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LECTURE 1

1
Introduction

1.1 A bit of history

While it perfectly possible to study quantum information and quantum computing
as isolated mathematical topics without any reference their origin in physics, this
would ignore a large part of interesting historical development, and it would also
fail to catch the actual real-world importance it may one day have. So before we
go into the underlying maths, this chapter will put things into context and try to
give some idea about what you can and cannot do with quantum information and
quantum computing.

Historically, the field is now almost 45 years old. The first suggestion of using a
quantum version of the universal Turing machine goes back to the work of Paul
Benioff [1] in 1980. Richard Feynman [3] and Yuri Manin then independently came
to the conclusion that simulating the quantum world on a classical computer is very
limiting (for reasons we will explore later) and those limitations might be avoidable
by using a computer based on quantum mechanics itself instead. Theoretical work
in that direction, namely the development of algorithms that could be run on such
– as of then non-existent – quantum computers where developed by many people
starting with the work of David Deutsch [2] and Peter Shor in the early 1980’s.
It then took some four decades to get to actual physical realisations of quantum
computers, and even those are still quite limited in size and capability.

But before we go deeper into the details of those developments, and get lost in
mathematical details that sometimes hide the things that are really important, it is
good to think briefly about why quantum computing might be different from classical
computing. In physics terms, there are two key things in quantum mechanics which
make it different from classical mechanics: superposition and entanglement. These
two things simply do not exist in classical systems. We will discuss these in some
more detail below to refresh your memory.

Most of the notes here will discuss what is known as “quantum information”: how
you store and manipulate information in systems which are built from quantum-
mechanical ingredients. The second part of the module will then use this to study
quantum computing: how can we do computations by manipulating quantum infor-
mation, and how do those computations differ from classical computations.
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Figure 1.1: The double slit experiment, in which the quantum particle goes
through two slits at the same time.

Superposition means that
quantum systems “compute”
multiple classical things at
the same time.

Application of superposition:
quantum algorithms and
quantum computing.

1.2 Quantum is different

1.2.1 Superposition: doing multiple things at once

A typical course on quantum mechanics introduces the need for something beyond
the classical world by discussing the double-slit experiment. This famous experi-
ment involves a single source emitting individual particles or photons. Their path
is blocked by a screen with two slits, and behind that screen sits a detector. Even
though we can see particle-like behaviour of the quanta because individual blobs
appear on the detector one-by-one, the pattern that emerges after a large number of
quanta have been emitted is one of interference.

What this shows is that quantum particles, in a way, go through both slits at once,
and only the measurement at the detector forces them to become classical again,
giving a concrete outcome for the position. The quantum world thus makes the
particle do two things at the same time, only collapsing onto a definite prediction
once the measurement is made. The state of the system, until the time that the
measurement is made, is one of a superposition of the particle going through slit S1
and another one of the particle going through slit S2.

It is this “doing multiple things at once” aspect that underlies the fact that quan-
tum computers can do things “much faster” (in a sense that will be made precise
later in this course) than classical computers. From this simple example it is also
already clear that, while quantum systems can do multiple classical things at once,
the tricky bit will be to somehow make use of that and extract all those multiple
“computations” at the end.

1.2.2 Entanglement: connection without interaction

Entanglement is often only discussed once spin systems are introduced into quantum
mechanics, but we have seen that entanglement really is a property of the quantum
world that already exists for simple two-particle systems for which each particle is
only labelled by a position. If the positions of the two particles are labelled by x1 and
x2 respectively, then the wave function is some complex-valued function ψ(x1, x2) of
these two variables. In the special case that the function is separable, that is, when
it takes the form

ψ(x1, x2) = ψ1(x1)ψ2(x2) , (1.1)
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Figure 1.2: Probability density for two states of a two-particle system. On the
left, the wave function is separable, while on the right it is non-separable.

Entangled states lead to one
particle influencing the other
even when there is no
interaction, and even when
the particles are separated by
an arbitrary distance.

Applications of
entanglement: secure
communication and quantum
key distribution,
teleportation, deciding
whether nature is
fundamentally non-classical
(“Bell inequalities”).

the system is non-entangled. This means that a measurement of the position of
particle 2 does not influence the measurement of the position of particle 1. If we do
not measure particle 2, the probability density for particle 1 is

P1(x1) =

∫ ∣∣ψ(x1, x2)∣∣2dx2 = ∣∣ψ1(x1)
∣∣2 , (1.2)

because ψ2(x2) is itself normalised. If we first measure the position of particle 2 to
be x2 = q, then the wave function collapses to

ψ̃(x1) = Nψ(x1, q) = Nψ1(x1)ψ2(q) = ψ1(x1) , (1.3)

where the constant N is determined by imposing that ψ̃(x1) is normalised. Be-
cause the wave function was separable, the probability density is the same as before,
P1(x1) =

∣∣ψ1(x1)
∣∣2. In terms of the picture above, the measurement of particle 1

before we know anything about particle 2 is obtained by integrating over the ver-
tical direction, while measuring particle 1 after we measure particle 2 is done by
evaluating the function at a particular vertical position. For a separable function,
these are equivalent.

However, when the wave function is not separable, these two computations gener-
ally differ. For instance, assume that the wave function is

ψ(x1, x2) = ψ1(x1)ψ2(x2) + χ1(x1)χ2(x2) (1.4)

for four different functions ψ1, ψ2, χ1, χ2. Integrating the complex norm-squared
over x2 or inserting a particular value x2 = q will now typically not produce the same
function of x1. In the picture on the right above, the difference is clear: integrating
along the vertical direction x2 does not produce the same function of x1 as slicing
the plot along some horizontal line x2 = q.

So typically, the measurement of the position of particle 2 changes the subsequent
probability distribution for the measurement of the position of particle 1. This is
what is known as entanglement. The important aspect of this is that measuring one
particle immediately has consequences for the measurement of the other particle,
even though the particles do not interact and even though the particles can be arbi-
trarily far separated. This never happens in classical mechanics.
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Application of quantum
information: Von Neumann
and Entanglement entropy.

Entanglement provides us with new ways to secure communication channels and
also allows us to “teleport” a quantum state to a different location using classi-
cal communication. Moreover, it has played a crucial role in deciding whether the
probabilistic character of quantum mechanics is merely due to “lack of understand-
ing”, or whether it is something fundamental. We will see that there are certain
inequalities (the “Bell inequalities”) which will tell us that nature is not classical.

1.3 Computers and information

Both examples discussed above are in a way much more complicated than the ones
that we will be discussing at length in the present notes. For the purpose of quantum
computing, we will no longer look at systems with a continuous space of classical
states, but rather at much simpler ones in which the possible classical states are
discrete. Think simply about ordinary digital computers: these are built from “bits”,
which are simple classical things which can take either one of two values.

Restricting to discrete systems will make our life a lot easier: there are no integrals
but only sums, and all Hilbert spaces are finite-dimensional and operators acting in
them can thus (if we want) be written out in terms of explicit finite-size matrices.
With those systems, we can (and will, in the last chapter of these notes) develop
the formalism to quantify how much information (“quantum entropy”) is stored in
a quantum system.

Where practical quantum computation mainly struggles at the moment is in scaling
such systems up to respectable sizes. While typical digital computers, like your
phone, contain at least on the order of 1010 to 1011 classical bits, the most powerful
quantum computers around the time of writing do not get beyond 103 quantum bits.
That these can still do useful things, and that scaling this up by only a few orders
of magnitude will lead to dramatical changes in e.g. cryptography, is something that
this module will try to get explain.

1.4 Recommended literature

There is a large body of literature, both in book form an in the form of online
courses, that deals with quantum information and quantum computing. The list
below includes some of my own personal favourites, but that does of course not
mean that other resources cannot be useful.

• Quantum Computation and Quantum Information, Michael Nielsen and Isaac
Chuang. This is a very big book (600 pages without counting the appendices),
which I think is too much to get the key ideas across, but it does count as
a bible in the field. If you have a question, it is probably answered in here
somewhere.

• Quantum computing for the very curious, Andy Matuschak and Michael Nielsen.
Shares one author with the book above. A modern online text with some new
experimental techniques to make it easier to remember things. Content-wise,
it’s much shorter.

• Quantum Computer Science, N. David Mermin. A more recent book, essentially
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only about quantum computing, and so mostly relevant for the Epiphany part
of our module.

• Quantum Computation, John Preskill. Online notes for a course at Caltech,
which for many people are one of the standard references in the field. Lucid
explanation of the Bell inequalities (in chapter 4), which we will discuss later
this term.

• Basic Quantum Algorithms, Renato Portugal. Very clear exposition of the most
basic quantum algorithms, preceded by a quick introduction to elements of
quantum information and quantum computing.

If you do not care about any of the physics background, and just want to “get going”
with the maths of quantum information, there are some more recent resources which
can help:

• Basics of quantum information, a course provided by IBM and the authors of
the Qiskit software. There are video lectures by John Watrous and there is an
online/pdf written set of lectures notes as well.
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LECTURE 2

2
Quantum mechanics essentials

Quantum mechanics is commonly introduced by discussing the concept of a wave
function. This is a function ψ(x) such that the complex norm |ψ(x)|2 gives the prob-
ability of finding the system in state x. We have seen that the space of wave functions
can be seen as an infinite-dimensional vector space, called Hilbert space. Here we
will revise these concepts, and then introduce the Dirac notation, which is more
compact and also more suitable to describe systems which classically have only a
discrete number of states.

2.1 States and wave functions

Let us reminder ourselves of the quantum mechanics of a single particle on the real
line x ∈ R. In the formulation of quantum mechanics using wave functions, this
system is described by a complex-valued wave function of space and time, ψ(x, t).
The probability of finding a particle in a region x ∈ [a, b] at some moment in time t
is given by

P (a, b; t) =

∫ b

a

∣∣ψ(x, t)∣∣2 dx . (2.1)

This probability is clearly ≥ 0 because of the properties of the norm of a complex
number. We normalise the wave function such that

P (−∞,+∞; t) = 1 , (2.2)

that is to say, the probability of finding the particle somewhere is one.

The time-evolution of the wave function is given by the Schrödinger equation,

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) . (2.3)

The right-hand side equals the Hamiltonian operator acting on the wave function,
Ĥψ(x, t) = K̂ψ(x, t) + V̂ ψ(x, t) where K,V are the kinetic and potential energy
respectively. If we impose (2.2) for a single moment in time t = t0, then the
Schrödinger equation guarantees that it will remain valid for arbitrary other times.

The function ψ(x) is said to describe the state of the system. Rather than knowing
exactly where a particle is, as we do classically, we only know the probability density
P (x) (or more precisely, the amplitude ψ(x)) of finding the particle somewhere on
the real line. Because the Schrödinger equation is linear, any linear superposition of
wave functions is also a solution. So you can have a wave function strongly peaked
on earth, and another one strongly peaked at the moon, and the linear combination
is still a valid quantum mechanical wave function,

ψ(x) = ψearth(x) + ψmoon(x) . (2.4)
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In Dirac notation, the ket
|ψ〉 ∈ H corresponds to the
physical state. The dual bra
vectors 〈φ| live in H∗ and
together they can form the
inner product 〈φ|ψ〉.

In quantum mechanics, only measurement will force the system into one of the two
classical configurations.

2.2 The Dirac notation (bra-ket)

Because the space of wave functions is linear (wave functions can be superposed)
and because we have a norm, we can view each wave function as a vector in a
(complex) vector space: Hilbert space. Typically, this vector space will be infinite-
dimensional, because there is an infinite, or even a continuum, of possible classical
configurations. But this is not necessary, and in fact we will consider in this mod-
ule mainly systems for which we have only a finite (but possibly large) number of
classical configurations.

The Dirac notation consists in writing |ψ〉 for a vector in Hilbert space correspond-
ing to the wave function ψ(x). And instead of calling it a vector, we call it a ket,
for reasons that will become clear shortly. The fact that we no longer write the x
label is significant. Compare the situation in linear algebra. There, we can have
a physical, arrow-like object which we call a vectors (let’s say v). To write down
concretely which vector we mean, we choose a basis of unit vectors, and then write
down the components of the vector on that basis, e.g. v = (2, 3). But changing the
basis does not change the vector itself, only its components. With wave functions
a similar thing happens. The representation ψ(x) refers to the “basis” of position
eigenstates labelled by the position x. But it is perfectly possible to write down the
wave function in a different basis, for instance the basis of momentum eigenstates.

So we use |ψ〉 from now on, as a more abstract way of expressing the vector in
Hilbert space. For any two such vectors, we have a positive definite inner product
for the corresponding wave fuctions,

inner product(φ, ψ
)
=

∫ ∞

−∞
φ∗(x, t)ψ(x, t) dx =: 〈φ|ψ〉 . (2.5)

On the right-hand side we have introduced the inner product in the Dirac notation,
〈φ|ψ〉. It requires that we have access to the dual vector 〈φ|, which as you can see
from the explicit integral representation, is simply related to the complex conjugate
of the wave function φ. This new object 〈φ| is called a bra, so that the inner product
(or bracket) between two states reads bra-ket.

In this module we will almost always consider finite-dimensional Hilbert spaces.
That means that we can define the Hilbert space by specifying a finite set of basis
states. Of course, there is not a unique choice of basis states, and it will often be use-
ful to consider different choices (related by changes of basis matrices). Commonly
we will consider orthonormal bases, i.e. ones where all the basis states have norm 1
and are mutually orthogonal.

To better understand the bra symbols we need to introduce the concept of dual of
a vector space V . Formally, the dual V ∗ of a vector space V is the vector space of
linear functionals from V into C. Or in formulas,

V ∗ = {Φ : V → C s.t. Φ(az+ bw) = aΦ(z) + bΦ(w),

∀ a , b ∈ C , and∀ z ,w ∈ V } . (2.6)
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A ket |ψ〉 can be thought of
as a column-vector, and then
the bra 〈φ| is a row vector, so
that their inner product is a
scalar.

Exercise:

Show that this is indeed a vector space over the complex numbers and show that if
V has dimension n so does V ∗.

But this dual space is nothing mysterious. If V = Cn, vectors in the standard basis
are simple n dimensional column vectors, i.e. n × 1 matrices if you wish, similarly
you can think of V ∗ as the vector space of 1 × n matrices, i.e. row vectors. Fur-
thermore whenever V is endowed with a complex inner product 〈·, ·〉, precisely as
our Hilbert space of states H, for each vector z ∈ V we can associate an element
Φz ∈ V ∗ schematically as Φz = 〈z, ·〉

Φz(w)
.
= 〈z,w〉

for all w ∈ V . It is easy to check (just write down what it means) that Φz(·) just
defined is indeed a linear functional from V into C, hence Φz ∈ V ∗. This means that
as soon as our vector space V has a complex inner product we have immediately an
isomorphism between V and V ∗

V 3 z 7→ Φz(·) = 〈z, ·〉 ∈ V ∗ .

In quantum mechanics we have vectors, i.e. elements of H, denoted by ket vectors
|ψ〉, and thanks to the complex inner product for each vector |ψ〉 we can consider
the corresponding element in the dual space 〈ψ| ∈ H∗. A bra vector 〈ψ| applied to a
ket vector |φ〉 gives precisely the inner product 〈ψ |φ〉 .

Note in particular that it does NOT make any sense to consider |ψ〉 + 〈φ| since one
is a column vector that cannot be added to the other object which is a row vector!

Example:

Suppose our quantum mechanical system is described by a three-dimensional Hilbert
spaceHwritten in terms of the orthonormal basis |0〉 , |1〉 , |2〉, i.e. H = span{|0〉 , |1〉 , |2〉}.
We can represent any vector in H as a three dimensional column vector using the
standard basis

|0〉 7→

1
0
0

 , |1〉 7→

0
1
0

 , |2〉 7→

0
0
1

 ,

|ψ〉 = a |0〉+ b |1〉+ c |2〉 7→

ab
c

 ,

〈ψ| = a∗ 〈0|+ b∗ 〈1|+ c∗ 〈2|

7→
(
a∗ b∗ c∗

)
=

ab
c

†

.

To understand the second line let us remember that we are told that three basis
vectors are orthonormal hence we know that the matrix that represents the inner
product in this basis is given by the identity matrix. At this point it is very simple
to compute the inner product between two states, say the inner product of |φ〉 =

11



d |0〉+ e |1〉+ f |2〉 with |ψ〉 = a |0〉+ b |1〉+ c |2〉

〈φ |ψ〉 =
(
d∗ e∗ f∗

)ab
c

 =

de
f

†ab
c

 ,

where remember A† = (A∗)T is the transpose complex conjugate.

In particular we also see that if the ket |ψ〉 = a |0〉 + b |1〉 + c |2〉 is represented by

the column vector

ab
c

, then the bra 〈ψ| can really be thought of as 〈ψ| = (|ψ〉)†

and represented by the row vector (a, b, c)† = (a∗, b∗, c∗).

2.3 Hilbert space formalities

You can now write this all up in formal language if you want. A quantum mechanical
system is described by a ket |ψ〉 in Hilbert space H. A Hilbert space is a (complex)
vector space with Hermitian inner product. This means that for any |ψ〉 ∈ H and
|φ〉 ∈ H:

• For any complex numbers a and b, (a |ψ〉+ b |φ〉) ∈ H.

(linear combinations of vectors = quantum superposition)

• The inner product of |ψ〉 with |φ〉 is a complex number denoted

〈ψ |φ〉 = 〈φ |ψ〉∗ ∈ C.

The inner product is Hermitean,

〈ψ |φ〉 =
(
〈φ |ψ〉

)∗
.

• The inner product is linear in the second state (and so anti-linear in the first
state). I.e. if |φ〉 = c1 |φ1〉+ c2 |φ2〉 then

〈ψ |φ〉 = c1 〈ψ |φ1〉 + c2 〈ψ |φ2〉 ,

〈φ |ψ〉 = c∗1 〈φ1 |ψ〉 + c∗2 〈φ2 |ψ〉 .

In other words, the inner product is linear in the second factor, and anti-linear
in the first; it is sesquilinear.

Note that in your linear algebra module you might have seen a slightly differ-
ent definition for an hermitian inner product which is linear in the first term!
This is just a convention and in this module we will keep the inner product
to be linear in the second term. Combining linearity in the second term with
hermiticity tells us that the inner product is not quite linear in the first term

• This inner product is real, 〈ψ |ψ〉 ∈ R. However, we also have a physical state
condition (and we will only consider such states in this module): 〈ψ |ψ〉 ≥ 0
and 〈ψ |ψ〉 = 0 ⇐⇒ |ψ〉 = 0. We will use the notation || |ψ〉 || ≡

√
〈ψ |ψ〉 for

the norm of |ψ〉.
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Physical states are rays in
Hilbert space, as the
normalisation is irrelevant
(and often tuned so the norm
of the vector is one).

