here.

The Hamiltonian eigenfunctions take the form

eika} + T,e—ik:c <0
P(z) = (18.2)

tetk'e x>0
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described by plane waves.
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18.1.2

E
Vo Vo
E
0 0
=0 z=0
Figure 18.2: Two regimes for the finite step potential: when £ > V,, we are in
the scattering regime, while for E < Vj we are in the tunnelling regime.
where

k= \2mB/R2 K = \[2m(E - Vo)/n2. (18.3)

The coefficients r, t are found by requiring that the wave function and its derivative
are continuous at x = 0, with the result

(18.4)

The wave functions are not square-normalizable and to extract physical information
we instead compute ratios of probability currents. The probability current is

Jr—J <0
J@)y={1" " F (18.5)
Jr x>0
where hk hk hk!
J=—  Jp=—r* Jpr=—It]*. (18.6)
m m m

The reflection and transmission probabilities are then

IR k—k\?
Jro K, AkK
7% (k+ k')

As a consistency check, we have R + T' = 1. The reflection and transmission coeffi-
cients are sketched below for Vj < F < oo.

Tunnelling into a step

Now consider 0 < E < Vj. In the region x > 0, where E — 1} has changed sign, the
Hamiltonian eigenfunction now has an exponential decay

etkr 4 pe—ikz <0
T) = , 18.8

where now k = \/ 2m(Vy — E)/h*. We discard the other potential solution ** which
would diverge at z — +o0.
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0 > E/VO
1

Figure 18.3: The transmission and reflection coefficients for the scattering
regime, as a function of the dimensionless ratio of the energy of the incoming
wave divided by the height of the step.

Notice that the above wave function can be obtained from the scattering problem
by replacing ¥’ — ix. This means we can immediately write down the solution for
the coefficients r, t,
_k—ik 2k

"Thktie T ktin
This dramatically changes the computation of the probability currents, which in-
volve both the wave function and its conjugate. In particular, the reflected probabil-
ity current is now equal to the incoming probability current,

(18.9)

2
hk
=—=J. (18.10)
m

Ik
= L2 =

hk |k —1
L ' iK
m m

k4 ik

Meanwhile, the transmitted probability current now vanishes,

B _

Jr =5 —(0(@)0:¢(v) — ¢(2)0r(x)) x>0 (18.11)
=0, (18.12)

because e~ % is a real function of z.
In summary, we conclude that
R=1 T=0 (18.13)

in the tunnelling regime 0 < E' < Vj. Note the following points:

* This is consistent with the limit £ — V' in the scattering regime E > V4.

* It coincides with the classical expectation that the particle is always reflected
when 0 < E < Vj.

Despite the fact that 7' = 0, the probability density is non-zero in the region x > 0
so there is therefore a non-vanishing probability to find the particle with > 0. The
probability density is sketched below. In contrast, the particle is forbidden from the
region = > 0 in classical mechanics
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=0

Figure 18.4: The probability density in the presence of a finite step potential, for
the tunnelling regime, which clearly shows that the wave function can penetrate
into the barrier.

This has important consequences if we were to add a step down to V(z) = 0 at
some finite distance x = L. The wave function would then be expected to decay
exponentially for 0 < = < L, but then become trigonometric again for x > L
and there is a possibility for the particle to escape to x — +oo. This is known as
“quantum tunnelling”. We explore this in more detail now.

18.2 Finite Potential Barrier

Let us now consider the finite barrier potential

0 z <0
Viz) =<V 0<z<L. (18.14)
0 x> L

In this case, we will see that there is a non-zero probability to find the particle to

1 2.
E
Vo Vo
E
0 0
z=0 r=1L z=0 x=1L

Figure 18.5: Scattering and tunnelling regimes for the finite barrier problem.

the right of the barrier even when F < V.

18.2.1 Scattering off a barrier

For a finite width potential
. . . X X . . barrier, the scattering regime
The scattering regime corresponds again to £ > V. The Hamiltonian eigenfunctions  exhibits full transmission

are trigonometric in all regions, §§f§?ﬁi‘éﬁ§3e§°r a discrete

corresponding to a

etkz + re—the z <0 wave-length which fits an
i o integer number of times
¢(x) = Aelk ¥+ Be ke O<z<L ) (1815) ‘inside’ the barrier.
teth® x> L
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where the wavenumbers k, k&’ are defined as above.