Finally, states which differ only by a normalisation factor are physically equivalent,
i.e.

|ψ〉 ∼ c |ψ〉

for any non-zero c ∈ C. There are two ways to work with this equivalence relation.
One is to ignore the normalisation but then include appropriate factors of the norms
of states in formulae. The other, which we will usually assume, is to always work
with normalised states, i.e. unless indicated otherwise a state |ψ〉 will be assumed
to be have || |ψ〉 || = 1. If you have a state which is not normalised, just divide
it by its norm to get a normalised state. Note that normalisation does not fix a
unique representative of the equivalence class of states since multiplying by a phase
exp(iθ) for any real phase θ does not change the norm, i.e. || |ψ〉 || = 1 if and only if
||eiθ |ψ〉 || = 1.

Sometimes (pure) quantum mechanical states are called rays in the Hilbert space
because of the equivalence |ψ〉 ∼ c |ψ〉 with c ∈ C non-zero.

NOTE: Obviously the zero state cannot be normalised but that is OK as it does not
describe the state of a physical system, and there is no physical process to transform
a non-zero state to the zero state1.

2.4 Operators

In quantum mechanics we work with linear operators acting on the states in a
Hilbert space. Such operators are used to describe the time-evolution of the sys-
tem and to describe measurements. If Â is a linear operator then acting on linear
combinations of states we have

Â(a |ψ〉+ b |φ〉) = a(Â |ψ〉) + b(Â |φ〉) ,

i.e. it is linear. Also, products and linear combinations of linear operators, are again
linear operators.

The adjoint (also commonly called the Hermitian conjugate) of Â is denoted Â† and
defined by 〈

ψ|
(
Â†|φ

〉)
=
[〈
φ|
(
Â|ψ

〉)]∗
for all states |ψ〉 and |φ〉.

In quantum mechanics, we usually focus on two types of linear operators:

• self-adjoint operators (or Hermitian) meaning Ĥ† = Ĥ. Self-adjoint operators
correspond to observables, i.e. quantities which can be measured. E.g. X̂
position operator, P̂ momentum operator, Ĥ Hamiltonian operator, Ŝ spin
operator. The reason for that comes from the fact that hermitian operators
have real eigenvalues.

• unitary operators meaning Û †Û = Î. Unitary operators are used to describe
time-evolution in quantum mechanics.

1Do not confuse the zero state (meaning the unique state with norm zero) with a state labelled by
zero, i.e. |0〉 6= 0! The norm of |0〉 is always non-zero || |0〉 || = 1, while the norm of the 0 vector is
always vanishing ||0|| = 0.
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The expectation value of an
operator gives the average
outcome of the measurement
of the corresponding
observable, if we start with
the same system many times
over.

Exercise:

Show that the eigenvalues of a self-adjoint operator Ĥ must be real. Show that
eigenstates of a self-adjoint operator corresponding to different eigenvalues are
automatically orthogonal to each others.

Note: when we pass to matrices: self-adjoint operators become hermitean matrices,
i.e. H† = (HT )? = H while unitary operators become unitary matrices, i.e. U †U =

UU † = I. Do not confuse these two properties!

Exercise:

Given the matrices

A =

(
1 i
−i 2

)
,

B =

cos(
√
5) + 2i sin(

√
5)√

5

sin(
√
5)√

5

− sin(
√
5)√

5
cos(
√
5)− 2i sin(

√
5)√

5

 ,

C =

(
0 1
1 0

)
,

D =

(
1 i

1 + i 3

)
,

check that A is hermitean, B is unitary, C is both unitary and hermitean, D is
neither unitary nor hermitean.

Exercise:

Find a basis for the vector space (check that it is indeed a vector space!) of the 2×2

Hermitean matrices.

We also define the commutator of two operators Â with B̂ as:[
Â, B̂

]
≡ ÂB̂ − B̂Â.

There is also a similar definition of the anti-commutator{
Â, B̂

}
≡ ÂB̂ + B̂Â.

The expectation value of an observable Â on a state ψ denoted by 〈A〉ψ is given by

〈A〉ψ = 〈ψ| Â |ψ〉 .

In most cases if there is no confusion regarding which state we are considering we
will drop the subscript and simply write 〈A〉. This expectation value can really be
interpreted as the average outcome of many measurements of the same observable
Â on the same state |ψ〉, i.e. prepare 1000 times the same state |ψ〉, measure 1000
times the same observable Â and then take the average.

Note that the expectation value is clearly a real number

〈A〉∗ψ = (〈ψ| Â |ψ〉)∗ = (〈ψ| Â† |ψ〉)

= (〈ψ| Â |ψ〉) = 〈A〉ψ ,
(2.7)

where the hermiticity of the inner product, i.e. 〈ψ |φ〉∗ = 〈φ |ψ〉 , and the hermiticity
of Â, Â† = Â, both play a crucial role.
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LECTURE 3

By writing out the action of
an operator on each of the
basis vectors in Hilbert space,
we can construct its matrix
representation.

2.5 Matrix representation

As already mentioned above, for an N -dimensional Hilbert space, we can represent
states using ket vectors or complex N -component column vectors, similarly for bra
vectors we need N -component row vectors. A standard choice is to represent the
basis states by column vectors with all components zero, except a single ‘one’. Then,
provided we are using an orthonormal basis (so that the matrix that represents the
inner product is given just by the identity matrix), the inner product of two states
represented by column vectors u and v is given by standard matrix multiplication
as u†v. Linear operators are then represented by N ×N matrices.

In such a representation self-adjoint operators Ĥ† = Ĥ are indeed Hermitian matri-
ces H† = H, and unitary operators Û †Û = Î are unitary matrices U †U = I where
I is the identity matrix of the appropriate dimension. Note that in most cases we
will keep the hat symbol ˆ , as in Â, to denote the abstract operator without having
having picked any particular basis to be represented as the standard one, once we
choose a particular orthonormal basis to be represented via the standard one we will
refer to the matrix representing the operator Â in this basis with the same letter but
without the hat, i.e. just A. Note that we will be playing a lot with different basis so
although the abstract operator is one Â it might be represented by different matrices
A1 , A2 , ... according to which basis we choose! However we should remember from
Linear Algebra I that if we change basis, say from {v1, ...v2} to {w1, ...,wn}, then
the matrix A2 representing the linear transformation Â in the new basis is related to
the matrix A1 representing the same linear transformation Â but in the old basis via

A2 = S−1A1S ,

where S is the change of basis matrix to go from the new basis to the old one.

Example:

Let H = span{|0〉 , |1〉} be a 2-dimensional Hilbert space of states, and assume that
the basis vector are orthonormal. We are given a linear operator Â defined on this
basis

Â |0〉 = a |0〉 + b |1〉 , Â |1〉 = c |0〉 + d |1〉 , (2.8)

with a, b, c, d ∈ C.

First of all we can pass to the vector/matrix representation by using coordinates.

We chose to represent the first basis vector |0〉 →
(
1
0

)
and the second one as

|1〉 →
(
0
1

)
. Once we make this choice of basis the operator Â can be represented

as the 2× 2 matrix

A =

(
a c
b d

)
,

and the abstract form Â |0〉 = a |0〉 + b |1〉 can be simply stated in matrix language

as A
(
1
0

)
=

(
a c
b d

)(
1
0

)
=

(
a
b

)
, and similarly for the other basis vector.

Let us now compute the adjoint Â† of Â and find which conditions we have to
impose on the coefficients a, b, c, d such that Â becomes self-adjoint. If we want to
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compute Â† we need to know what this operator does on a basis, i.e. we need to
compute Â† |0〉 and Â† |1〉.

So we can write

Â† |0〉 = α |0〉+ β |1〉 , Â† |1〉 = γ |0〉+ δ |1〉 ,

for some yet undetermined α, β, γ, δ ∈ C. To fix these coefficients we need to
remember that |0〉 , |1〉 form an orthonormal basis so we have

〈0| Â† |0〉 = 〈0| (α |0〉+ β |1〉) = α ,

〈1| Â† |0〉 = 〈1| (α |0〉+ β |1〉) = β ,

〈0| Â† |1〉 = 〈0| (γ |0〉+ δ |1〉) = γ ,

〈1| Â† |1〉 = 〈1| (γ |0〉+ δ |1〉) = δ .

Finally we need to remember the definition
〈
ψ
∣∣∣Â†
∣∣∣φ〉 =

〈
φ
∣∣∣Â∣∣∣ψ〉∗ so we have

α = 〈0| Â† |0〉 = (〈0| Â |0〉)∗ = a∗ ,

β = 〈1| Â† |0〉 (〈0| Â |1〉)∗ = c∗ ,

γ = 〈0| Â† |1〉 = (〈1| Â |0〉)∗ = b∗ ,

δ = 〈1| Â† |1〉 = (〈1| Â |1〉)∗ = d∗ .

Note the order of the vectors being flipped! We have then

Â† |0〉 = a∗ |0〉+ c∗ |1〉 , Â† |1〉 = b∗ |0〉+ d∗ |1〉 .

Using the same basis as above this operator can be represented as the 2× 2 matrix

A† =

(
a∗ b∗

c∗ d∗

)
.

When passing to coordinates the matrix representing the adjoint operator Â† is
exactly A† = (A∗)T , i.e. the transpose complex conjugate of the matrix A repre-
senting the operator Â. Finally if we want the operator to be self-adjoint we must
have Â† = Â which imposes a = a∗, b = c∗, d = d∗. These conditions are identical
to imposing that the matrix representing Â is an hermitian matrix, i.e. A = A†.

Once we realise we are just doing linear algebra we can easily understand what
happens when we change basis. Suppose for example we are given the operator

B̂ |0〉 = 2i |0〉+ 5 |1〉 , B̂ |1〉 = −3 |0〉+ (1 + i) |1〉 ,

which can be represented in the same basis as above by the matrixB =

(
2i −3
5 1 + i

)
.

We want to use now a new orthonormal basis defined by |±〉 = 1√
2
(|0〉±|1〉) (check

that this is indeed an orthonormal basis) or equivalently |0〉 = 1√
2
(|+〉+ |−〉), |1〉 =

1√
2
(|+〉− |−〉). We can proceed in two ways. One possibility is to rewrite the action
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of B̂ in this new basis

B̂ |+〉 = 1√
2
B̂(|0〉+ |1〉)

=
1√
2
((−3 + 2i) |0〉+ (6 + i) |1〉)

=
(−3 + 2i)

2
(|+〉+ |−〉) + (6 + i)

2
(|+〉 − |−〉)

=
3 + 3i

2
|+〉+ −9 + i

2
|−〉 ,

B̂ |−〉 = 1√
2
B̂(|0〉 − |1〉)

=
1√
2
((3 + 2i) |0〉+ (4− i) |1〉)

=
(3 + 2i)

2
(|+〉+ |−〉) + (4− i)

2
(|+〉 − |−〉)

=
7 + i

2
|+〉+ −1 + 3i

2
|−〉 .

Hence in the new basis represented by |+〉 →
(
1
0

)
, |−〉 →

(
0
1

)
the new matrix B̃

representing the same operator B̂ now takes the form

B̃ =
1

2

(
3 + 3i 7 + i
−9 + i −1 + 3i

)
.

We could have reached the same conclusion noting that we are just making a
change of basis from {|0〉 , |1〉} to {|+〉 , |−〉} and the change of basis matrix is simply
given by

S =
1√
2

(
1 1
1 −1

)
,

hence the matrix representation B̃ of the same operator B̂ but in the new basis,
is simply given by S−1BS where B is the matrix representation of B̂ in the old
basis. This matrix multiplication produces exactly the same matrix B̃ just computed
above.

Change of basis will play a crucial role in the discussion of qubits. We will have a set
of privileged operators and we will keep on changing from a basis of eigenvectors
for one such operator to a basis of eigenvectors for another of these operators. Every
time we change basis the matrix representing these operators will change according
to a change of basis transformation, i.e. S−1BS.
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2.6 Time-evolution

In quantum mechanics the time-evolution of the system is governed by a self-adjoint
operator called the Hamiltonian Ĥ. In this module we work in the Schrödinger
picture, so a state in the system evolves with time, and we can consider a state
|ψ(t)〉 (think of it as a time-dependent vector). The time-evolution is described by
the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 .

This can also be written in an integrated form to define the state in terms of some
initial state, say at time t > 0 in terms of the state at t = 0:

|ψ(t)〉 = Ût |ψ(0)〉

where Ût is a unitary operator. In the case where the Hamiltonian operator is not
time-dependent we have

Ût = exp

(
− i
h̄
t Ĥ

)
.

In quantum information we usually assume complete control over a quantum system
or subsystem. This means that we can interact with the system in a arbitrary way,
e.g. by rotating it, applying electric or magnetic fields etc. In terms of time evolution
this means that we assume we have the ability to transform the state of the system

|ψ〉 → Û |ψ〉

using any unitary operator Û we want. As such we will usually talk about trans-
formations by a unitary operator Û , rather than in terms of a Hamiltonian operator
with evolution for some specific period of time.

2.6.1 Exponential of operators

In this Section we defined the time evolution operator in terms of the exponential
of the Hamiltonian operator. This is a general concept:

Def: The exponential of a matrix A, or more generally of an operator Â, is defined
by the Taylor series

exp(Â) =
∞∑
n=0

Ân

n!
= Î +

Â

1!
+
Â2

2!
+ ... ,

where Î denotes the identity operator. Note that for the operators we will consider
this series will always converge.

Example:

Suppose A = diag(λ1, ...λN ) be a diagonal N × N matrix with λi ∈ C. Let us
compute eA. To this end we need to compute An which is A · A · ... · A n-times.
In general this is a difficult task but for A diagonal it is actually very simple An =
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diag(λn1 , ...λ
n
N ) hence

eA =

∞∑
n=0

An

n!
=

∞∑
n=0

1

n!
diag(λn1 , ...λ

n
N )

= diag(
∞∑
n=0

λn1
n!
,

∞∑
n=0

λn2
n!
, ...,

∞∑
n=0

λnN
n!

)

= diag(eλ1 , ..., eλN ) .

So eA is once again diagonal with diagonal elements simply given by the exponen-
tial of the diagonal elements of A.

Example:

Consider

N =

0 1 0
0 0 1
0 0 0


and compute etN with t ∈ R. First we notice that N is a nilpotent matrix, i.e. we
can find m ∈ N such that Nm = 0, in particular in this case

N2 =

0 0 1
0 0 0
0 0 0


and N3 = 0, i.e. the 3× 3 zero matrix. In this case the exponential series truncates
after finitely many terms

etN =

∞∑
n=0

tnNn

n!
= I3 + tN +

t2N2

2!
=

1 t t2

2
0 1 t
0 0 1

 .

Note in particular that etN is NOT simply given by the exponential of each entries
of tN !

Example:

Let σ2 =

(
0 −i
i 0

)
, we want to compute U2(α) = eiασ2 and show that this is a

unitary matrix for every α ∈ R. First we notice that (iσ2)2 = −I2 hence (iσ2)
2n =

(−1)nI2 while (iσ2)
2n+1 = (−1)n(iσ2).

This alternating pattern between even and odd powers allows us to evalute the
exponential

U2(α) = eiασ2 =

∞∑
n=0

αn(iσ2)
n

n!

=
∑
n even

+
∑
n odd

=

∞∑
n=0

(−1)nα2n

(2n)!
I2 +

∞∑
n=0

(−1)nα2n+1

(2n+ 1)!
(iσ2)

= cos(α)I2 + iσ2 sin(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

)
.
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In the last line we have used the Taylor expansion for the sine and cosine functions

cos(α) =

∞∑
n=0

(−1)nα2n

(2n)!
,

sin(α) =

∞∑
n=0

(−1)nα2n+1

(2n+ 1)!
.

Finally it is easy to check that U2(α)
†U2(α) = U2(α)U2(α)

† = I2 so the matrix
U2(α) is indeed a unitary matrix and hence a possible time evolution operator of a
2-dimensional system. We will see that this type of unitary time evolution will be
crucial for the study of the qubit systems later on.

A final comment: From these examples it should be clear that in general to compute
the exponential of a matrix you CANNOT simply compute the exponential of each
entry! For more on exponentials of matrices and the various ways to compute them,
see e.g. [4].

20



LECTURE 4

Observables correspond to
Hermitian matrices. Their
eigenvalues are the possible
measurement outcomes.

3
Measurement and uncertainty

3.1 Observables

In quantum mechanics observables are used to indicate quantities which could be
measured in an experiment, and observable also refers to the self-adjoint operator
associated to such a measurement. Specifically, there is a one-to-one correspondence
between measurable quantities M and self-adjoint operators M̂ . One example is
energy and the Hamiltonian operator Ĥ.

Now, in quantum mechanics the possible values of a measurement of M are the
eigenvalues of M̂ (ignoring experimental error, we do not commit experimental
errors.) Typically for a given state |ψ〉 we cannot predict with certainty the result
of a measurement. instead we can give probabilities for the different outcomes.
Note that for a Hilbert space H of finite dimension N , the operator M̂ will have
a finite number of eigenvalues, in fact the number is precisely N (if we count the
multiplicity of any degenerate eigenvalues) since this is equivalent to asking for the
spectrum of an N ×N Hermitian matrix.

Dictionary Linear Algebra↔ QM:

• Self-adjoint operators Ĥ ↔ Quantum mechanical observables;

• Eigenvalues of a self-adjoint operator Ĥ ↔ Possible outcomes of measuring
that quantum mechanical observable; (Prove that the eigenvalues of a self-
adjoint operator must be real numbers. You will never measure a complex
outcome in a lab!)

• Eigenstates of a self-adjoint operator |ψE〉, i.e. Ĥ |ψE〉 = E |ψE〉 for some real
eigenvalue E ∈ R ↔ States of definite outcome. If you measure Ĥ on |ψE〉
with probability p = 1 you will find outcome E, the corresponding eigenvalue.

Def: The spectrum of an operator Ĥ is the set

Spec(Ĥ) = {λ ∈ C s.t. Ĥ − λÎ is non invertible}. (3.1)

For a finite-dimensional Hilbert space this is identical to the set of all finitely many
eigenvalues of Ĥ.

Using basic result from linear algebra, the spectrum of a self-adjoint operator M̂ is a
set of real eigenvalues λn, each with a corresponding eigenstate |n〉. Eigenstates cor-
responding to different eigenvalues are automatically orthogonal. If there is degen-
eracy then for each eigenspace of dimension greater than one we can always choose
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The spectral representation
of an operator expresses it in
terms of its eigenvectors and
eigenvalues.

Projection operators can be
used to express the
measurement process.

a basis of orthogonal eigenstates (Apply Grahm-Schmidt procedure eigenspace by
eigenspace). Of course, we can always normalise the eigenstates, then we will have
N orthonormal eigenstates giving us an orthonormal basis for H. This also give us
the spectral representation of M̂ (corresponding to diagonalisation of the matrix M)

M̂ =
∑
n

λn |n〉 〈n| .

Note that for the identity operator, the only eigenvalue is 1 with degeneracy N , so
we can choose any orthonormal basis of H and

Î =
∑
n

|n〉 〈n| .

This is a very useful expression. We can often use it in calculations by “inserting the
identity as a complete sum of states.”

Now when a measurement of M is made on a state

|ψ〉 =
∑
n

cn |n〉 ,

we will get the result λn with probability pn =
∣∣∣〈n ∣∣∣ψ̂〉∣∣∣2 = |cm|2 which is just the

magnitude squared of the coefficient of |n〉 if we write ψ in the basis {|n〉}. After
the measurement, if the result is λn, the state will then have definite value of M, λn,
so measuring M again will give the same result. Therefore the state is no longer |ψ〉
but is |n〉. Note that this “collapse of the wavefunction” is not a unitary process, and
is not reversible.

One way to describe this measurement process is in terms of the set of projection
operators P̂n = |n〉 〈n| formed from the eigenstates of M̂ . Then the probability of
result λn is pn =

〈
ψ
∣∣∣P̂n∣∣∣ψ〉 and the resulting state is 1√

pn
P̂n |ψ〉 which is the state

|n〉 up to an irrelevant overall phase.

Remember that a projector P̂ is a linear operator such that P̂ † = P̂ and P̂ 2 = P̂ and
check that indeed P̂n = |n〉 〈n| has all these properties.

The above discussion of measurement assume the spectrum of M̂ is not degenerate.
If we have degeneracy then we can generalise the definition of the projection oper-
ators. Consider an eigenvalue λ. We define the projection operator to be a sum over
the eigenstates with that eigenvalue, i.e.

P̂λ =
∑

n:λn=λ

|n〉 〈n| .

Then we still have the result that the probability is pλ =
〈
ψ
∣∣∣P̂λ∣∣∣ψ〉 and the resulting

state is 1√
pλ
P̂λ |ψ〉.

An important point to note is that a state can only have definite values for two
observables, say A and B, if it is a simultaneous eigenstate of Â and B̂. This is
not possible for two generic operators. However, if

[
Â, B̂

]
= 0 then we can always

find simultaneous eigenstates. In this case we say that the observables A and B are
compatible. If the observables are not compatible then measuring A, then B, then A
again will not necessarily give the same result for the two measurements of A. That
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is because the state after the first measurement of A is not an eigenstate of B̂, and
so a measurement of B will change the state (to some eigenstate of B̂.) This will
not be an eigenstate of A, so the result of the second measurement of A cannot be
determined with certainty.

Example:

Let H = span{|−2〉 , |−1〉 , |1〉 , |2〉} be a four dimensional Hilbert space with or-
thonormal basis vectors given by the eigenvectors of an hermitian operator Â as

Â |−2〉 = −2 |−2〉 , Â |−1〉 = −1 |−1〉 ,
Â |1〉 = 1 |1〉 , Â |2〉 = 2 |2〉 ,

giving the spectral decomposition

Â = −2 |−2〉 〈−2| − 1 |−1〉 〈−1|+ 1 |1〉 〈1|+ 2 |2〉 〈2|
= (−2)P̂−2 + (−1)P̂−1 + (+1)P̂+1 + (+2)P̂+2

=
∑

λ∈Spec(Â)

λP̂λ .

in terms of the projectors P̂λ = |λ〉 〈λ|.

If we prepare a state |ψ〉 ∈ H and measure the observable Â we can only find one
of the values {−2,−1, 1, 2}.

Suppose we prepared the state

|ψ〉 = 2 |−2〉+ (1 + i) |−1〉+ 3i |1〉

we know that if we were to measure Â on |ψ〉 we will never find the outcome +2
since the coefficient of |2〉 in the expansion for |ψ〉 vanishes.

To compute the probabilities of measuring {−2,−1, 1, 2} we have to normalise the
state, i.e. we need to impose 〈ψ |ψ〉 = 1. We compute

〈ψ |ψ〉 =
[
2 〈−2|+ (1− i) 〈−1|+ (−3i) 〈1|

]
×
[
2 |−2〉+ (1 + i) |−1〉+ 3i |1〉

]
= 4 + 2 + 9 = 15 (3.2)

and use this result to define the normalised state∣∣∣ψ̃〉 =
|ψ〉√
15

=
2√
15
|−2〉+ (1 + i)√

15
|−1〉+ 3i√

15
|1〉 .

The probability of measuring Â and finding outcome −2 is then the modulus square
of the coefficient in front of |−2〉, i.e. p−2 = 4

15 , similarly p−1 = 2
15 , p+1 = 9

15 and

of course p+2 = 0. The total probability is 1 as it should since
〈
ψ̃
∣∣∣ψ̃〉 = 1. Using

the projector P̂−2 = |−2〉 〈−2| we have p−2 =
〈
ψ̃
∣∣∣ P̂−2

∣∣∣ψ̃〉.

If we prepare many copies of the same state |ψ〉, measure Â and then average, we
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LECTURE 5

Pure states are fully
determined, mixed states
arise when we do not know
the state of a system. A sum
of basis states is still a pure
state.

The trace of the density
matrix ρ̂ is equal to one,
Tr(ρ̂) = 1.

find the expectation value

〈A〉ψ =
〈ψ| Â |ψ〉
〈ψ |ψ〉

=
〈
ψ̃
∣∣∣ Â ∣∣∣ψ̃〉

=
4

15
〈−2| Â |−2〉+ 2

15
〈−1| Â |−1〉+ 9

15
〈1| Â |1〉

= p−2(−2) + p−1(−1) + p+1(+1) + p+2(+2) = − 1

15
.

3.2 Density matrices

The above sections give the standard Dirac notation description of QM. The states
previously described are what we will now call pure states. This means that the
states are definite, i.e. we assume that (at least in principle) we know what the
state of the system is. Any uncertainties in predictions are due to the nature of QM.
However, we can also consider mixed states which arise when we do not know with
certainty the state of a system. Here we assume that we have some probabilistic
knowledge, such as the system is in state |ψ〉 with probability p, and in state |φ〉 with
probability 1 − p. This type of uncertainty is ‘classical uncertainty’ in the sense that
it just describes our lack of knowledge about a system. Indeed, whether the state
is pure or mixed may be a matter of perspective since one person may have more
knowledge about the system than other (we will see this later when we discuss the
reduced density matrix for a bipartite system).

For a pure state |ψ〉 we define the density operator or, as more commonly called, the
density matrix to be

ρ̂ = |ψ〉 〈ψ| .

Note that when our Hilbert space is n-dimensional if we think of ket vectors |ψ〉 as n
components column vectors z and bra vectors 〈φ| as n components row vectors w†,
then an operator of the form |ψ〉 〈φ| can be thought of as zw†, hence a n× 1 matrix
times a 1 × n matrix, i.e. a n × n matrix, while the inner product w†z as a 1 × n
matrix times a n× 1 matrix resulting in a 1× 1 matrix, i.e. a complex number.

For pure states there is a one-to-one mapping between the density matrix and the
state, so we can work with one or the other. For example we have the following
correspondence:

M̂ |ψ〉 = λ |ψ〉 ←→ M̂ρ̂ = λρ̂

|ψ〉 → Û |ψ〉 ←→ ρ̂→ Û ρ̂Û †

Inner products of states arise when multiplying operators or when taking traces. In
particular, if we label the orthonormal basis states |n〉 for some range of integers n,
we define the trace of Â to be:

Tr(Â) =
∑
n

〈
n
∣∣∣Â∣∣∣n〉 ,

you can think of
〈
m
∣∣∣Â∣∣∣n〉 as the mth row, nth column entry of the matrix represen-

tation of Â operator in the standard basis, hence the trace just defined corresponds
indeed to the sum of the diagonal entries. Note that
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The density operator (or
density matrix) can be used
to describe the state of a
system, for both pure and
mixed states.

Tr(ρ̂) =
∑
n

〈n |ρ̂|n〉 =
∑
n

〈n |ψ〉 〈ψ |n〉

=
∑
n

〈ψ |n〉 〈n |ψ〉 =
〈
ψ
∣∣∣Î∣∣∣ψ〉 = 1 ,

(3.3)

where in the last two steps we used the spectral representation of the identity oper-
ator and the fact that |ψ〉 is normalised. Similar manipulations show that in general
Tr(|φ〉 〈ψ|) = 〈ψ |φ〉 . Also note that for a pure state Tr(ρ̂2) = 1 since ρ̂ is a projector
and we know that for projectors we have ρ̂2 = ρ̂.

Mixed states describe situations where there is uncertainty about the state of the
system due to lack of knowledge, i.e. this is the usual ‘classical’ uncertainty we have
if we don’t know everything about the system. We can describe mixed states in
terms of an ensemble of pure states, each with a given probability of being the state
of the system, e.g. {(pi, |i〉)} with |i〉 not necessarily orthogonal but chosen with
unit norm (if not just normalised them one by one). The density matrix is just the
linear combination of the density matrices for each of the pure states, weighted by
the probability, i.e.

ρ̂ =
∑
i

pi |i〉 〈i| .

Note that there is no requirement for the state |i〉 to be orthogonal (although we
assume they are normalised) and also such a mixed state density matrix does not
correspond to a unique ensemble. There will be in general more than one ensemble
{(pi, |i〉)} giving rise to the same density matrix for the same mixed state.

Of course, the probabilities pi cannot be negative and must sum to 1. We can also
generalise the definition of the mixed state density matrix to allow ensembles in-
cluding mixed states.I.e. we can have ρ̂ =

∑
i piρ̂i where the ρ̂i are mixed and/or

pure state density matrices.

Such ensembles can only give a pure state in the trivial case where there is only one
pure state, which must then have probability 1. However, given a density matrix it
is often not immediately obvious whether it describes a pure or a mixed state. A test
for this (see later discussion) is to calculate Tr(ρ̂2) which will be 1 for a pure state
and less than 1 for a mixed state.

By construction, density matrices are

• normalised such that Tr ρ̂ = 1;

• Hermitian ρ̂† = ρ̂;

• positive operators, meaning that for any state |ψ〉, 〈ψ |ρ̂|ψ〉 ≥ 0 (Note this can
be equal to zero even for |ψ〉 6= 0. In matrix language this is called semi-
positive-definite).

If we measure then the results for pure states in Dirac notation generalise to all pure
or mixed density matrices as:

• The value of the result is λ with probability pλ = Tr(P̂λ ρ̂) = Tr(P̂λ ρ̂ P̂λ).

• The density matrix after measuring M to be λ is

ρ̂→ 1

pλ
P̂λ ρ̂ P̂λ =

1

Tr(P̂λ ρ̂ P̂λ)
P̂λ ρ̂ P̂λ .
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Example:

Given a two dimensional Hilbert space H = span{|0〉 , |1〉} decide whether the ma-

trix ρ = 1
9

(
5 2− 4i

2 + 4i 4

)
is

1) a density matrix for a pure state,

2) a density matrix for a mixed state,

3) not a density matrix,

when we represented the basis vector using the standard basis.

First of all to be a density matrix the matrix ρ needs to be with Trρ = 1, hermitian
ρ† = ρ and semi-positive definite, i.e. z†ρ z ≥ 0 for all z ∈ C2.

It is simple to check that ρ is indeed hermitian and with trace equal to 1. Instead
of checking that ρ is semi-positive definite let us see how a density matrix for a
pure state |ψ〉 = a |0〉 + b |1〉 looks like. Let us assume the state is normalised

so |a|2 + |b|2 = 1 and pass to vector representation |ψ〉 →
(
a
b

)
then the matrix

associate to its density operator is

ρ̂ψ = |ψ〉 〈ψ| → ρψ =

(
a
b

)(
a
b

)†

=

(
|a|2 ab∗

ba∗ |b|2
)
.

It is simple to see that if we chose b = 2
3 and a = 1−2i

3 we obtain precisely the
matrix ρ under question. Note that this is not the only possibility! We can multiply
|ψ〉 = 1−2i

3 |0〉+ 2
3 |1〉 by any phase eiα without changing its density matrix.
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LECTURE 6

For a pure state, the density
matrix has Tr(ρ̂2) = 1. For a
mixed state, we have instead
Tr(ρ̂2) < 1.

3.3 Pure versus mixed states

In the example above we were able to find explicitly the pure state whose density
operator was the matrix provided, however we would like to know whether a certain
density operator given comes from a pure state or a mixed one.To this end we have
the following theorem.

Theorem: Let ρ̂ be a density operator on a Hilbert space H, i.e. Tr ρ̂ = 1, ρ̂† = ρ̂
and ρ̂ positive operator. The density operator ρ̂ corresponds to a pure state if and
only if Tr ρ̂2 = 1.

Proof:

(⇒) Let us assume that ρ̂ = |ψ〉 〈ψ| is the density matrix associated to a pure state
|ψ〉 ∈ H. It is simple to compute ρ̂2 = |ψ〉 〈ψ |ψ〉 〈ψ| = ρ̂ since the state is nor-
malised, hence Tr ρ̂2 = Trρ̂ = 1.

(⇐) Conversely let us suppose that ρ̂ is the density operator corresponding to the
ensemble {pi, |ψi〉}, i.e. ρ̂ =

∑
i piρ̂i =

∑
i pi |ψi〉 〈ψi|. We want to compute Trρ̂2:

Trρ̂2 =
∑
n

〈n| ρ̂2 |n〉 =
∑
n,i,j

pipj 〈n |ψi〉 〈ψi |ψj〉 〈ψj |n〉

=
∑
ij

pipj 〈ψi |ψj〉

(∑
n

〈ψj |n〉 〈n |ψi〉

)
=
∑
ij

pipj 〈ψi |ψj〉 〈ψj | Î |ψi〉

=
∑
ij

pipj 〈ψi |ψj〉 〈ψj |ψi〉

=
∑
ij

pipj | 〈ψi |ψj〉 |2 ≤
∑
ij

pipj ≤ 1 .

In the second line we used the spectral decomposition of the identity operator
Î =

∑
n |n〉 〈n|, while in the third line we made use of the complex Cauchy-Schwarz

inequality
| 〈ψi |ψj〉 |2 ≤ 〈ψi |ψi〉 〈ψj |ψj〉 ≤ 1

since the states |ψi〉 are normalised. Finally in the last step we used the fact that the
pi are probabilities and

∑
i pi = 1.

We also know that the equality in the Cauchy-Schwarz inequality holds if and only
if the vectors |ψi〉 and |ψj〉 are collinear, i.e. |ψi〉 = a |ψj〉 for some complex number
a ∈ C that can only be a phase a = eiα since all the vectors must have length one.

Hence we have that Tr ρ̂2 ≤ 1 with equality if and only if all vectors are collinear
with one another, i.e. they are all a multiple of say the first one |ψi〉 = eiαi |ψ1〉 but
this means that the density matrix

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

pi |ψ1〉 〈ψ1| = |ψ1〉 〈ψ1| ,
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hence Tr ρ̂2 = 1 and ρ̂ is a pure state.

We then have a complete characterization of pure vs mixed states! We just need to
compute Tr ρ̂2 if this number is less than one we know that we have a mixed state,
if we find one we know the state is pure.

We will shortly give a geometric characterization for pure and mixed state in the
simplest case of a two dimension Hilbert space, i.e. what we call a qubit.

Example:

Suppose we have a three dimensional Hilbert space with orthonormal basis H =
span{|1〉 , |3〉 , |5〉}. Compute the density matrix associated to the ensemble {(2/3, |ψ1〉), (1/3, |ψ2〉)}
where |ψ1〉 = 1√

2
(|1〉 − |3〉) and |ψ2〉 = 1√

2
(|3〉+ i |5〉).

First of all we notice that the state |ψ1〉 , |ψ2〉 are normalised, had they not we would
have had to normalise them before proceeding. The density operator associated
with this mixed state is then

ρ̂ =
2

3
|ψ1〉 〈ψ1|+

1

3
|ψ2〉 〈ψ2|

=
2

6
(|1〉 − |3〉)(〈1| − 〈3|) + 1

6
(|3〉+ i |5〉)(〈3| − i 〈5|)

=
2

6
|1〉 〈1| − 2

6
|1〉 〈3| − 2

6
|3〉 〈1|

+
1

2
|3〉 〈3|+ i

6
|3〉 〈5| − i

6
|5〉 〈3|+ 1

6
|5〉 〈5| .

If we represent the three basis vectors using the standard basis we can write the
density operator as the 3× 3 matrix

ρ =
2

3

 1/
√
2

−1/
√
2

0

 1/
√
2

−1/
√
2

0

†

+
1

3

 0

1/
√
2

i/
√
2

 0

1/
√
2

i/
√
2

†

=

=

 1
3 − 1

3 0
− 1

3
1
2

i
6

0 − i
6

1
6

 .

It is simple to check now that the trace of this matrix is of course one, while Trρ2 =
2
3 < 1 since the state is a mixed state.

Finally if we have the observable Â with spectrum {1, |1〉 ; 3, |3〉 ; 5, |5〉}, we can
easily compute the expectation value on this state

Tr
[
ρ̂Â
]
= Tr

ρ
1 0 0
0 3 0
0 0 5

 =
8

3
,

which you can also check using the abstract operator formalism.

Example:

Let H = span{|1〉 , ..., |6〉} be a six dimensional Hilbert space with orthonormal
basis |i〉 given by the eigenvectors with eigenvalues {1, 2, 3, 4, 5, 6} for the her-
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mitian operator Â. Consider the normalised mixed state given by the ensemble
{( 16 , |1〉), (

1
6 , |2〉), (

1
6 , |3〉), (

1
6 , |4〉), (

1
6 , |5〉), (

1
6 , |6〉)}

ρ̂ =

6∑
i=1

1

6
|i〉 〈i| = 1

6
Î , ρ =

I6

6
,

where we used the standard basis to represent the basis vectors and obtain the
matrix representation for ρ̂ given by ρ.

This state is in a certain sense (that we will quantify later on) the most mixed, it is
an equally probable ensemble of the six basis vectors. Its trace is clearly one while
Tr(ρ̂2) = Tr(ρ2) = 1

6 < 1.

The expectation value of the observable Â, with spectrum precisely {1, |1〉 ; ... ; 6, |6〉},
on this state is given by

〈A〉 = Tr(ρ̂Â) =
6∑
i=1

1

6
× i = 7

2
,

if you want the state ρ̂ is the most “classically” uncertain of all the states, it is
exactly the same ensemble of a six-faced die for which the average outcome is
precisely 7/2.
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LECTURE 7

The most general qubit state
is labelled by two complex
numbers, subject to a norm
constraint and the fact that
the overall phase is
irrelevant. This leaves two
real parameters, which
parametrise a sphere.