Since the potential remains finite at z = 0 and + = L, we need to impose that the
wave function and its derivative are continuous there. This gives the constraints

l+r=A+B (18.16)
k(1—7r)=FkK(A—-B) (18.17)

from x = 0 and
AeF'L 4 BeK'L — toikL (18.18)
K (Ae®'E — Bem 'Ly = kte'*l | (18.19)

from = = L. We have four linear equations for four variables r, ¢, A, B. The solution
is found by elementary but tedious linear algebra that I will not reproduce here. The
important output is the reflection / transmission probabilities

(k? — k"?)%sin%(k'L)
(k2 + k) sin(k'L) + 4k2k" cos2(k'L)
T=|t=1-R. (18.21)

R— M? _ (18.20)

The important features are summarized below.

1
0
1+ T
! R
1+~
0 E/Vo
1

Figure 18.6: Transmission and reflection for a finite barrier, as a function of the
incident energy, for the scattering regime. The case E/V, = 1 is called “critical
scattering”.

* The limit £ — oo corresponds to k, k" — oo with k/k’ — 1. We find R —
0, T — 1 reproducing the classical expectation for £ > V. The potential
barrier is negligible compared to the energy and the particle is transmitted
with probability 1.

* The limit £ — V" corresponds to k' — 0T, with

0% 1

R— —— T— ——
1+~ T+~

(18.22)

where v = mL?V;/2h? is a dimensionless parameter.
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* The function has trigonometric dependence on %’. In particular, the transmis-
sion probability becomes 1 whenever k'L = nr or equivalently

E—Vo-l-h2<mr>2.

18.23
2m \ L ( )

These “transmission resonances” correspond to a standing wave in 0 < z < L.
If we remember that the wavelength is A\ = 27 /k’, the condition becomes
2L = nA so the distance from = = 0 to x = L and back is an integer number
of wavelengths. Intuitively, there is constructive interference between incident
wave at = 0 and the standing wave in the region 0 < x < L.

18.2.2 Tunnelling through a barrier

The tunnelling regime is 0 < F < V{. The Hamiltonian eigenfunctions are now

etkr 4 pe—ike z <0
¢(r) = Ae"® + Be "™  O0<z<L, (18.24)
tetkr x> L

where k and « are defined as above.

: /AN

0

E/V

Figure 18.7: Transmission and reflection coefficients for a finite size potential
barrier, for all potential heights.

As before, the coefficients r, ¢ are found by replacing ¥’ — ix in the scattering
regime. This modifies the reflection and transmission coefficients to

R (k* + Ii2)2 sinh?(kL) (18.25)
(k2 — k2)%sinh? (kL) + 4k2k2 cosh?(k L) '

T=1-R.

(18.26)

Note that there is a non-vanishing probability for the particle to be transmitted
through the potential barrier and reach = = +o0, which is forbidden in classically.
This is known as “quantum tunnelling”.

* The limit ¥ — 0 corresponds to k£ — 0 with « fixed. We find R — 1,7 — 0
reproducing the classical expectation for £ < Vj.
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In the tunnelling regime
there are no resonances, and
the transmission goes to zero
as the barrier height goes to
infinity.
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-

A Jupyter notebook (on
Colab) to compute the time
dependence of a wave packet
incident on a finite-height
barrier, and see the effect of
tunnelling.
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* The limit E — V; in the tunnelling regime coincides with the limit £ — V'
in the scattering regime.

* Note the exponential rather than trigonometric dependence on kin 0 < = < L.
In particular, there are no “resonances” like in the scattering regime.

Finally, we can combine the results in the scattering and tunnelling regimes to sketch
the reflection / transmission probabilities across the entire range 0 < E < cc.
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19.1

19.2

Momentum-space Wave function

So far position and momentum have appeared asymmetrically in quantum mechan-
ics. In this lecture, we rectify the situation by introducing a ‘momentum-space’ wave
function. We work at a fixed time ¢.