4
Qubits and the Bloch sphere

4.1 Qubits

In this chapter we want to understand the smallest dimensional (yet extremely in-
teresting) quantum system. Because of the equivalence relation |ψ〉 ∼ c |ψ〉, a one-
dimensional Hilbert space is trivial since it only describes a single state. Therefore
the smallest non-trivial system has dimension two, and in QI we refer to such a sys-
tem as a qubit. A standard orthonormal basis is labelled {|0〉 , |1〉} (sometimes you
will also find it written as {|↑〉 , |↓〉} denoting the two states of a spin 1/2 particle
with spin “up” or “down”) so we see the analogy with a classical bit which can take
either value 0 or 1 hence we usually call the basis {|0〉 , |1〉} the computational ba-
sis. The difference for the qubit is that the state can be a linear combination of |0〉
and |1〉. The qubit is important since many general features can be understand in
this simple Hilbert space. Also, larger systems can often be described a being built
from several qubits – this is used in quantum information and especially in quantum
computation.

So let us try and characterise the most general pure state of the qubit Hilbert space
Hq = span{|0〉 , |1〉}. Now if we have a qubit system the most general pure state can
be written as a linear combination of the two basis vectors

|ψ〉 = a |0〉+ b |1〉 ,

with a, b ∈ C and |a|2 + |b|2 = 1 so that the state is already normalised 〈ψ |ψ〉 = 1.

Up to an irrelevant overall phase we can assume that a ∈ R, hence any normalised
pure state can be written in the form

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Note that the normalisation condition |a|2+ |b|2 =
1 now becomes cos

(
θ
2

)2
+ |eiφ sin

(
θ
2

)
|2 = 1.

This new coordinates (θ, φ) are just a convenient parametrisation of |a|2 + |b|2 = 1
with a ∈ R in terms of angles which correspond to the angles in spherical polar
coordinates. Indeed the equation |a|2 + |b|2 = 1 with a ∈ R can be rewritten as
a2 + (Re b)2 + (Im b)2 = 1 which is indeed the equation describing a 2-dimensional
sphere, what we call S2. Therefore we have a one-to-one mapping between pure
qubits states and points on a sphere (say of radius 1.) This is called the Bloch Sphere.

Now any point on the Bloch sphere can also be labelled by its position vector, called
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There are six special states in
the qubit system, which are
eigenvectors of three special
operators (to be discussed
later).

the Bloch vector r =

xy
z

 which has |r| =
√
x2 + y2 + z2 = 1. The dictionary

between Cartesian coordinates and polar coordinates is very simple

x = sin(θ) cos(φ) , y = sin(θ) sin(φ) , z = cos(θ) ,

θ is the polar angle measured from the z-axis, while φ is the azimuthal angle mea-
sured around the z-axis as in Figure 4.1.

Figure 4.1: Graphic representation of the Bloch sphere. The states |0〉 , |1〉 are
on the z-axis, the state |±〉 = (|0〉 ± |1〉)/

√
2 are on the x-axis, and the states

|L〉 = (|0〉+ i |1〉)/
√
2 , |R〉 = (|0〉 − i |1〉)/

√
2 are on the y-axis.

There are six special states on the Bloch sphere whose cartesian coordinates are
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simply

±10
0

 ,

 0
±1
0

 ,

 0
0
±1

 given by

r =

1
0
0

 , (θ, φ) = (π/2, 0) ,

→ |+〉 = 1√
2
(|0〉+ |1〉)→ 1√

2

(
1
1

)
,

r =

−10
0

 , (θ, φ) = (π/2, π) ,

→ |−〉 = 1√
2
(|0〉 − |1〉)→ 1√

2

(
1
−1

)
,

r =

0
1
0

 , (θ, φ) = (π/2, π/2) ,

→ |L〉 = 1√
2
(|0〉+ i |1〉)→ 1√

2

(
1
i

)
,

r =

 0
−1
0

 , (θ, φ) = (π/2, 3π/2) ,

→ |R〉 = 1√
2
(|0〉 − i |1〉)→ 1√

2

(
1
−i

)
,

r

0
0
1

 , (θ, φ) = (0, ·) ,

→ |0〉 →
(
1
0

)
,

r =

 0
0
−1

 , (θ, φ) = (π, ·) ,

→ |1〉 →
(
0
1

)
.

These states are special as they lie at the intersection of the Bloch sphere with the
cardinal axis and we will see later on they will each have well defined measurements
for three special observables for the qubit system.

Exercise:

Show that besides the computational basis {|0〉 , |1〉}, the qubit Hilbert spaceHq can
be described in terms of the orthonormal basis {|+〉 , |−〉} or by the orthonormal
basis {|L〉 , |R〉}.
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LECTURE 8

A state with given Bloch
vector can be mapped to a
density matrix using the
Pauli matrices.

4.2 Inside the Bloch sphere

We want to rewrite now the density matrix for a general pure state written using
polar angles to cartesian coordinates. To this end we start with a generic pure state
|ψ〉 = cos

(
θ
2

)
|0〉 + eiφ sin

(
θ
2

)
|1〉 and we first rewrite it using as above the standard

basis representation for the two basis ket vector |0〉 →
(
1
0

)
, |1〉 →

(
0
1

)
hence we

have

|ψ〉 →
(

cos
(
θ
2

)
eiφ sin

(
θ
2

)) ,

ρ̂ = |ψ〉 〈ψ| → ρ =

(
cos
(
θ
2

)
eiφ sin

(
θ
2

)) (cos ( θ2) e−iφ sin
(
θ
2

))
ρ =

1

2

(
1 + cos(θ) e−iφ sin(θ)
e+iφ sin(θ) 1− cos(θ)

)
=

1

2

(
1 + z x− iy
x+ iy 1− z

)
,

where in the last line we used some simple trigonometric identities and finally the
dictionary spherical↔ cartesian coords.

It can be seen quite easily now that the density matrix can be written in terms of the

Bloch vector r =

xy
z

 as ρ = 1
2 (I2 + r · σ), where we introduce the three matrices

σi called the Pauli σ-matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

so r · σ = r1σ1 + r2σ2 + r3σ3.

As the density matrix is linear in the Bloch vector, mixed states also have Bloch
vector given in terms of a linear combination of the Bloch vectors of the states in
the ensemble. Since the coefficients are probabilities, it is easy to see that the Bloch
vector for a mixed state must be the position vector of a point inside the Bloch
sphere.

Let us check this in detail. Suppose we have the ensemble {(pi, ρi)} for some proba-
bilities pi and pure states ρi defined by vectors ri on the Bloch sphere, i.e. |ri|2 = 1.
The density matrix for this mixed state is given by

ρ =
∑
i

piρi =
∑
i

pi
(I2 + ri · σ)

2

=
1

2
(I2 + r · σ) ,

(4.1)

where we defined the vector r =
∑

i piri. As said above, since the density matrix
is linear in the Bloch vector, mixed states as well can be represented in terms of a
Bloch vector r. Let us check now where this vector lies:

|r|2 = |
∑
i

piri|2 =
∑
ij

pipj ri · rj

≤
∑
ij

pipj |ri||rj | ≤
∑
ij

pipj ≤ 1 ,
(4.2)
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where we used the real Cauchy Schwartz inequality. Note that equality holds if and
only if all ri are collinear hence all the density matrices ρi of the ensemble are given
by the same density matrix, hence we do not really have a mixed state but rather a
pure one.

For genuine mixed states the inequality is strict and so mixed states are defined by
point inside the Bloch sphere, i.e. |r| < 1.

The Bloch sphere gives us a nice geometrical interpretation for the full set of states
of the qubit system: points on the sphere define pure states, points inside the sphere
define mixed states.

Remember the previous test to distinguish whether a density matrix corresponds to
a pure or a mixed state by considering whether Tr(ρ2) = 1 or < 1 respectively. The
condition Tr(ρ2) < 1 for ρ to correspond to a mixed state has now for a qubit a
geometric interpretation:

Tr(ρ2) =
1

2

(
1 + |r|2

)
≤ 1 ,

mixed states are inside the Bloch sphere |r| < 1 , pure state are on the Bloch sphere
|r| = 1.

4.3 Time-evolution of a qubit

Unitary transformations of a qubit are represented as rotations of the Bloch sphere
about the origin. This illustrates that unitary transformations cannot transform pure
states to mixed states, but also we see that not all mixed states are related in this
way. Indeed Tr(ρ2) = (1 + |r|2)/2 is invariant under unitary transformations, and is
a measure of how mixed a state is, with Tr(ρ2) = 1 for pure states to Tr(ρ2) = 1/2
for the “most mixed” state corresponding to the origin, i.e. ρ = I2/2. Of course,
measurements are not unitary transformations and they act as projectors hence they
can transform any state to a pure state.

Exercise:

Show that the quantity Tr(ρ̂2) is invariant under time evolution.

Solution: We simply need to remember that a density matrix ρ̂ transforms under
time evolution has ρ̂→ Û ρ̂Û† hence

ρ̂2 → Û ρ̂Û†Û ρ̂Û† = Û ρ̂2Û†

using the fact that time evolution is a unitary operation Û†Û = Î. We then conclude
that Tr(Û ρ̂2Û†) = Tr(ρ̂2) using cyclicity of the trace. Since Tr(ρ̂2) measures how
mixed a state is (we will quantify better later on) it is then clear that time evolution
cannot possibly change that.

Example:

Let r1 and r2 denote two distinct points on the Bloch sphere, i.e. |r1| = |r1| = 1
and r1 6= r2, and consider the ensemble {(p, r1), (1 − p, r2)} with 0 ≤ p ≤ 1. The
density matrix corresponding to this ensemble is given by

ρ = ρ1 + ρ2 =
1

2
(I2 + r · σ) ,
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The “trace distance” between
two states described by a
density matrix corresponds
to the geometric distance
between the two states in the
Bloch sphere representation.

with r = p r1 + (1 − p)r2. Note that geometrically the Bloch vector r lies on the
line between the points r1 and r2 and since 0 ≤ p ≤ 1 the point r on this line will
always fall within the Bloch sphere.

The state ρ will be pure if and only if p = 1, in which case ρ = ρ1, or p = 0, in
which case ρ = ρ2. Note in particular that mixing can never produce a state farther
from the origin then the farthest initial state. Furthermore once we have chosen a
mixed state, i.e. a point inside the Bloch sphere, we can find an infinite number of
ways to write it as an ensemble of two pure states! We just need to consider any
line passing through this point which will intersect the Bloch sphere in two points
corresponding to the two pure states of which this mixed state is an ensemble of.

In particular the “most” mixed of the qubit states is ρ = I2/2 which correspond of
an ensemble of any two antipodal points, for example the North and South poles
|0〉 , |1〉 states (but any other two antipodal points on the sphere will produce the
same), each one of them with probability 50%.

For a qubit system it is simple to define a “distance” between states given by the
geometric distance of the relative positions using the Bloch sphere, i.e. |r1 − r2| if
the two states are described by the Bloch vectors r1 , r2. This turns out to be equal
to what is called the trace distance between the two states

D(ρ̂1, ρ̂2) =
1

2
Tr|ρ̂1 − ρ̂2| ,

where we need to give the definition of the operator |Â|.

The operator |Â| is defined to be the positive operator

|Â| =
√
Â†Â .

Note (check) that the operator Â†Â is both hermitian and positive hence its square
root is well defined. For this, you just need to chose a basis that diagonalises Â†Â
with non-negative eigenvalues (because the operator is hermitian and positive); in
this basis the operator

√
Â†Â will then be diagonal with eigenvalues given by the

square root of the eigenvalues of Â†Â.

In practical terms if the operator Â is hermitian with eigenvalues ai then Â†Â = Â2

and we have that
Tr|Â| =

∑
i

|ai| .

With this definition for Tr|Â| we can then easily compute the trace distance between
two qubit states

D(ρ̂1, ρ̂2) =
1

2
Tr|ρ̂1 − ρ̂2| =

1

4
Tr|(r1 − r2) · σ|

=
1

2
|r1 − r2| ,

(4.3)

and indeed as anticipated the trace distance for qubit states correspond precisely to
the geometric distance in the Bloch sphere representation.
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We can rewrite the trace distance between two states as

D(ρ̂1, ρ̂2) =
1

2
Tr|ρ̂1 − ρ̂2|

=
1

2
Tr
√
(ρ̂1 − ρ̂2)†(ρ̂1 − ρ̂2)

=
1

2
Tr
√
(ρ̂1 − ρ̂2)2 =

1

2

∑
i

|λi| ,

(4.4)

where λi are the eigenvalues of the hermitian but not necessarily positive operator
ρ̂1 − ρ̂2. This defines a metric on the space of density matrices, i.e. something with
the following properties

• it is non-negative D(ρ̂1, ρ̂2) ≥ 0;

• it is symmetric D(ρ̂1, ρ̂2) = D(ρ̂2, ρ̂1);

• it satisfies triangle inequality D(ρ̂1, ρ̂3) ≤ D(ρ̂1, ρ̂2) +D(ρ̂2, ρ̂3);

• it separates points D(ρ̂1, ρ̂2) = 0⇔ ρ̂1 = ρ̂2.

Note that there are many notions of “distance” when discussing quantum mechanical
states. The trace distance is a possible meaningful notion of distance between states
in that it tells us how distinguishable with measurements two states are, i.e. the
closer they are the less “distinguishable” they are by simply measuring observables.
Another such notion is what is called fidelity although we will not cover this.

Example:

Compute the trace distance between the qubit states

ρ̂1 =
1

4
|0〉 〈0|+ 3

4
|1〉 〈1| → ρ1 =

(
1
4 0
0 3

4

)
,

ρ̂2 =
2

3
|0〉 〈0|+ 1

3
|1〉 〈1| → ρ2 =

(
2
3 0
0 1

3

)
.

If we compute the matrix ρ1 − ρ2 we obtain

ρ1 − ρ2 =

(−5
12 0
0 5

12

)
⇒ D(ρ̂1, ρ̂2) =

1

2
Tr|ρ1 − ρ2|

=
1

2

(∣∣∣∣−512
∣∣∣∣+ ∣∣∣∣ 512

∣∣∣∣) =
5

12
.

(4.5)

We could have also computed the two Bloch vectors associated to the two density
matrices r1 = (0, 0,−1/2)T and r2 = (0, 0, 1/3)T and in fact we have

D(ρ̂1, ρ̂2) =
1

2
|r1 − r2| =

1

2

∣∣∣∣∣∣
 0

0
− 5

6

∣∣∣∣∣∣ = 5

12
.
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4.4 Pauli Matrices

We will summarise here some key properties of the so-called Pauli matrices, which
were introduced above when we constructed the density matrix corresponding to a
generic qubit state. The following can be checked easily.

σ†1 = σ1 , σ†2 = σ2 , σ†3 = σ3 ,

Tr(σ1) = Tr(σ2) = Tr(σ3) = 0 ,

[σi, σj ] = σiσj − σjσi = 2i εijk σk ,

{σi, σj} = σiσj + σjσi = 2δijI2 ,

σiσj = δijI2 + i εijkσk ,

where δij is the Kronecker delta and εijk the Levi-Civita tensor.

So the Pauli matrices are Hermitian, traceless matrices, they actually form a basis
for the vector space of 2 × 2 hermitian, traceless matrices (Ex. check that this is a
vector space over the real numbers).

If we define the operators

X =
1

2
(I2 − σ1) =

1

2

(
1 −1
−1 1

)
,

Y =
1

2
(I2 − σ2) =

1

2

(
1 i
−i 1

)
,

Z =
1

2
(I2 − σ3) =

1

2

(
0 0
0 2

)
,

we can easily see that the six “special” states defined above are precisely the eigen-
vectors of these three operators with eigenvalues either 0 or 1, i.e.

X |+〉 = 0 |+〉 , X |−〉 = 1 |−〉 ,
Y |L〉 = 0 |L〉 , Y |R〉 = 1 |R〉 ,
Z |0〉 = 0 |0〉 , Z |1〉 = 1 |1〉 .

Finally another important property of the Pauli matrices is that their exponential are
unitary matrices

eiασ1 =

(
cos(α) i sin(α)
i sin(α) cos(α)

)
= cos(α)I2 + i sin(α)σ1 ,

eiασ2 =

(
cos(α) sin(α)
− sin(α) cos(α)

)
= cos(α)I2 + i sin(α)σ2 ,

eiασ3 =

(
eiα 0
0 e−iα

)
= cos(α)I2 + i sin(α)σ3 ,

where α ∈ R.
Exercise:

Compute these exponentials and check that these are indeed unitary matrices.

More in general we can consider the unitary transformation

Uα(n) = eiαn·σ = cos(α)I2 + i sin(α)n · σ ,
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where again α ∈ R and n ∈ R3 is a 3-dimensional unit vector, i.e. |n|2 = 1.

This is a unitary transformation so it is a perfectly valid time evolution operator. If
we now act on the density matrix ρ = 1

2 (I2 + r · σ) of a state defined by the vector r
on the Bloch sphere we can see that

Uα(n)ρUα(n)
† =

1

2
[I2 + (Rα(n)r) · σ] ,

where Rα(n) is the 3× 3 orthogonal matrix corresponding to a rotation of an angle
2α around the axis defined by the unit vector n acting on the three dimensional
vector r. This means that if we prepare our qubit say in the state |0〉 with Bloch
vector r = (0, 0, 1)T by performing the unitary time evolution Uα(n) we can trans-
form this state in any other state on the Bloch sphere with Bloch vector r′ by just
choosing some specific α,n such that the corresponding rotation of the Bloch vec-
tor Rα(n)(0, 0, 1)T = r′. This will be extremely useful later on when discussing
applications of entanglement.
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LECTURE 9

5
Bipartite systems

Many interesting features of QI arise when considering bipartite systems. This
means that we consider a system with Hilbert space H which can be separated (par-
titioned) into two subsystems, A and B, described by Hilbert spaces HA and HB.
Conventionally we introduce two characters, Alice who has system A and Bob who
has system B. We assume that they each have full control over their own systems,
but no direct control over the other’s system. In particular we assume Alice can per-
form any time-evolution in system A and can make any measurement in that system.
This means that she can choose any Hamiltonian for her system, e.g. by rotating the
system, choosing to apply an electric or magnetic field etc. Likewise, Bob has full
control of system B. We say then that each can perform arbitrary Local Operations
(LO).

We may also allow Alice and Bob to communicate through classical channels, i.e.
Classical Communications (CC). This means that they can send classical bits to each
other. This includes speaking on the phone or sending texts and emails, but we often
want to quantify the amount of information exchanged so we count the number of
bits transferred. (This counting does not include any pre-agreed protocol which is
required to interpret the data transferred. I.e. if Alice sends a single bit to Bob with
value 1, we assume he knows whether this means “I measured X and got value 1
rather than 0” or “I decided to perform unitary transformation U rather than V ”.)
Together if Alice and Bob can both perform LO and communicate classically, we say
they can perform LOCC operations.

An additional possibility is that Alice and Bob can communicate through quantum
channels. This means that they can send qubits to each other. This is more powerful
than classical communication. In fact with unlimited capacity for quantum com-
munication, they can perform arbitrary operations on the whole system. A simple
argument is that Alice could just send her whole quantum system to Bob. He could
then do anything on the full system and then send subsystem A back to Alice. How-
ever, we can focus on specific issues such as what can be done by sending a single
qubit compared to a single bit.
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States of a bipartite system
which can be written as
|ψ〉 ⊗ |φ〉 are separable, all
others are entangled.