Motivation

In the Hamiltonian formulation of classical mechanics, position and momentum ap-
pear in a symmetrical way as coordinates (z,p) on phase space. Moreover, there is
a canonical transformation that exchanges them!

Recall that a canonical transformation is a change of coordinates (z,p) — (2,p)
that leaves Hamilton’s equations invariant. Under the transformation

we find
OH ) oH
. OH . OH

So Hamilton’s equations are indeed unchanged but the role of position and momen-
tum has been reversed.

The Fourier Transform

In contrast, position and momentum appear quite asymmetrically in our description
of quantum mechanics so far. We have introduced a ‘position-space’ wave function
1 (x) on which position and momentum act as operators

(19.4)

(19.5)

The canonical transformation (z,p) — (p, —z) from classical mechanics suggests
there should another formulation of quantum mechanics with a ‘momentum-space’
wave function v)(p) on which position and momentum act as operators

0
Zh%,

. (19.7)

z

(19.6)

p
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The symmetry between
position and momentum is
restored by the
momentum-space
representation of quantum
mechanics.

In classical mechanics
position and momentum
appear very symmetrically,
and there is a map (a
canonical transformation)
which exchanges them and
leaves Hamilton’s equations
unchanged.

The Fourier transform
translates things in
position-space to things in
momentum-space.
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We claim that the position and momentum wave functions are in fact related by the
following pair of integrals

P(z) = ﬁ dpw )P/t (19.8)
U(p) = F dw e~ /N (19.9)

This is an example of a ‘Fourier transform’.

Let us see that these are consistent with the expected form of the position and mo-
mentum operators above.

. . oy ., O .
* First acting with zha— on the momentum-space wave function,
P

9 ~ 9 .
. —ipz/h
Zhap P(p) = \/7/ dz ¢ (z < 8pe P ) (19.10)
—ipz/h
\/ﬁ/ da(z (a:e p ) (19.11)
—ipz/h
\/ﬁ da: (xp(x)) e , (19.12)

which corresponds to multiplying the position-space wave function by .

* Second multiplying the momentum-space wave function by p,

po(p) F dw ) (peve/m) (19.13)
F dw ( ;Ee_im/h) (19.14)
= T x(—zh(izﬁ(m)) e~pr/h (19.15)
\ 2T _

which corresponds to acting with —zha— on the position-space wave function.
x

The action of position and momentum operators on position and momentum wave
functions is summarised in the following table.

Y(x) Y(p)
. 0
T x +2h5p (19.16)
. L0
D —zh% D
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wave function which is a
function of momentum
rather than position, there is
indeed a symmetry between
the two.



19.3 The Momentum-space Wave function

The function ¢ (z) is known as the momentum-space wave function. Everything we
have learnt about the position-space wave function has analogues for the momentum-
space wave function.

. ]5(p) = ]{/;(p)|2 is the momentum probability density. In particular, the proba-
bility that a momentum measurement will find a < p < b is

b b
[ wPw)= [ i),
a a
This is an improvement on previous lectures where we could only compute

expectation values of momentum.

* We can compute momentum expectation values using

() = / T dp ) [F0)P (19.17)

for any polynomial function f(p).

* We can compute position expectation values using

= [ avite 1 (h(fp) () (19.18)

for any polynomial function f(x).

19.4 Examples
19.4.1 Example 1: bound state of the delta-function potential

Consider the wave function
W(z) = Ceel/n (19.19)

where )\ > 0 is a constant; we have seen this wave function in the discussion of the
delta function potential. To find the normalisation C, we require the probability to
find the particle anywhere is 1,

1= \C|2/ e~ Pel/h gy (19.20)
:2\012/ e~/ gy (19.21)
0
h
=|CPy, (19.22)

and therefore C' = y/\/h up to a constant phase.
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Let us now compute the momentum-space wave function,

o _ 1 > —ipz/h
Y(p) = Nore /_ Oodpe Y(x) (19.23)

A o ;
_ A d —zpa:/ﬁ —MIVE 1924
Vs | e e -
A ([T [ o) asas
2nh? 0 —00
A 1 1
_ A 19.2
\/;<ip+/\+—ip+>\> -

2 \3/2
_ \/; o (19.27)

You may wish to verify that {/;(p) is correctly normalised!