5.1 Tensor Products

When we say that we consider a system with Hilbert space H which can be sepa-
rated (partitioned) into two (or more) subsystems in mathematical language we are
saying that our Hilbert space can be written as a tensor product of two (or more)
Hilbert spaces and we will write it as H = HA ⊗HB.

The tensor product of two vector spaces is a new vector space and this is a construc-
tion that could be discussed in a purely linear algebra setup without ever mentioning
quantum mechanics similar to what you have seen when discussing the direct sum
HA ⊕HB.

In this module we will not be needing the most general definition of tensor product
so we will just start from the vectors of HA and HB to construct the vectors of this
new vector space HA⊗HB and understand how the usual linearity properties work
in this extended space.

With this in mind let us denote |ψ1〉 ∈ HA and |ψ2〉 ∈ HB then the vector |ψ1〉 ⊗
|ψ2〉 ∈ H = HA ⊗ HB. We can write a basis {|i〉 ⊗ |m〉} for H in terms of a basis
{|i〉} for HA and a basis {|m〉} for HB. Just by counting how many basis elements
we have if HA has dimension NA and HB has dimension NB we have that H has
dimension NANB.

The tensor product has various linear properties

• c
(
|ψ〉 ⊗ |φ〉

)
=
(
c |ψ〉

)
⊗ |φ〉 = |ψ〉 ⊗

(
c |φ〉

)
• a |ψ1〉 ⊗ |φ〉+ b |ψ2〉 ⊗ |φ〉 =

(
a |ψ1〉+ b |ψ2〉

)
⊗ |φ〉

• a |ψ〉 ⊗ |φ1〉+ b |ψ〉 ⊗ |φ2〉 = |ψ〉 ⊗
(
a |φ1〉+ b |φ2〉

)
Note in particular that in order to simplify the sum of two tensors we must have that
either the first vector is the same or the second one is, if we find an expression of
the form |ψ1〉 ⊗ |φ1〉+ |ψ2〉 ⊗ |φ2〉 we have to leave it like that.

The inner products of HA and HB induce an inner product on the tensor product
space so that the inner product of |ψ1〉 ⊗ |φ1〉 with |ψ2〉 ⊗ |φ2〉 in H is defined by the
inner products in HA and HB as:(

〈ψ1| ⊗ 〈φ1|
)(
|ψ2〉 ⊗ |φ2〉

)
= 〈ψ1 |ψ2〉 〈φ1 |φ2〉 .

If a pure state can be written in the form |ψ〉 ⊗ |φ〉 we say it is a separable state.
However, a typical state is a linear combination of such states and is not separable.
We say a non-separable state is entangled.

For example suppose that the basis {|i〉} for HA is orthonormal as well as the basis
{|m〉} for HB, then the basis {|i〉 ⊗ |m〉} for H will also be orthonormal. We can
then write a separable vector

|ψ〉 ⊗ |φ〉 =

(∑
i

ai |i〉

)
⊗

(∑
m

bm |m〉

)
=
∑
i,m

aibm |i〉 ⊗ |m〉 .
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The components of a
bipartite state |Ψ〉 on a basis
{|i〉 ⊗ |m〉} are two-index
coefficients cim (tensor
components).

The inner product between
two states of a bipartite
system, expressed in
components, equals∑

i,m d∗imcim.

However the most general vector |Ψ〉 ∈ H will be written as

|Ψ〉 =
∑
i,m

cim |i〉 ⊗ |m〉 ,

for some complex numbers cim ∈ C which generically cannot be written as aibm.
We will see later on a quantity that will tell us immediately if a state is entangled or
separable.

If we have the orthonormal basis {|i〉⊗ |m〉} the inner product between two general
states can then be computed as

〈Φ |Ψ〉 =

∑
j,n

d∗jn 〈j| ⊗ 〈n|

∑
i,m

cim |i〉 ⊗ |m〉


=
∑
i,j,m,n

d∗jncim 〈j |i〉 〈n |m〉 =
∑
i,m

d∗imcim ,

where we used the orthonormality of the |i〉 and |m〉.

We can construct mixed ensemble of separable and entangled states however we
need first to understand how linear operators work on tensor product spaces (see
next section).

Once we have the tensor product of two vector spaces HA ⊗ HB we can consider
more and more tensors, i.e. HA ⊗ HB ⊗ HC . For example the Hilbert space of a
N -qubits system is the 2N dimensional Hilbert space

HN-qubits = H⊗N

q ,

where we simply mean the tensor product Hq⊗Hq⊗ ...⊗Hq of N copies of a single
qubit system.

Quantum computing will be the analysis of algorithms performed on the space of
N -qubits seen as quantum circuits built out of gates (unitary operators) acting on a
single qubit state or on pairs of qubits, analogues of the classical logical gates NOT,
AND, OR, XOR acting on usual strings of bits, e.g. 01101000 01101001,... .

Example:

Consider the space of 3-qubits

H = Hq ⊗Hq ⊗Hq = span{|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉}

where we used the shorthand notation |000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 and so on.

The operator Î ⊗ σ1 ⊗ Î will act on the second qubit and leave the first two qubits
invariant, furthermore we know that σ1 |0〉 = |1〉 and σ1 |1〉 = |0〉 hence σ1 acts on
this basis as the usual NOT logical gate where NOT 0 = 0̄ = 1 and NOT 1 = 1̄ = 0.
We can then write the action of this operator on the general 3-qubit state |xyz〉 with
x, y, z ∈ {0, 1} as

Î ⊗ σ1 ⊗ Î |xyz〉 = |xȳz〉 .

Similarly an operator of the form
∑
J ÂJ ⊗ Î ⊗ B̂J will act both on the first and

third qubit while leaving the second qubit unchanged.

41



LECTURE 11

Local operations are of the
form ÛA ⊗ ÛB , while
general unitary operators on
the bipartite Hilbert space
cannot be simplified to this
form.

Local operations cannot turn
a separable state into an
entangled state.

5.2 Linear Operators and Local Unitary Operations

Linear operators onH can be written as linear combinations of operators of the form
Â ⊗ B̂. (As for separable states, a general linear operator cannot be written in this
way as a single tensor product.) Such operators act on separable states as

Â⊗ B̂ |ψ〉 ⊗ |φ〉 =
(
Â |ψ〉

)
⊗
(
B̂ |φ〉

)
.

By linearity this defines the action of a general linear operator on an arbitrary state
in H.

As for addition of tensor product of vectors, also for operators we cannot simplify
Â ⊗ B̂ + Ĉ ⊗ D̂ in general, however if either the first factors are the same, or the
second factors are, we have

Â⊗ B̂ + Ĉ ⊗ B̂ = (Â+ Ĉ)⊗ B̂ , Â⊗ B̂ + Â⊗ D̂ = Â⊗ (B̂ + D̂) .

Note that standard operation or properties of the operators Â and B̂ descend to their
tensor product, for example

(Â⊗ B̂)† = Â† ⊗ B̂† ,

(Â⊗ B̂)(Ĉ ⊗ D̂) = (ÂĈ ⊗ B̂D̂) ,

TrHA⊗HB
(Â⊗ B̂) = TrHA

(Â)TrHB
(B̂) ,

or

• the tensor product of two unitary operators is unitary;

• the tensor product of two hermitian operators is hermitian;

• the tensor product of two positive operators is positive;

• the tensor product ot two projectors is a projector.

If we have a bipartite system and consider only local unitary operations then Alice
and Bob can each perform only very restricted unitary transformations of the form
ÛA ⊗ Î for Alice and Î ⊗ ÛB for Bob. Note that these two operators commute

[ÛA ⊗ Î , Î ⊗ ÛB] =
(
ÛA ⊗ Î

)(
Î ⊗ ÛB

)
−
(
Î ⊗ ÛB

)(
ÛA ⊗ Î

)
=
(
ÛAÎ

)
⊗
(
Î ÛB

)
−
(
Î ÛA

)
⊗
(
ÛB Î

)
= ÛA ⊗ ÛB − ÛA ⊗ ÛB = 0 ,

so Alice and Bob independently transform their own systems, and their product is
ÛA ⊗ ÛB which can be seen easily from

(Î ⊗ ÛB)(ÛA ⊗ Î) |ψ〉 ⊗ |φ〉 = (Î ⊗ ÛB)(ÛA |ψ〉)⊗ (Î |φ〉) = (ÎÛA |ψ〉)⊗ (ÛB Î |φ〉)
= (ÛA |ψ〉)⊗ (ÛB |φ〉) = (ÛA ⊗ ÛB) |ψ〉 ⊗ |φ〉 ,

so we see that together Alice and Bob can only transform the system by unitary
operators of this restricted form.
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One very important result is that if Alice and Bob start with a separable state |ψ〉⊗|φ〉
then the most general unitary transformation they can perform using LO will pro-
duce another separable state, ÛA |ψ〉 ⊗ ÛB |φ〉. I.e. they cannot create an entangled
state from a separable state.

Example:

Let us compute the exponential of the operators Â⊗ Î and Î ⊗ B̂. We have

eÂ⊗Î =
∞∑
n=0

(Â⊗ Î)n

n!
=

∞∑
n=0

Ân ⊗ În

n!
= eÂ ⊗ Î ,

eÎ⊗B̂ =

∞∑
n=0

(Î ⊗ B̂)n

n!
=

∞∑
n=0

În ⊗ B̂n

n!
= Î ⊗ eB̂ .

Hence we have

eÂ⊗ÎeÎ⊗B̂ =
(
eÂ ⊗ Î

) (
Î ⊗ eB̂

)
= eÂ ⊗ eB̂ ,

in particular notice that for general operators Â , B̂ the exponential of Â ⊗ B̂, i.e.
eÂ⊗B̂ is different from eÂ ⊗ eB̂ since

eÂ⊗B̂ =

∞∑
n=0

(Â⊗ B̂)n

n!
=

∞∑
n=0

Ân ⊗ B̂n

n!
,

eÂ ⊗ eB̂ =

( ∞∑
n1=0

Ân1

n1!

)( ∞∑
n2=0

B̂n2

n2!

)
=

∞∑
n1,n2=0

Ân1 ⊗ B̂n2

n1!n2!
.

Example:

Compute the commutator of Â1 ⊗ B̂ with Â2 ⊗ Î. We have(
Â1 ⊗ B̂

)(
Â2 ⊗ Î

)
=
(
Â1Â2

)
⊗ B̂ ,(

Â2 ⊗ Î
)(

Â1 ⊗ B̂
)
=
(
Â2Â1

)
⊗ B̂ ,[

Â1 ⊗ B̂, Â2 ⊗ Î
]
=
(
Â1 ⊗ B̂

)(
Â2 ⊗ Î

)
−
(
Â2 ⊗ Î

)(
Â1 ⊗ B̂

)
=
(
Â1Â2

)
⊗ B̂ −

(
Â2Â1

)
⊗ B̂

=
[
Â1, Â2

]
⊗ B̂ .

Similarly we can easily obtain[
Â⊗ B̂1, Î ⊗ B̂2

]
= Â⊗

[
B̂1, B̂2

]
.

Note in particular that
[
Â1 ⊗ B̂1, Â2 ⊗ B̂2

]
is in general different from

[
Â1, Â2

]
⊗[

B̂1, B̂2

]
as we can see by expanding everything out

[
Â1 ⊗ B̂1, Â2 ⊗ B̂2

]
=
(
Â1 ⊗ B̂1

)(
Â2 ⊗ B̂2

)
−
(
Â2 ⊗ B̂2

)(
Â1 ⊗ B̂1

)
= Â1Â2 ⊗ B̂1B̂2 − Â2Â1 ⊗ B̂2B̂1 ,[

Â1, Â2

]
⊗
[
B̂1, B̂2

]
=
(
Â1Â2 − Â2Â1

)
⊗
(
B̂1B̂2 − B̂2B̂1

)
= Â1Â2 ⊗ B̂1B̂2 − Â1Â2 ⊗ B̂2B̂1 − Â2Â1 ⊗ B̂1B̂2 + Â2Â1 ⊗ B̂2B̂1 .
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5.2.1 Density matrix for tensor products

We can now consider the density matrix associated to a separable state |Ψ〉 = |ψ〉 ⊗
|φ〉 which is simply

ρ̂ = |Ψ〉 〈Ψ| =
(
|ψ〉 〈ψ|

)
⊗
(
|φ〉 〈φ|

)
= ρ̂A ⊗ ρ̂B ,

where ρ̂A = |ψ〉 〈ψ| is just the density matrix for system A and ρ̂B = |φ〉 〈φ| the
density matrix for system B.

A mixed ensemble of separable states is then given by

ρ̂ =
∑
n

pn ρ̂
(n)
A ⊗ ρ̂

(n)
B ,

where {ρ̂(n)A } are mixed or pure states of system A, while {ρ̂(n)B } are mixed or pure
states of system B and as always pn ≥ 0 such that

∑
n pn = 1.

We will say that a mixed state is separable if and only if it is an ensemble of separable
states, entangled otherwise. We will not be focusing particularly on mixed states in
bipartite systems because they can be seen as arising from a pure state in a larger
system via the process of reduced density matrix and partial trace (see later).

5.3 Matrix Representation

Since H = HA ⊗HB is once again a vector space with a complex inner product, we
have that states and operators in H = HA ⊗ HB can be expressed as vectors and
matrices. To express the tensor product of two column vectors or matrices we use
the convention that the first term gives the block structure while the second specifies
the detail of the individual blocks up to multiplication by the appropriate constant
from the first. This is simplest to explain with examples

 1
2
5

⊗ ( 3
4

)
→


1

(
3
4

)
2

(
3
4

)
5

(
3
4

)

 =



3
4
6
8
15
20


where the middle expression is just given to indicate the structure.

This process can be understood by ordering the basis elements of H = HA ⊗ HB
starting from the basis of HA and HB with the following order

H = span


 1

0
0

⊗ ( 1
0

)
,

 1
0
0

⊗ ( 0
1

)
,

 0
1
0

⊗ ( 1
0

)
,

 0
1
0

⊗ ( 0
1

)
,

 0
0
1

⊗ ( 1
0

)
,

 0
0
1

⊗ ( 0
1

) ,
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and now we represent this basis with the standard basis in the order given, i.e.

 1
0
0

⊗ ( 1
0

)
→



1
0
0
0
0
0

 , ... ,

 0
0
1

⊗ ( 0
1

)
→



0
0
0
0
0
1

 ,

which produces exactly the procedure outlined above with an example.

Similarly for matrices

 1 0 0
0 0 2
0 −3 0

⊗ ( 0 1
−1 2

)
→



0 1 0 0 0 0
−1 2 0 0 0 0
0 0 0 0 0 2
0 0 0 0 −2 4
0 0 0 −3 0 0
0 0 3 −6 0 0

 .

In the above examples the first Hilbert space has dimension 3 while the second has
dimension 2 but obviously similar relations hold for arbitrary (finite) dimensional
Hilbert spaces.

Assuming we use orthonormal basis for the original Hilbert spaces, these vector and
matrix representations correspond to an orthonormal basis for the tensor product
Hilbert space.

Note that both the most general vector and the most general linear operator are not
of the simple form |ψ〉⊗|φ〉 and Â⊗ B̂ but rather

∑
a,b |ψa〉⊗|φb〉 and

∑
I,J ÂI⊗ B̂J .

Example:

Let H = Hq ⊗Hq be the Hilbert space of two qubits, i.e. a four dimensional Hilbert
space. If possible write the linear operator on H

O =


1 0 0 2
0 1 2 0
0 2 1 0
2 0 0 1


as A⊗B where A,B are linear operators on Hq, i.e. 2× 2 matrices. First we notice
that

O = I4 +


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

 = I2 ⊗ I2 +

(
0 2
2 0

)
⊗
(
0 1
1 0

)
= I2 ⊗ I2 + 2σ1 ⊗ σ1 ,

which cannot be simplified any further so O 6= A⊗B.

Example:

Let us consider again H = Hq ⊗Hq and define

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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LECTURE 12

First check that U is a unitary operator. Let us write it as A1 ⊗B1 +A2 ⊗B2, to do
this we write

U =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



=

(
1 0
0 0

)
2

⊗ I2 +

(
0 0
0 1

)
2

⊗ σ1 =

(
I2 + σ3

2

)
⊗ I2 +

(
I2 − σ3

2

)
⊗ σ1 .

We can now understand why this operator implements the quantum logical gate
called Controlled NOT (CNOT) where the first qubit controls what we do to the
second qubit, if the first qubit is |0〉 we leave the second qubit invariant, otherwise
if the first qubit is |1〉 we take the NOT of the second qubit |ȳ〉 = σ1 |y〉.

As always to understand what an operator does we just need to check what U does
on the four basis states H = span{|00〉 , |01〉 , |10〉 , |11〉}.

First of all check that(
I2 + σ3

2

)
|0〉 = |0〉 ,

(
I2 + σ3

2

)
|1〉 = 0 ,

and similarly (
I2 − σ3

2

)
|0〉 = 0 ,

(
I2 − σ3

2

)
|1〉 = |1〉 ,

so the first operators appearing in U acting on the first qubit behave as a control:

-If the first qubit is |0〉 we only need to consider
(
I2+σ3

2

)
⊗ I2, which acts as the

identity on the second qubit;

-while if the first qubit is |1〉 we only need to consider
(
I2−σ3

2

)
⊗ σ1 which acts as

the logical gate NOT on the second qubit and we have

U |00〉 =
(
I2 + σ3

2

)
|0〉 ⊗ I2 |0〉+ = |00〉 ,

U |01〉 =
(
I2 + σ3

2

)
|0〉 ⊗ I2 |1〉+ = |01〉 ,

U |10〉 = +

(
I2 − σ3

2

)
|1〉 ⊗ σ1 |0〉 = |11〉 ,

U |11〉 = +

(
I2 − σ3

2

)
|1〉 ⊗ σ1 |1〉 = |10〉 .

Check that this is exactly the same action as the 4× 4 matrix written above has on
the four standard basis vectors {(1, 0, 0, 0)T , ..., (0, 0, 0, 1)T }.

5.4 Local Measurements

If Alice and Bob perform measurements on their own systems, they can do so using
self-adjoint operators of the form F̂ = F̂A⊗ Î for Alice and Ĝ = Î ⊗ ĜB for Bob. As-
suming for simplicity no degeneracy for the spectrum of F̂A or ĜB within each sub-
system, these operators have projection operators F̂Ai = |i〉 〈i| and ĜBm = |m〉 〈m|
within Alice’s and Bob’s subsystems respectively.
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In the full system the operators are degenerate, with degeneracy given by the dimen-
sion of the other subsystem, i.e. by the dimension of HB for Alice’s observable, and
by that of HA for Bob’s. The corresponding projection operators in the full system
are F̂i = F̂Ai ⊗ Î and Ĝm = Î ⊗ ĜBm.

Using the spectral decomposition of the identity we can write these two projectors
as

F̂i =
∑
n

|i〉 〈i| ⊗ |n〉 〈n| , Ĝm =
∑
j

|j〉 〈j| ⊗ |m〉 〈m| .

It is clear then that the eigenspace for the operator F̂A which was spanned by |i〉 in
HA is now becoming degenerate for the operator F̂ = F̂A ⊗ Î in HA ⊗HB spanned
by all the vectors of the form |i〉 ⊗ |φ〉 with |φ〉 ∈ HB.

Since
[
F̂ , Ĝ

]
= 0 the measurements are compatible so Alice and Bob can both

measure and the final state will be in a simultaneous eigenstate of F̂ and Ĝ. The
outcomes of the measurements will be some pair (fi, gm) and the probability of this
outcome is independent of whether Alice or Bob measures first – in fact they could
also measure simultaneously (or with spacelike separation so that no signal could
travel between them to allow one measurement to potentially affect the other.) In
this sense, as for local unitary transformations, they can consider their systems to be
isolated from each other.

Suppose in fact that the state is in a pure state and let us assume for now separable
as well

|Ψ〉 = |ψ〉 ⊗ |φ〉 =
∑
i ,m

αiβm |i〉 ⊗ |m〉 ,

where the coefficients αi, βm ∈ C and {|i〉} , {|m〉} form an orthonormal basis for
HA and HB respectively.

As always the states |ψ〉 and |φ〉 are normalised which means
∑

i |αi|2 =
∑

m |βm|2 =
1, this implies that if we define the combination αiβm = γim then the condition
〈Ψ |Ψ〉 = 1 imposes

∑
i ,m |γim|2 = 1.

If Alice measures F̂ she will obtain outcome fj with probability |αj |2 =
∑

m |γjm|2
and the system will then collapse to the state∑

m

βm |j〉 ⊗ |m〉 = |j〉 ⊗ |φ〉 .

If Bob then measures Ĝ and obtains outcome gn with probability |βn|2 =
∑

i |γim|2
we have that the final state becomes |j〉 ⊗ |m〉. The probability would be exactly
the same if Bob had measured first, except the intermediate state would have been
|ψ〉 ⊗ |n〉. Overall the combined measurements of F̂ and Ĝ with outcomes (fj , gn)
have probability |γjn|2 which is the product of the two probabilities.

We can also rewrite everything in operator formalism. We just need to remem-
ber that the operators F̂Ai = |i〉 〈i| are mutually orthogonal projectors onto the
eigenspace span{|i〉} ⊆ HA. The probability for Alice to measure fi is

| 〈i |ψ〉 |2 = Tr
(
ρ̂A F̂Ai

)
,
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and after measuring F̂A and finding fi the state of Alice has collapsed to the nor-
malised state

|ψ〉 → |i〉 = 1

| 〈i |ψ〉 |
F̂Ai |ψ〉 =

1√
Tr
(
ρ̂A F̂Ai

) F̂Ai |ψ〉 ,
or equivalently

ρ̂A →
1

Tr
(
ρ̂A F̂Ai

) F̂Ai ρ̂AF̂Ai ,
where we have intensively used the fact that F̂Ai is a projector, i.e. F̂ †

Ai = F̂Ai and
F̂ 2
Ai = F̂Ai.

For a bipartite system we just need to repeat this analysis while carrying along the
road Bob’s system. Clearly when Alice measures the observable F̂A on her system
she does not perform any operation on Bob’s (LO) so we define

F̂i = F̂Ai ⊗ Î .

If we have prepared the separable state |Ψ〉 = |ψ〉⊗ |φ〉 ∈ HA⊗HB then we can use
the density matrix

ρ̂ = |Ψ〉 〈Ψ| = |ψ〉 〈ψ| ⊗ |φ〉 〈φ| = ρ̂A ⊗ ρ̂B .

Now if Alice measures F̂ = F̂A ⊗ Î she will obtain outcome fi with probability

TrA⊗B
(
ρ̂ F̂i

)
= TrA

(
ρ̂A F̂Ai

)
,

and after that her wave function will have collapsed while Bob’ state will be un-
changed

ρ̂→ 1

TrA

(
ρ̂A F̂Ai

) F̂Ai ρ̂AF̂Ai ⊗ ρ̂B =
1

TrA⊗B

(
ρ̂ F̂i

) F̂i ρ̂ F̂i ,
where we used the projector F̂i defined on the whole bipartite system.

Note in particular that

F̂i = F̂Ai ⊗ Î =
∑
m

(|i〉 ⊗ |m〉)⊗ (〈i| ⊗ 〈m|) ,

where we have used the spectral decomposition of Î for Bob system to make man-
ifest the fact that although the eigenspace corresponding to the eigenvalue fi was
non-degenerate in HA, as soon as we consider a bipartite system it immediately
becomes degenerate since any vector of the form |i〉 ⊗ |φ〉 with |φ〉 ∈ HB is an
eigenvector of F̂ ⊗ Î with same eigenvalue fi (see comment at the beginning of this
section).

Now similarly if Bob measures ĜB with spectrum {gn, |n〉} he will obtain outcome
gm with probability

TrB

(
ρ̂B ĜBm

)
= TrA⊗B

(
ρ̂ Ĝm

)
,
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where we defined ĜBm = |m〉 〈m| and Ĝm = Î⊗ĜBm. After measurement the wave
function will collapse to

ρ̂→ 1

TrA⊗B

(
ρ̂ Ĝm

)Ĝm ρ̂ Ĝm .
As above it does not matter who measures first (only the intermediate state will
change), if we measure F̂ = F̂A ⊗ Î and Ĝ = Î ⊗ ĜB the outcome (fi, gm) will be
measured with probability

TrA⊗B

(
ρ̂ P̂im

)
,

with P̂im = F̂Ai ⊗ ĜBm = |i〉 〈i| ⊗ |m〉 〈m|.

The state will then collapse to

ρ̂→ 1

TrA⊗B

(
ρ̂ P̂im

) P̂im ρ̂ P̂im = |i〉 ⊗ |m〉 .

Let us now repeat the same analysis but for an entangled state. Suppose the bipartite
system H = HA ⊗HB is prepared in the state

|Ψ〉 =
∑
i,m

γim |i〉 ⊗ |m〉 ,

where the normalised coefficients γim ∈ C are not of the form γim 6= αiβm as above,
i.e. the state is an entangled one.

Let us still define the coefficients

αj =

√∑
m

|γjm|2 , βn =

√∑
i

|γin|2 ,

allowing us to define the two auxiliary normalised states

|ψn〉 =
1

βn

∑
i

γin |i〉 ∈ HA ,

|φj〉 =
1

αj

∑
m

γjm |m〉 ∈ HB ,

excluding values of n and j for which βn = 0 or αj = 0. (Little exercise for you
check that these states are indeed normalised.)

We can then rewrite the state |Ψ〉 as

|Ψ〉 =
∑
i,m

γim |i〉 ⊗ |m〉 ,

=
∑
i

αi |i〉 ⊗ |φi〉 ,

=
∑
n

βm |ψm〉 ⊗ |m〉 .
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Local measurements can
have a non-local effect. If
Alice performs a local
measurement on an
entangled state, the system
will collapse to a separable
one, and Bob’s state will
depend on the result of
Alice’s measurement.

LECTURE 13

If Alice measures F̂ she will have outcome fi with probability |αi|2 and after the
measurement the state will have collapsed to

|Ψ〉 → F̂i |Ψ〉 = (F̂Ai ⊗ Î) |Ψ〉 ∼ |i〉 ⊗ |φi〉 .

The key difference from the previous, separable case is that starting from an entan-
gled state after Alice measurement we obtain a separable one with |i〉 ∈ HA and
|φi〉 ∈ HB but Bob’ state depends on the result of Alice measurement!

This is the novelty of quantum mechanics: we say that quantum mechanics is non-
local! Local measurements, for example Alice measuring a spin in her laboratory in
New York, can have non-local effects, i.e. changing Bob’ state who lives on Mars.
We will shortly see that this “spooky action at a distance”, as Einstein used to call it,
will not allow us to communicate faster than the speed of light, i.e. it will not violate
causality. The key point is that if both Alice and Bob know the full initial state |Ψ〉,
then after measuring F̂ and finding fi Alice knows that Bob’ state is |φi〉 however
Bob does not, unless Alice tells him (we will say they communicate classically) the
result of her measurement.

For the moment let us forget about Bob and let us try and assign a density matrix ρ̂A
to describe only Alice system and accommodate for this lack of (classical) knowledge
regarding Bob, this will introduce the concept of Reduced Density Matrix.

5.5 Reduced Density Matrix

Given a bipartite (or multi-partite) system, we can define the partial trace over a
subsystem to be a trace in that subsystem only. I.e. the partial trace over system B
(or Hilbert space HB) is defined by

TrB

(
Ĉ ⊗ D̂

)
= Tr(D̂) Ĉ

and all other properties follow from linearity. Note that the partial trace TrB maps
linear operators acting on HA ⊗HB to linear operators acting only on HA, i.e. the
result of a partial trace is NOT a number but rather an operator on the remaining
Hilbert space. Similarly the partial trace over A

TrA

(
Ĉ ⊗ D̂

)
= Tr(Ĉ) D̂ ,

produces an operator on HB.

We define the reduced density matrix for a subsystem to be the partial trace of the
density matrix over the other subsystem(s). I.e. for a bipartite system

ρ̂A ≡ TrB(ρ̂)

and
ρ̂B ≡ TrA(ρ̂) .

Generically the reduced density matrices will describe mixed states even if the full
system is in a pure state. This is reminiscent of our discussion regarding mixed
states: if we “forget” about Bob system, i.e. if we consider the partial trace over
B, Alice will have some lack of classical knowledge about her system which means
that her state will not be a pure one but rather a mixed state, i.e. the mixed state
described by the reduced density matrix.
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Example:

Let us consider the two-qubit system H = Hq ⊗Hq in the pure, entangled state

|β00〉 =
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) .

(This will be the prototypical example of entangled states called a Bell state or EPR
pair) Firstly let us compute the density matrix in operator form

ρ̂ = |Ψ〉 〈Ψ| = 1

2
(|0〉 〈0| ⊗ |0〉 〈0|+ |0〉 〈1| ⊗ |0〉 〈1|+ |1〉 〈0| ⊗ |1〉 〈0|+ |1〉 〈1| ⊗ |1〉 〈1|) .

We can compute the reduced density

ρ̂A = TrB ρ̂ =
1

2

[
|0〉 〈0|TrB (|0〉 〈0|) + |0〉 〈1|TrB (|0〉 〈1|) +

+ |1〉 〈0|TrB (|1〉 〈0|) + |1〉 〈1|TrB (|1〉 〈1|)
]

=
1

2
(|0〉 〈0|+ |1〉 〈1|) = Î

2
.

We will see that these Bell states will be maximally entangled, for the moment
we have just seen that the reduced density matrix over the second (or first) qubit
produces the most mixed qubit state, i.e. half of the identity, i.e. the centre of the
Bloch sphere.

We can also obtain this result by first constructing the density matrix as a 4× 4 ma-
trix using the standard basis for the usual orthonormal basis states {|00〉 , |01〉 , |10〉 , |11〉}.
We first rewrite the state |β00〉 as the 4-dimensional vector

|β00〉 =
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)→ v =

1√
2


1
0
0
1

 ,

then as always the density matrix becomes

ρ̂ = |β00〉 〈β00| → ρ = vv† =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ,

which we rewrite in the sum of tensor operators as

ρ =
1

2

(
1 0
0 0

)
⊗
(
1 0
0 0

)
+
1

2

(
0 1
0 0

)
⊗
(
0 1
0 0

)
+
1

2

(
0 0
1 0

)
⊗
(
0 0
1 0

)
+
1

2

(
0 0
0 1

)
⊗
(
0 0
0 1

)
,

and finally perform the partial trace over the second operator

ρA =
1

2

(
1 0
0 0

)
Tr

(
1 0
0 0

)
+

1

2

(
0 1
0 0

)
Tr

(
0 1
0 0

)
+

+
1

2

(
0 0
1 0

)
Tr

(
0 0
1 0

)
+

1

2

(
0 0
0 1

)
Tr

(
0 0
0 1

)
=

1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

I2

2
,

as already obtained above.
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The reduced density matrix ρ̂A is a density matrix which describes Alice’s subsystem
when she has no knowledge of Bob’s system. The following properties illustrate this:

• ρ̂A is invariant under all LO in system B. For unitary transformations this is
a simple consequence of cyclicity of the trace. For measurements in B this
is true provided Alice does not know the results of any measurements. This
explains why Alice typically sees a mixed state (before she performs any mea-
surements.)

• Under unitary transformations in system A, ρ̂A transforms as expected for a
density matrix.

• Local measurements in system A can be described in terms of operators acting
on HA and ρ̂A.

For the point about measurement, the main result is that the probability and final
state can be calculated using F̂i and ρ̂, or using F̂Ai and ρ̂A, and either method gives
the same predictions and results. Specifically

TrB

(
F̂i ρ̂ F̂i

)
= F̂Ai ρ̂A F̂Ai.

The reduced density matrix captures a lot of information regarding the nature of the
state in consideration. In particular we have the following theorem.

Theorem: If the system HA ⊗ HB is in a pure state |Ψ〉 then the reduced density
matrix ρ̂A = TrB ρ̂ is pure if and only if |Ψ〉 is separable, i.e. |Ψ〉 = |ψ〉 ⊗ |φ〉 with
|ψ〉 ∈ HA and |φ〉 ∈ HB.

Proof. (⇐) Let us start with the separable pure state |Ψ〉 = |ψ〉 ⊗ |φ〉. Then ρ̂ =
|Ψ〉 〈Ψ| = |ψ〉 〈ψ| ⊗ |φ〉 〈φ|, so for the reduced density matrix we have

ρ̂A = TrB (ρ̂) = TrB (|ψ〉 〈ψ| ⊗ |φ〉 〈φ|)

= |ψ〉 〈ψ|TrB (|φ〉 〈φ|) = |ψ〉 〈ψ| ,
(5.1)

since the state |φ〉 is normalised, i.e. TrB (|φ〉 〈φ|) = 〈φ |φ〉 = 1. So if the starting
pure state ρ̂ is separable then the reduced density matrix is pure ρ̂A = |ψ〉 〈ψ|.

(⇒) Conversely let us assume the reduced density matrix ρ̂A = |ψ〉 〈ψ| is given by
a pure state. Let us complete the vector |ψ〉 to an orthonormal basis for HA, i.e.
HA = span{|ψ〉 ,

∣∣ψ⊥
i

〉
} with

〈
ψ
∣∣ψ⊥
i

〉
= 0 and

〈
ψ⊥
i

∣∣∣ψ⊥
j

〉
= δij .

The most general state in HA ⊗HB can be written as

|Ψ〉 = c |ψ〉 ⊗ |φ〉+
∑
i

ci

∣∣∣ψ⊥
i

〉
⊗ |φi〉 ,

for some |φ〉 , |φi〉 ∈ HB and c, ci ∈ C.

If Alice measures the observable
∣∣∣ψ⊥
j

〉〈
ψ⊥
j

∣∣∣⊗ Î on |Ψ〉 she has the expectation value

TrA⊗B
[
|Ψ〉 〈Ψ|

(∣∣∣ψ⊥
j

〉〈
ψ⊥
j

∣∣∣⊗ Î)] = |cj |2 ,
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Measurement destroys
entanglement.

using the orthonormality properties of the vectors
∣∣ψ⊥
i

〉
. But this must be equal to

TrA
(
ρ̂A

∣∣∣ψ⊥
j

〉〈
ψ⊥
j

∣∣∣) =
〈
ψ
∣∣∣ψ⊥
j

〉 〈
ψ⊥
j

∣∣∣ψ〉 = 0 ,

hence cj = 0 for all j which means that the state |Ψ〉 = c |ψ〉⊗|φ〉 is indeed separable.

Corollary: If the spectrum of F̂A is non-degenerate then measuring F̂A in the
system HA produces a separable state on the system HA ⊗ HB. In other words,
measurement destroys entanglement.

Proof. We know that if we measure F̂A on the state ρ̂A and we find the outcome fi
we must collapse the wave function to the one dimensional (because the spectrum
is non-degenerate) eigenspace spanned by the corresponding vector |i〉. Hence we
have that the reduced density matrix ρ̂A must go to

ρ̂A → ρ̂′A = |i〉 〈i| ,

but since the new density matrix ρ̂′A is clearly pure we must have from the theorem
above that the state ρ̂ in HA ⊗HB has collapsed to a separable state

ρ̂→ ρ̂′A ⊗ ρ̂′B = |i〉 〈i| ⊗ |φi〉 〈φi| .

With this new concept of reduced density matrix we can also understand why entan-
glement, although non-local in nature, does not violate causality. Let us start again
with our favourite entangled pure state

|Ψ〉 =
∑
i,m

γim |i〉 ⊗ |m〉 ,

=
∑
i

αi |i〉 ⊗ |φi〉 ,

=
∑
n

βm |ψm〉 ⊗ |m〉 ,

where the various coefficients have been defined as above.

We know that Alice measuring F̂ = F̂A ⊗ Î will collapse the state ρ̂ → ρ̂′A ⊗ ρ̂′B.
If Bob could detect this we would have that Alice measurement would result in
instantaneous communication which violates the causality of physics, i.e. any signal
should travel from Alice to Bob no faster than the speed of light.
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However how could Bob detect this? Well the only thing he can do is perform a
measurement for his favourite observable Ĝ = Î ⊗ ĜB, so what we are really trying
to understand is whether the probabilities of outcomes for Bob have changed before
and after Alice’s measurement.

Before Alice measures we know that Bob has the reduced density matrix

ρ̂B = TrA (|Ψ〉 〈Ψ|) =
∑
i,j

αiα
∗
j |φi〉 〈φj |TrA (|i〉 〈j|) =

∑
i

|αi|2 |φi〉 〈φi| ,

i.e. Bob has the ensemble {(|αi|2, |φi〉}.

Now Alice measure F̂ and finds outcome fi so she knows that |Ψ〉 → |i〉⊗ |φi〉 which
means

ρ̂→ ρ̂′ = |i〉 〈i| ⊗ |φi〉 〈φi| = ρ̂′A ⊗ ρ̂′B
where the now collapsed density matrix ρ̂′B is now different from the reduced density
matrix ρ̂B compute above, i.e. ρ̂′B = |φi〉 〈φi| 6= ρ̂B.