.

Figure 19.1: The position-space wave probability density for the delta potential
bound state, and its momentum-space version.

b

19.4.2 Example 2: Gaussian wave function
The momentum wave

Consider the normalised Gaussian wave function function corresponding to a
Gaussian in position-space 1s

again a Gaussian, but now in

¢(=’E) = 06712/4A2 . (19.28) momentum-space.
where C' = 1/(2rA2)Y/4,

The momentum-space wave function is computed by completing the square in the

exponential,
Ip) = -2 / " et/ ipn/h (19.29)
27Th —00
C _p2A2/R2 > _ i 2 2
_ o P /h dre (z42ipA/h)?/AA (19.30)
V 27Th /—oo
- \/20 7ﬁ€_p2A2/h2 / dy eV /487 (19.31)
U vy
where
y =+ 2ipA?/h. (19.32)

In performing the substitution, we are now integrating over a ‘contour’ ~ in the
complex y-plane that is shifted by an amount 2ipA? /A in the imaginary direction.
However, as there are no poles in the intermediate region we can deform the contour
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2pA%/h

v

Re(y)

Figure 19.2: The integration over y in (19.31) is a line in the complex plane,
which can, however, be shifted to the real line because the integrand does not
have any poles in the intermediate region.

back to the real axis. We then have a standard Gaussian integral,

-~ C 2 A2 2 o0 2 2
P(p) = —p—e P AP / dye v /44 (19.33)
vV 2mh —x
_ CViana ;”?2@—7’“%2 . (19.34)
T
Now defining N
A =h/2A, (19.35)

and substituting in the normalisation factor C, this becomes a normalised Gaussian
wave function in momentum-space

~ 1 2 JAN2
_ —p?/4A
vr) = (27rﬁ2)1/46 P (19.36)

We can therefore immediately determine that (p) = 0 and Ap = A in complete
agreement with what we computed earlier explicitly in position space using Ap =

(p?) — ((p))*.

y P(x) » P(p)

- T 'y

Figure 19.3: The position-space wave probability density for a Gaussian wave
function, and its momentum-space version. The momentum-space wave function
is again a Gaussian, but with a different width (in momentum-space).

* This is a very important result: the Fourier transformation of a Gaussian wave
function is a Gaussian wave function with uncertainties related by

h
AzAp= 7. (19.37)
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The Fourier transform

1 9 5 Properties preserves the normalisation

of the wave function. In
addition, a translation in
We conclude by listing a couple of important properties of the Fourier transforms  position-space corresponds to

lati iti d t £ ti a phase factor multiplication
relating position and momentum wave functions. in momentum-space, and

vice versa.

First, you may have noticed from the Gaussian example that the momentum wave
function was automatically normalised. This is generally true: () is normalised if
and only if ¥(p) is normalised.

Second, the Fourier transformations interchange ‘translations’ and ‘phases’. To be
concrete, it is straightforward to check from the definitions that if

Y(x) = Y (19.38)
are related by Fourier transform then so are

Wz — z0) s (p)ePmo/h (19.39)

U (z)ePor/h s P(p—po) (19.40)
In words:
* If I translate the position wave function () by an amount x, this is equiva-
lent to multiplying the momentum wave function v (p) by the phase e~"%0/%
* IfI translate the momentum wave function {/; (p) by an amount py, this is equiv-

alent to multiplying the position wave function (z) by the phase e??0%/%,

This has some important consequences. For example, suppose 1)(x) = ¢(x)e?0%/",
Then we should expect the momentum expectation values obey (p),, = (¢) + po. To
see this explicitly using the momentum wave function

Py = / dpp|3(p — po) (19.41)
= / dp' (' + po) [o(p)|? (19.42)
= (P)y + Do, (19.43)

assuming g(p) is normalised.
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20.1

Ehrenfest’s Theorem

In this last lecture, we will explore how the expectation values of Hermitian opera-
tors, such the expectation values of position (x) and momentum (p), evolve in time.
We will derive an important equation, known as “Ehrenfest’s Theorem” [2], which
shows that the classical equations of motion hold inside expectation values. We will
illustrate this theorem with a number of examples and point out some subtleties.