However Bob does not know that Alice has measured and found fi unless Alice com-
municates this information, Bob only knows that he has the state |φi〉 with probabil-
ity |αi|2. Although Alice has instantaneously changed Bob system, Bob cannot detect
this, there has not been any instantaneous transmission of information between Al-
ice and Bob. Said differently if Alice and Bob have prepared 100 copies of the
same state |Ψ〉 and for a hundred times Alice has measure F̂ , unless she classically
communicates in which instances she has found outcome fi, Bob cannot detect any
difference in his probability distributions because he cannot possibly know which
one are the instances for which Alice has found outcome fi or outcome say f1!

To summarise: Bob cannot

• Instantaneously detect the result of Alice’s measurement: we have already
seen that the order of measurements is irrelevant, the probability of outcome
(fi, gm) is |γim|2;

• Know what Alice has measured: Suppose that Alice chooses a different observ-
able F̂ ′ this will just select a different orthonormal basis {

∣∣̃i〉} of eigenstates
of F̂ ′ but still we have that

|Ψ〉 =
∑
i

αi |i〉 ⊗ |φi〉 =
∑
i

α̃i
∣∣̃i〉⊗ ∣∣∣φ̃i〉 ,

for some new normalised coefficients α̃i and states
∣∣∣φ̃i〉 ∈ HB. So Bob’s en-

semble can be thought as {( |αi|2, |φi〉)} or {( |α̃i|2,
∣∣∣φ̃i〉)} but still the mixed

state is described by the same reduced density matrix ρ̂B = TrAρ̂.

• Even know that Alice has made a measurement: otherwise this would mean
that Bob’s result could depend on whether or not Alice made a measurement
at any point in time, even in the future! Clearly not possible in quantum
mechanics.

However so far we have assumed that Alice and Bob do not communicate at all. The
non-locality of quantum mechanics cannot be detected with local operations only
(LO) but as soon as we add classical communications (CC) between Alice and Bob
everything changes. If Alice calls Bob to tell him the result of her measurements Bob
can indeed detect the change in his state and the story gets interesting.
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5.6 Classical Communication

If we allow Alice and Bob to communicate by classical means, i.e. sending classical
bits, then some interesting possibilities arise. Note that classical communication
now travels at finite speed (at best the speed of light, or a very fast pigeon) so we
do not have any problem with causality. The key point is that this allows them to
take actions on their own systems based on information provided by the other.

If this is only information which could have been communicated in advance, it is not
adding anything new – i.e. we normally assume Alice and Bob have pre-arranged
any procedures to follow and that they know the initial state of the full system. So,
the only new thing to communicate would be the result of a measurement. The
effect of this is that if Bob informs Alice about a measurement he made, this could
give Alice some information about her system – this will happen provided the state
before the measurement was entangled. Alice can then decide what to do based
on this information. If Alice and Bob can act with LO and Classical Communication
(CC) we say that they can use LOCC.

Sometimes we allow arbitrary classical communication. Other times we want to con-
sider questions such as how many bits are required to convey enough information
to carry out a specific process. In applications where we consider issues of security,
we assume that any communications can be intercepted (by Eve) without detection
by Alice or Bob. Of course, if say Alice send some bits to Bob, Eve can copy the bits
being transmitted before forwarding them to Bob, and so she can know everything
about the transmissions. She could of course do other things such as modify the
data being transmitted or not send on anything to Bob.
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5.7 Quantum Communication

This means that we allow Alice and Bob to send quantum states to each other. If we
allow arbitrary quantum communication, we don’t really have a bipartite system.
E.g. Bob could send his whole system to Alice. She could then perform arbitrary
operations on the complete system, and then send Bob’s part back to him. Ob-
viously there is no sense in which the two parts of the system were separated or
non-interacting. Instead, if we allow quantum communication at all we typically
impose specific restrictions, such as Alice can send one qubit to Bob. In this way we
can explore questions such as what could be done with a single qubit compared to
a single classical bit of communication.

In applications concerned with security, again we assume Eve can intercept any
transmissions. However, unlike classical communications, Eve cannot make a copy
of the qubits (due to the no-cloning theorem). Also, unless she already knows that
they are eigenstates of a specific measurement operator, she cannot measure them
without some non-zero probability that she disturbs the state through the measure-
ment process. This means that if Eve gains any information about the qubits before
forwarding them, this can be detected with non-zero probability. The result is that
quantum communication can be used to ensure security in a way which is not pos-
sible with classical communication. See specifically the discussion of Quantum Key
Distribution.

5.7.1 Hardware

Although in this module we will entirely focus on the “software” part, to better un-
derstand quantum communication is perhaps useful to see the “hardware” of quan-
tum computers, i.e. the physical realization of quantum computers, or even just
two-level systems, i.e. the qubit.

In a real world scenario we have three important quantities: the decoherence time
τQ, i.e. the time it takes the environment to corrupt our quantum system, the opera-
tion time τop, i.e. the time it takes to perform unitary transformations, and maximum
number of operations nop = τQ/τop, roughly how many operations we can do to our
system before it is destroyed.

I will not present here the pros and cons for various physical realisation but if you
are interested Chapter 7 of Nielsen and Chuang discusses all these topics.

Perhaps the simplest apparatus are optical photons. A single photon state can be
produced in a lab by attenuating the output of a laser, furthermore we can act on
photons using mirrors, phase shifters, beamsplitters and can be made interacting
using nonlinear optical media. This to say that we can indeed produce various
states, entangled or not, and act on them with unitary transformation. We can take
an electromagnetic cavity (think about two very good mirrors at distance λ) and
produce a quantum superposition of zero and one photon of wave-length λ bouncing
back and forth, i.e. a qubit a |0〉+b |1〉. Alice and Bob can then produce an entangled
state and each one of them store their qubit (photon/no-photon superposition) in
two separate cavities. Alice will then perform some unitary transformation on her
qubit and then (very carefully) give the cavity to Bob who has now access to the
whole two-qubit system and can perform his favourite 4 × 4 dimensional unitary
transformation.
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Another candidate for real world qubits are single-atom cavities. We can think of a
single atom standing between two mirrors (called a Fabry-Perot cavity). For simplic-
ity let us assume that this atom energy levels are just two, the lowest called ground
state with energy E0 = 0, and an excited state with energy E1 > E0. We can then
have a single photon with energy E2−E1 interacting with this single atom since it’s
resonant, i.e. the atom in the ground state can “eat” the photon and go to the ex-
cited state. Quantum information can then be treated in various ways: for example
we can use photon states (quantum superposition of 0 and 1 photons) and the cavity
with atom provides the non-linear interactions between them, or represented by the
atom (quantum superposition of ground and excited state) with photons communi-
cating between different atoms.

The final example uses the spin of particles, being that the orbitals of atoms (ion
traps) or the nuclear spin states (NMR the same as the medical device!). The key
point is that now we can use magnetic fields to interact with spin systems. For
example we can start with a spin-1/2 particle, say for example an electron (although
these are not the particles used in real systems) that can be described by specifying
the component of its spin by convention along the z-axis, hence our qubit is a |↑〉+
b |↓〉 where |↑〉 would be a state rotating counter-clockwise along the z-axis and
|↓〉 clockwise. Couplings between different electrons (or chemical bonds between
neighbouring atoms the real world realisation) provide the interactions to produce
entangled states. So the only Alice and Bob can share two entangled states, each
one of them act with some magnetic field on their on spin system and then send it
to the other person.

Recently Google has announced that their new quantum processor: “Sycamore” had
reached quantum supremacy. They have a two dimensional array of 54 of what
they are called transmons qubits where each qubit is coupled to the four nearest
neighbours. Their qubits are obtained from superconducting circuits for which the
conduction electrons condense into Cooper pairs (a macroscopic quantum effect),
these two superconducting islands are coupled via two Josephson junctions which
are just two superconducting regions separated by a barrier. These Cooper pairs are
pseudo-particles formed by two electrons paired together and they are the funda-
mental objects in the theory of superconductors. The qubit is now realised by the
quantum superposition of a Cooper pair transferred between these two islands.
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LECTURE 14

6
Entanglement applications

We focus on bipartite systems which are in pure states. From a QI point of view
separable states are not interesting. If we have a separable pure state, we simply
have two separate quantum systems, each with their own pure state. There is no
quantum correlation between such systems so at most there are classical correla-
tions. However, there are interesting effects when we have an entangled state. Then
it turns out to be possible to do things which could not be done otherwise. Some
examples we explore are:

• Teleportation – The transmission of a quantum state using classical communi-
cation, but no quantum communication.

• Quantum Key Distribution – The ability to share a secret random key, using
classical and quantum communication, with no possibility that the key could
be know by Eve.

• Superdense coding – The ability to transmit 2 classical bits of information by
sending just one qubit.

Note that entanglement implies a quantum correlation which is different from classi-
cal correlations. In particular even though we have a bipartite system, measurement
in one subsystem can instantaneously affect the other. It is this “spooky action at a
distance” which Einstein objected to.

However, to reiterate our discussion from above: note that this instantaneous effect
does not imply faster than light communication. The main point is that say if Alice
makes a measurement, although this can alter Bob’s state the measurement process
is random, so she cannot choose how Bob’s state is altered. Furthermore, Bob cannot
determine which measurement Alice made, or even if she made a measurement at
all. This is because Bob’s reduced density matrix is not changed by any unitary
transformations of measurements made by Alice, it describes the same mixed state.
If Alice tells Bob the result of a measurement, Bob can then learn something about
his state which would change his mixed state (perhaps to a pure state). However,
this process requires classical communication so there cannot be any transmission
of information faster than the speed of light. Another way to say this is that if Alice
and Bob both make a measurement, the probability distribution of their combined
results does not depend on whether Alice measures first, Bob measure first or if they
measure simultaneously.

A simple example of classical correlation is the following. Charlie gives Alice and
Bob each a box with a coin in it. One coin is heads up, the other tails, and Alice and
Bob both know this. Alice can open her box to find out whether her coin is heads or
tails, and she would then know immediately that Bob’s coin was the other, whether
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or not Bob had opened his box. Obviously the result is independent of whether
or not Bob already opened his box, and also obviously Alice’s measurement has no
effect on Bob’s coin.

A similar example of quantum correlation would be that Charlie gives Alice and
Bob each a box containing a ‘quantum coin’, again with the guarantee that if they
both measure to heads/tails, one of them will finds heads, the other tails. Now the
difference to the classical case is that before measuring, neither coin is heads or
tails, measuring changes the state to either heads or tails at random. Then if Alice
measures heads, Bob’s coin will instantaneously become tails (assuming Bob has
not yet made a measurement.) Similarly if Bob measures first, his measurement will
affect Alice’s coin and her coin will instantly be heads if he found tails. However, in
QM we do not have any mechanism to describe a signal travelling from one system
to the other. Indeed, the measurements could be made simultaneously and they will
still yield opposite results, yet we cannot claim that one affected the other1.

Now, a natural question is, can we really distinguish this quantum correlation from
classical correlation? More generally, how can we be sure that the state is not either
heads or tails before we measure? For any given process it is easy to come up with
possible ways that the measurement result is pre-determined, i.e. where our uncer-
tainty about the result of a measurement is simply due to our lack of knowledge
about some “hidden variables”.

It sounds very difficult to argue against this possibility, but in fact Bell derived an
inequality that must hold in any theory with the property of local realism. This
means any theory where the result of any measurement is pre-determined (i.e. is
determined by the state and does not involve any randomness) and local in the
sense that no event can affect any other event unless some sort of signal travels (no
faster than the speed of light) to communicate the first event to the second. It is
easy to show that QM can violate Bell inequalities, and experiment has confirmed
that they are violated in nature. This proves that no theory obeying local realism
(i.e. no hidden variable theory) can be the correct description of nature. (This does
not prove QM is correct, but QM is consistent with all experiments, and there is no
known alternative.)

6.1 Bell States

Many of the features of entanglement can be explored in the simplest bipartite sys-
tem, where each subsystem is a single qubit. The complete system is then a 2-qubit
system, so the Hilbert space has dimension 4. We can use an orthonormal basis of
separable states {

|x〉 ⊗ |y〉 : x, y ∈ {0, 1}
}
.

In general, linear combinations of these states will be entangled. Given a specific
state, one way to check if it is separable is simply to try and write it in the form
|ψ〉 ⊗ |φ〉 = a |0〉 ⊗ |φ〉 + b |1〉 ⊗ |φ〉 for some a, b ∈ C and some state |φ〉. If this is
not possible, the state is entangled. Another way is to check if the reduced density
matrix (of either subsystem) gives a pure state, meaning that the state is separable,

1In Special Relativity the concept here is spacelike separation – there is no possibility for any signal
at or below the speed of light to travel from Alice to Bob or Bob to Alice to allow the result of one
measurement to influence the other. In fact in relativity there is no concept of which measurement
was made before the other if they were made at a spacelike separation.
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For maximally entangled
states, the trace of the
reduced density matrix of
both sides is 1/2.

or a mixed state, meaning that the state is entangled. Recall that the state is pure
iff. Tr(ρ2) = Tr(ρ) = 1.

In fact Tr(ρ2A) = Tr(ρ2B) gives a measure of the entanglement, with maximum value
1 for no entanglement (i.e. a separable state) to the minimum value 1/2 (for a single
qubit subsystem) for maximally entangled states.

The four Bell states

|βxy〉 =
1√
2

(
|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y〉

)
where y = NOT y (defined by 0 = 1 and 1 = 0) are maximally entangled, and also
form an orthonormal basis.

Note that in terms of a 2-qubit system the Bell state basis is related to the standard
basis by a unitary transformation, so these are entirely equivalent choices of basis
states. However, for the bipartite system the Bell states cannot be created from the
separable states by any LOCC process. This is because the required unitary transfor-
mations are not of the form ÛA⊗ ÛB as that would only transform a separable state
to a separable state. Also, measurement by Alice and/or Bob would also result in a
separable state. Note that a measurement by Alice or Bob on a Bell state can result
in a separable state such as |0〉 ⊗ |0〉 but of course measurement is not a reversible
transformation.

On the other hand, it is possible for Alice or Bob to individually transform any Bell
state to any other Bell state. Specifically, the unitary operators Ûxy ⊗ Î (which Alice
can use) and Î ⊗ Ûxy (which Bob can use) transform the Bell state |β00〉 to the Bell
state |βxy〉, i.e.

Ûxy ⊗ Î |β00〉 = Î ⊗ Ûxy |β00〉 = |βxy〉 ,

where the unitary operators are given in the standard single qubit matrix represen-
tation by

U00 = I2 =

(
1 0
0 1

)
, U01 = σ1 =

(
0 1
1 0

)
,

U10 = σ3 =

(
1 0
0 −1

)
, U11 = iσ2 =

(
0 1
−1 0

)
.

Note that when dealing with qubit, or multi-qubits systems we will often drop the
hat from operators and use, unless differently specified, the basis |0〉 , |1〉 represented
as the two standard basis vectors (1, 0)T , (0, 1)T , hence Î for a qubit will become I2
the 2 × 2 identity matrix, and in this basis we will directly use the Pauli matrices
instead of having to define three abstract operators (usually called spin operators
Ŝx , Ŝy , Ŝz or sometimes Ĵx , Ĵy , Ĵz) represented by these three matrices in this given
basis.

Example:

Consider Û11 = iσ2, then we have

Û11 |0〉 = − |1〉 , Û11 |1〉 = |0〉 .

60



Superdense coding relies on
the fact that Alice can
transform |β00〉 to any |βxy〉
using only a local unitary
transformation on her part of
the Hilbert space.

Then if we consider

Û11 ⊗ Î |β00〉 = Û11 ⊗ Î
(

1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉

)
=

(
− 1√

2
|1〉 ⊗ |0〉+ 1√

2
|0〉 ⊗ |1〉

)
= |β11〉 ,

as expected.

6.2 Superdense Coding

This process is called superdense because we can use one qubit to transmit two
bits of information. However, this is only possible at the cost of using a resource
of entanglement corresponding to one Bell state. I.e. we cannot convey more than
one bit of information using a single qubit unless the two parties already share an
entangled state.

To see this, first note that it is obvious that a qubit can be used in place of a bit. E.g.
simply send the state |0〉 corresponding to the bit 0, or the state |1〉 corresponding
to the bit 1. The recipient just measures, corresponding to the operator 1

2 (I2 − σ3)
to distinguish, with probability 1, these two orthogonal states

1

2
(I2 − σ3) |0〉 = 0 |0〉 , 1

2
(I2 − σ3) |1〉 = 1 |1〉 ,

i.e. the outcome of the measurement is with probability 1 the classical bit Alice
wanted to send.

Note as well that Alice can indeed prepare the initial qubit to represent in this way
the classical bit she wants to send to Bob. Suppose she wants to send the classical
bit x ∈ {0, 1}, she can just prepare a random state |ψ〉 and measure on it 1

2 (I2 − σ3).
The result of this measurement can only be 0 or 1, if it is precisely the bit x she
wants to send then she knows she has now projected |ψ〉 to the right state |x〉 and
she sends it straight away.

If the result of the measurement is not the same as the bit she wanted to send then
she knows she has projected the state onto |x̄〉 and she just needs to perform the
unitary evolution σ1 |x̄〉 = |x〉 and then she can send the state to Bob.

Now, although a qubit contains two real numbers (as it corresponds to a point on
a sphere, as we saw in the Bloch sphere picture), the recipient can only make one
measurement which will give one of two possible values, and then the state will be
transformed to one of two orthogonal states. (Which states depend on the choice of
measurement operator.)

Now, suppose Alice and Bob share the Bell state |β00〉 and Alice wants to send the
2-digit binary number (xy)2 to Bob. She can do this by transforming the system
by acting on her qubit with the unitary operator Ûxy which transforms the whole
system to the state |βxy〉. Note that this does not transmit any information to Bob,
his reduced density matrix is ρ̂B = 1

2 Î before and after Alice’s transformation.

Alice can then send her qubit to Bob. Note that this qubit also contains no informa-
tion on its own. This means that if say Eve intercepts it, she just has a qubit with
reduced density matrix 1

2 Î completely independent of x and y. However, assuming
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Bob receives the qubit from Alice, he will have the full Bell state |βxy〉. Since the four
Bell states are orthogonal, he can distinguish them (with probability 1) with a suit-
able measurement. This means any measurement operator which has the four Bell
states as eigenstates (with distinct eigenvalues.) E.g. Bob will definitely measure the
result (xy)2 if he measures

B̂ = 0 |β00〉 〈β00|+ 1 |β01〉 〈β01|+ 2 |β10〉 〈β10|+ 3 |β11〉 〈β11| .

6.3 No-Cloning Theorem

Crucial to the claim above that one qubit could only be used to transmit one bit of
information (without use of entanglement) was that fact that the recipient could
only perform one measurement without destroying the original state. From our
knowledge of measurement, this is obvious. However, suppose Bob received a qubit
and then cloned it. He could then measure on the many copies to deduce (to any
desired accuracy by making more copies) the probability distribution of the results
of any measurement(s). E.g. doing this for the measurement 1

2 (I2 − σ3) would give
an estimate of cos2(θ/2) (defined on the Bloch sphere) as the probability of getting
the result corresponding to |0〉 rather that |1〉. This would give an arbitrary num-
ber of bits of information as the binary representation of this number, for example
cos2(θ/2) = (0.1100010101...)2. However, the No-Cloning Theorem states that this is
not possible.