A Classical Reminder

In classical mechanics, a particle has definite position and momentum (z(¢), p(¢)) at
each time ¢ that evolve according to Hamilton’s equations

. OH
. OH

where {, } is the Poisson bracket. Furthermore, the evolution of any quantity A(zx, p)
constructed from position and momentum is

A={AH}. (20.3)

This is the idea we have already exploited that the Hamiltonian generates time
translations. Notice that a quantity A is constant in time if and only if its Poisson
bracket with the Hamiltonian vanishes,

{H,A}=0. (20.4)
This notion of conserved quantity will carry over naturally to quantum mechanics.

For the standard Hamiltonian

2m
we find
s P ,__dV
T m p= dx
and recover Newton’s law
. dv
mr = ——.
dx
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Ehrenfest’s theorem states
that classical equations of
motion hold inside
expectation values.
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Ehrenfest’s theorem roughly

20.2 Ehrenfest’s Theorem states that the classical

equations of motion hold
inside expectation values. It
Let us consider a Hermitian operator A such as position i’, momentum ]3 or the is easily misinterpreted or

o - . . . isused though.
Hamiltonian operator H. Recall that the expectation value of A in a wave function " tous

Y(x,t) is

(A) == (v, AY) = /_OO dxp(z,t) (A-P(x,t)) . (20.5)

We would like to to understand how this expectation value depends on time.

Theorem: For a Hermitian operator A,

d(A) i, -
= ﬁ([Hw‘lD- (20.6)

Proof: We will compute the time derivative of the expectation value using the com-
pact inner product notation. First, using the product rule inside the integral,

d(4) d
= g\ AY) (20.7)
= (O, A) + (P, AOp)) - (20.8)

The partial time derivatives can be replaced by the Hamiltonian operator using
Schrodinger’s equation, A
ihoywp = H -. (20.9)

Using properties of the inner product and Hermitian operators, we find

M Ly, Av) + - A L) (20.10)
= - ((H, Av) — (4, AHY)) (20.11)
= 7 (0, HAY) — (b, AH) (20.12)
= Ly, [H, AJy) (20.13)
- %qg, A)) (20.14)

where
[A,B] .= AB— BA

is the commutator. This complete the proof.
This result is reminiscent of the classical equations of motion,
A=—{H, A}.

To make this precise, recall that commutators in quantum mechanics can be ob-
tained from Poisson brackets in classical mechanics by replacing

{','}H—%[‘,‘]. (20.15)
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20.3

20.4

For example,
{r.p} =1 = [&p] =ih.

gives the canonical commutation relation. Ehrenfest’s theorem can therefore be
interpreted as the statement that the classical equations of motion hold “inside”
expectation values.

Let us verify this statement explicitly for the Hamiltonian

2
H=2 4+v() (20.16)

2m

where V(x) is a real analytic function of . The commutators of this Hamiltonian
with position and momentum were computed in lecture 11,

[H,z] = iy [H,p] = in V@) (20.17)
m dx
From Ehrenfest’s theorem,
d{z) _(p)  dp) __[dV
at  m’ dt dx (20.18)
and therefore 2 ) 5
d*{x |4

Conserved Quantities

In quantum mechanics, a conserved quantity is defined to be a Hermitian operator
A that commutes with the Hamiltonian: [H, A] = 0. This is the natural analogue of | cConserved quantities
; g q
the classical statement that {A, H} = 0. Note that the Hamiltonian itself is always a ~ correspond to operators

. which commute with the
conserved quantity! Hamiltonian.

An immediate consequence of Ehrenfest’s theorem is that if A is conserved then its
expectation value is constant in time,

O0(A) =0, (20.20)

justifying the definition of a conserved quantity.

Example: Free Particle

In a previous lecture, we completely solved Schrodinger’s equation for the wave
function of a free particle with vanishing potential V(x) = 0. In particular, we

e els . . . . . . A Gaussian wave packet with
found that an initial Gaussian wave function remains a Gaussian with expectation momentum po has a centre

values depending on time, of mass moving with
velocity (p)/m; this follows

directly from Ehrenfest’s

<$> =20+ %ta <p> = Po - theorem.

The important point here is that
diz) (p)  d(p)

a — m dt
so the expectations values solve the classical equations of motion with V' (z) = 0: the
centre (z) of the Gaussian wave function is moving with a uniform velocity (p) /m.

:0,
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Figure 20.1: A Gaussian wave function with momentum py. Ehrenfest’s theorem
states that centre of the peak (x) moves with velocity (p)/m, without doing the
long explicit computation we did earlier.

20.5 Example: Infinite Square Well

The expectation value of a

While Ehrenfest’s theorem states the classical equations of motion hold inside ex-  function of z is not the same
as the function of the

pectation values, this does not necessarily imply that the expectation values obey  expectation value of z. Be

the classical equations of motion. That is to say, while we have seen that aware of this subtlety when
using Ehrenfest’s theorem.
d*(z) oV
=—(—=— ). 20.21

e < oz > ( )
for a system with Hamiltonian (20.16), this does not mean that you can replace the
right hand side with

_ OV ((x))
ox

The example in the present section illustrates this explicitly. Moreover, it shows that
sometimes Ehrenfest’s theorem takes a different form, because boundary terms need
to be taken into account.

The example to consider is the infinite square well 0 < x < L, with an initial wave
function that is an equal linear combination of the Hamiltonian eigenfunctions with
the lowest energy,

1
P(x,0) = ﬁ(gél(x) + ¢pa2(x)) . (20.22)
The solution of Schrédinger’s equation at times ¢ > 0 is
(@, 0) = \%(@(z)e—mlt/ﬁ  o(a)e Bty (20.23)

In a tutorial problem in the chapter on stationary states, we have shown that the
position expectation value oscillates in time around the centre of the box,

(x) = g — Acos(wt) (20.24)
(20.25)

with frequency
w = @ : (20.26)

and amplitude 4 < .
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Figure 20.2: Expectation value (z) as a function of time for a particle in a box de-
scribed by the sum of the two lowest-energy Hamiltonian eigenstates. Clearly (x)
does not satisfy the classical equations of motion, which yield constant-velocity
motion except at the boundaries.

This is clearly not a solution of the classical equation of motion. Since the potential
vanishes for 0 < x < L, a classical particle would feel no force except at the bound-
aries x = 0 and = L. The particle would simply bounce backwards and forwards
between the two walls of the infinite potential well with a uniform velocity. So the
expectation value (x) does not satisfy the classical equation of motion.

Does the classical equations of motion hold inside expectation values, as Ehrenfest’s
theorem states? Well, that is rather subtle in this case. It is straightforward to check
that the momentum expectation value satisfies

(p) = Amw sin(wt) = mdfl? .

and thus is in agreement with the first of (20.18), derived from Ehrenfest’s theorem.
We should also be able to show that

d(p)

e Amw? cos(wt) = — <dV> . (20.27)

dx

But computing (V’(x)) is subtle because the potential jumps at = 0 and x = L and
the derivative of the potential diverges there.

To treat this problem properly, we need to return to the proof of Ehrenfest’s theorem
for momentum, paying more careful attention to the boundary conditions at z = 0
and x = L. The starting point is the definition of the momentum expectation value,

L
) = =it [ da(0.0).
Using Schrodinger’s equation and its complex conjugate,

h? — B2
%) —ihdp) = ——0%), (20.28)

2m 2m

thop) = —
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Sometimes a generalised
form of Ehrenfest’s theorem
is required, namely when
boundary terms ignored in its
derivation are actually
non-vanishing.



we find

L
Do in / d () (0xt0) + D(0:01))] (20.29)
4 0
2 L
=2 [V e [(@20)00) — B(@30)] (20.30)
m Jo
h2 L o
- /0 dz 0y (|02 — $O2)] (20.31)
h2 2L

where in the final step we have used that the wave function vanishes at x = 0 and
x = L. As expected, the non-vanishing contribution comes only from the boundaries
x = 0 and = = L, and we did not see these terms when doing integrations by parts
in the derivation of Ehrenfest’s theorem ealier. Be aware of subtleties like these.
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