Theorem: In QM it is impossible to clone an unknown state |ψ〉. I.e. we cannot
transform |ψ〉 ⊗ |Ω〉 → |ψ〉 ⊗ |ψ〉 for arbitrary unknown |ψ〉, where |Ω〉 is a fixed
initial state.

Note, the attempt here is to create a quantum photocopier, taking any input |ψ〉
and a blank sheet of paper |Ω〉 and making a perfect copy. Note that it is possible
to transform |ψ〉 ⊗ |Ω〉 → |φ〉 ⊗ |ψ〉 for arbitrary |ψ〉 but the state |φ〉 will not (in
general) be the state |ψ〉, or even depend on the state |ψ〉.

Proof. Note that measurement cannot help. Any measurement of an unknown state
will give a result dependent on the choice of measurement, and the final state will
be an eigenstate of the measurement operator. We can only deduce that the original
state was not orthogonal to this final state. This means that such a quantum copier
must use unitary evolution. However, we can prove by contradiction that there is no
such unitary transformation. Alternatively we can prove that there is no such linear
transformation. (Either is sufficient to prove the theorem.)

Linearity: Take any two linearly independent states |ψ1〉 and |ψ2〉 and assume we
have a quantum copier. Also, let |ψ〉 = a |ψ1〉+b |ψ2〉 for any non-zero a, b ∈ C. Then
the copier acts as

|ψ1〉 ⊗ |Ω〉 → |ψ1〉 ⊗ |ψ1〉
|ψ2〉 ⊗ |Ω〉 → |ψ2〉 ⊗ |ψ2〉
|ψ〉 ⊗ |Ω〉 → |ψ〉 ⊗ |ψ〉

but by linearity we must also have

|ψ〉 ⊗ |Ω〉 = a |ψ1〉 ⊗ |Ω〉+ b |ψ2〉 ⊗ |Ω〉 → a |ψ1〉 ⊗ |ψ1〉+ b |ψ2〉 ⊗ |ψ2〉 6= |ψ〉 ⊗ |ψ〉 .
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Hence we have a contradiction.

Unitarity: The argument is similar. Take all states to be normalised and consider
two states |ψ1〉 and |ψ2〉. The copier must act as

|ψ1〉 ⊗ |Ω〉 → |ψ1〉 ⊗ |ψ1〉
|ψ2〉 ⊗ |Ω〉 → |ψ2〉 ⊗ |ψ2〉

but since it is a unitary operation, inner products are preserved. This means that

(〈ψ1| ⊗ 〈Ω|) (|ψ2〉 ⊗ |Ω〉) = (〈ψ1| ⊗ 〈ψ1|) (|ψ2〉 ⊗ |ψ2〉)

but this means that
〈ψ1 |ψ2〉 = (〈ψ1 |ψ2〉)2 .

This is only possible if 〈ψ1 |ψ2〉 = 1 so |ψ1〉 = |ψ2〉 or 〈ψ1 |ψ2〉 = 0 so the states are
orthogonal. So, again we see it is impossible to copy arbitrary unknown states.

Note that the above does not mean that we cannot clone an arbitrary state |ψ〉. It
is just that we must choose the right unitary transformation, depending on |ψ〉 and
obviously we cannot do that if we don’t know anything about the state.

Example:

It is possible to write down a unitary operator which transforms

U
(
|n〉 ⊗ |0〉

)
→ |n〉 ⊗ |n〉 . (6.1)

In the matrix notation, this operator is given by

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (6.2)

But despite the fact that (6.1) looks like a generic copier, the states on which it acts
are not the most general one-qubit states. After all, the most general such state is

|ψ〉 = α |0〉+ β |1〉 . (6.3)

If you act with the U given above on this state |ψ〉, you will find (try it!) that it does
not produce |ψ〉 ⊗ |ψ〉. So the copier only works for the basis states, not for linear
combinations of them.
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6.4 Teleportation

Teleportation is the process of transferring a quantum state, say from Alice to Bob,
without any quantum communication. Surprisingly, although it is not possible to
clone, it is still possible to teleport an unknown quantum state using only classical
communication, although this does require the resource of entanglement. It is in
some sense complementary to the process of superdense coding, where entangle-
ment is again the resource. In both cases two bits correspond to one qubit, and we
require one pair of maximally entangled qubits as the resource to convert in either
direction.

Consider the simplest example where Alice has one unknown qubit state |ψ〉 =
a |0〉 + b |1〉. Note that even if she knew what the state was, in general she would
need to communicate two real numbers (e.g. the two angles giving the position
of the Bloch sphere) to Bob so he could create a copy. Obviously, to any reasonable
accuracy, this would require many bits of information, and certainly just 2 bits would
not be enough. However, this is not what happens in teleportation.

In the process below, Alice and Bob do not need to know anything about the state
|ψ〉, they do not learn anything about it in the teleportation process, and Bob does
not create a copy as at the end Alice no longer has the state |ψ〉.

The starting point is that Alice and Bob must share an entangled state. Assume they
share the Bell state |β00〉 so the state of the whole system is

|ψ〉 ⊗ |β00〉 =
1√
2
|ψ〉 ⊗ |0〉 ⊗ |0〉+ 1√

2
|ψ〉 ⊗ |1〉 ⊗ |1〉

where Alice has the first two qubits, and Bob has the third.

Now Alice and Bob can use LOCC to teleport the state |ψ〉, i.e. so that the final state
of the system is |Φ〉 ⊗ |ψ〉, and Alice’s final 2-qubit state |Φ〉 does not depend on |ψ〉.
Alice then no longer has the state |ψ〉, but Bob does – it has been teleported.

The process is as follows.

• Alice entangles |ψ〉 = a |0〉 + b |1〉 with the other two qubits. She can do this
with a unitary transformation on her two qubits since the second is already
entangled with Bob’s qubit.

First we act with the controlled-NOT (CNOT) gate given by the unitary operator
transforming

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉

on Alice’s two qubits producing the state

|ψ〉 ⊗ |β00〉 =
1√
2

(
a |000〉+ a |011〉+ b |100〉+ b |111〉

)
CNOT

y
ÛCNOT ⊗ Î |ψ〉 ⊗ |β00〉 =

1√
2

(
a |000〉+ a |011〉+ b |110〉+ b |101〉

)
.
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Passing to the standard basis representation the CNOT gate is given by the
4× 4 matrix

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
I2 + σ3

2

)
⊗ I2 +

(
I2 − σ3

2

)
⊗ σ1 , (6.4)

where we note that UCNOT is not of the form A ⊗ B (see discussion in section
5.3) which is the reason why the unitary operator UCNOT ⊗ I2 entangles Alice
two qubits and leaves Bob qubit invariant.

• If she then measures her two qubits, Bob’s qubit state will depend on the result
of her measurement. This can be done so that Bob’s qubit is a unitary transfor-
mation of the state |ψ〉 that we want to teleport. (To clarify this, we present the
measurement process as a unitary transformation followed by measurement
to distinguish the standard basis states. Instead Alice could simply measure to
distinguish the states |±〉 ⊗ |y〉.)
First Alice acts on the first qubit with the unitary operator mapping |0〉 → |+〉
and |1〉 → |−〉 called the Hadamard gate. This is just given by the unitary
operator (change of basis matrix)

UH =
1√
2

(
1 1
1 −1

)
,

which clearly implements

ÛH |0〉 = |+〉 , ÛH |1〉 = |−〉 .

So after this unitary evolution we have

ÛH ⊗ Î ⊗ Î
1√
2

(
a |000〉+ a |011〉+ b |110〉+ b |101〉

)
=

=
1

2

[
a (|0〉+ |1〉)⊗ (|00〉+ |11〉) + b (|0〉 − |1〉)⊗ (|10〉+ |01〉)

]
=

=
1

2

[
|00〉 ⊗ (a |0〉+ b |1〉) + |01〉 ⊗ (a |1〉+ b |0〉)+

+ |10〉 ⊗ (a |0〉 − b |1〉) + |11〉 ⊗ (a |1〉 − b |0〉)
]
,

where we used all linearities properties of tensor products.

We can rewrite this expression as the state

1

2

∑
x,y

|x〉 ⊗ |y〉 ⊗ Ûxy |ψ〉 ,

where Ûxy are the unitary transformations defined above when we introduced
the Bell states

Û00 = I2 , Û01 = σ1 , Û10 = σ3 , Û11 = iσ2 .

Alice will now measure her two qubits (e.g. measuring (I2 − σ3)/2 for each of
them) and she will get one of the four results (xy)2 with x, y ∈ {0, 1}, which
means that Bob’s state will then be Ûxy |ψ〉. After Alice measures (I2 − σ3)/2
for both her qubits with outcomes x, y entanglement is destroyed and we are
left with the separable state |x〉 ⊗ |y〉 ⊗ Ûxy |ψ〉.
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• Bob can then recover the state |ψ〉 by a unitary transformation of his qubit, but
which one depends on the result of Alice’s measurement so she must commu-
nicate which of the four possible results she got – this requires 2 bits of classical
communication. Therefore Alice sends the two bits of information giving the
values of x and y, and Bob then acts on his state Ûxy |ψ〉 with Û−1

xy = Û †
xy so his

state is then |ψ〉. I.e. we have teleported the state |ψ〉 from Alice lab to Bob’s
at the price of using the Bell pair shared by Alice and Bob.

Note that we have not cloned |ψ〉! Alice does not have this state any longer,
she is left with the two qubits |x〉 ⊗ |y〉, which are independent of |ψ〉. Note
also that neither Alice nor Bob need to know what the teleported state |ψ〉 is
at all and with this protocol they have not gained any additional information
about it.

Both with teleportation and superdense coding we have achieved something clas-
sically impossible, however, in both protocols we have expended some resources:
for teleportation we have destroyed the Bell state by performing a measurement
thus destroying entanglement and producing a separable state, while in superdense
coding Alice had to give away her qubit and the Bell pair is not shared anymore.

6.5 Quantum Key Distribution

This is an application using QM to ensure that Alice and Bob can produce a secret
shared random key. Such a key can then be used for absolutely secure communi-
cation. Specifically, QKD allows them to generate a random string of bits so that
they will both know the value of each bit, and can be sure no one else does. Of
course, they could do this without any quantum theory by meeting but this may not
be convenient and they would have to know in advance how long the key should
be, and they would have to keep the key secure until they needed to use it. Instead,
QKD allows them to do this using quantum communication

Note that the purpose is secure classical communication, but QKD itself does not
communicate any information. Instead, QKD allows Alice and Bob to share a key
which Alice can use to encrypt a message. The encrypted message can then be
transmitted (using classical communication) to Bob. He can then use the same key
to decrypt the message. The point is that even if the transmission is intercepted,
the encrypted message does not provide any information about the actual message
without knowledge of the key.

To see how this works consider a message M represented as a binary number (note
that this can be done in any other basis) of n bits and a random secret key K also
n bits long shared by Alice and Bob. Since the encryption works independently on
each bit, consider a bit m of the message and the corresponding bit k in the key. We
do not make any assumptions about the value of m, but we assume that k has values
0 and 1 with equal probability (and the value is known only by Alice and Bob.) Then
the mechanism is as follows:

• Alice produces the encrypted message C = M ⊕ K where ⊕ means bitwise
addition modulo 2, i.e. for each bit c = m ⊕ k which is just m + k except
1⊕1 = 0. This is also sometimes noted as the XOR operation (or exclusive OR):
(TrueXORFalse) = (FalseXOR True) = Truewhile (FalseXORFalse) =
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(TrueXOR True) = False.

• Alice transmits the encrypted message C to Bob. If Eve intercepts this, she
gains no information about M since for each bit c there is equal probability
that this is the same as m or different from m. Since there are only two
possible values for each bit, C is completely random and independent of M
without knowledge of the key K.

• Bob decodes the message since by calculating C ⊕K since by modular arith-
metic

C ⊕K = (M ⊕K)⊕K =M ⊕ (K ⊕K) =M ⊕ 0 =M .

Note that it is vital that the key is as long as the message and it is not reused. E.g.
if the same bit k is used for two bits m1 and m2 of the message the property that
either m1 = m2 or that m1 6= m2 is unchanged for c1 and c2. A key shorter than the
message would make the encryption susceptible to attacks.

Note that for a key as long as the message this encryption method is not susceptible
to any sort of attack. One cannot apply any frequency analysis because all the
characters are equally likely.

However this method has an obvious drawback! Requiring such a new key is a sig-
nificant practical obstacle to using this encryption method. This is why this method
was called One-Time Pad (OTP) as the key can be used only once and then it has
to be destroyed. Furthermore the key cannot be transmitted in clear and required
to be physically transported (by a spy wearing a fake mustache carrying an incon-
spicuous briefcase handcuffed to their wrist) from the sender to the recipient, or
the be agreed before-hand, for example by using a pre decided book or the daily
newspaper.

Standard encryption methods (such as the ones you use daily on the internet) in-
stead rely on trapdoor functions. These are functions where even with full knowl-
edge of the function f itself, it is very difficult to find the inverse function f−1, but
if you know f−1 it is easy to find f . In this case Bob can choose such a function f−1

and then tell Alice what f is. She then sends C = f(M) and Bob decrypts it using
f−1(C) = M . This is very convenient since there is no need to share a secret key.
The disadvantage is that it is possible to find f−1 with knowledge of f . Normally
this is fine since either the information in the message is of no use after a certain
time, or we assume that it is not worth the significant effort to find it. On the other
hand, in some instances it may be important that the information is never found by
a third party, and for such applications trapdoor functions are not secure.

So the main problem of OTP is the transmission of the encryption key, how does QM
help exchange a secret random key without Alice and Bob having to meet? There
are many different protocols, but one is the BB84 Protocol:

• Alice makes a random choice 0 or 1 (with equal probability) and also a random
choice X or Z. According to her choices (which she records), she prepares a
single qubit state

(0, Z)→ |0〉 , (1, Z)→ |1〉 , (0, X)→ |+〉 , (1, X)→ |−〉 .

She sends this qubit to Bob (using quantum communication).
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• Bob receives the qubit and randomly chooses Z, in which case he measures
1
2(I2 − σ3), or X, in which case he measures 1

2(I2 − σ1) (remember what these
operators mean on the Bloch sphere).

• Alice and Bob repeat this process as often as required to generate a sufficiently
long key.

• Alice and Bob announce (publicly, so no secrecy is assumed) their choices of X
or Z for each qubit and discard all results where they did not make the same
choice. Where they made the same choice, Bob’s measurement is guaranteed
to agree with Alice’s choice of 0 or 1. This generates the random shared key.
(If it’s not long enough, they can repeat to extend the key.)

Why is this secure? Suppose Eve intercepts a qubit. What can she do before for-
warding it to Bob? To learn something she must measure. However, since the four
possible states are not all orthogonal, Eve cannot make a measurement which will
distinguish them with certainty. E.g. suppose Eve chose to measure 1

2(I2 − σ3). If
Alice had chosen Z, Eve would get the result 0 or 1 matching Alice’s key, and Eve
would forward the qubit unchanged to Bob. However, with equal probability Alice
would have chosen X, in which case for either |±〉, Eve would get a random result
0 or 1 and forward correspondingly a random qubit |0〉 or |1〉 to Bob. If Bob chose
to measure X this result would be discarded (as Alice chose Z) but if Bob chose Z,
he would get the random result of Eve’s measurement, so half the time this would
differ from Alice’s key.

Alice choice Eve Choice Bob Choice Results
Z Z Z A and B and E measures all match: BAD
Z Z X Discarded
Z X X Discarded
Z X Z In 50% of this case E measures match A.

In 50% of this case B measures does not match A.

Table 6.1: List of possible cases. Similar if Alice chooses X.

The above means that overall, for each bit of the shared key which Eve has inter-
cepted and measured, there is a 25% chance that Alice and Bob will not have the
same value for their keys as schematically depicted in Table ??. If Alice and Bob do
nothing, Eve will know 75% of the key which could be disastrous. However, if Alice
and Bob compare a random subset of their keys, they can estimate the error rate.
If it is too high, they will assume interference and discard the key, hoping to repeat
the process. If they get a low enough error rate, they can assume the worst case
scenario that all the errors are due to Eve. However, they can reduce the key in a
way which makes it highly unlikely Eve will have any information about it.

Note that there are many other ways to exchange a key. E.g. if Alice and Bob share
Bell states such as |β00〉 they could simply both measure 1

2(I2−σ3), getting the same
random result. This is sufficient if they already share enough entangled qubits.
However, if Alice prepares the Bell states and sends one qubit to Bob, Eve could
simply also measure 1

2(I2 − σ3) then forward the state to Bob. Eve would then learn
the full key without being detected. To circumvent this, Alice and Bob can employ
the same strategy as above, as provided they both choose X or both choose Z, they
will get the same results. Again Eve will be detected with probability 25% for each
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Short Qiskit video on the Bell
inequality published after the
2022 Nobel Prize was given
to Clauser, Aspect and
Zeilinger for their related
work.

bit. Note that here, and above, it is essential that Alice and Bob do not announce
any choice of X or Z before they are sure Bob has received the qubit.

6.6 Bell Inequalities

Einstein Podolsky and Rosen were not particularly happy with the non-local (“spooky
action at a distance”) and probabilistic (“God does not play dice”) nature of quan-
tum mechanics. So they postulated that quantum mechanics must be incomplete!
Any “complete” theory must satisfy the postulate of local realism, i.e.

• Locality: no faster than light influences;

• Realism: measurements must be deterministic, i.e. the results tell us a prop-
erty of the system.

This lead to the notion of hidden variables theories. According to EPR there must
be some extra parameters not included in quantum mechanics that if we were to
measure would give us a fully deterministic world. Quantum mechanics then only
seems probabilistic because we lack the knowledge about these hidden variables.

However Bell showed that any such theory with local realism must satisfy a cer-
tain type of inequality while quantum mechanics violate this! There are different
inequalities which are all generally called Bell Inequalities. We consider a specific
version known as the CHSH (Clauser, Horne, Shimony & Holt) Inequality.

In all cases the feature is that a result is derived which must be obeyed by any theory
satisfying certain conditions such as locality (an effect at one point can be detected
at another point only if something travels between these points) and some definition
of realism meaning that measurements always reveal a property of the system (i.e.
the system really had that property whether we measured or not.)

Roughly speaking, classical physics should obey these conditions whereas QM does
not seem to. The question is to make this precise, and Bell inequalities allow us to
demonstrate that QM does not satisfy these conditions, and so no classical hidden
variable theory can reproduce all predictions of QM. The huge advantage of this
approach is that we don’t have to rule out candidate hidden variable theories one
by one.

6.6.1 CHSH Bell-Inequality

Suppose we have a system with four observables Q, R, S and T which each can take
only the values ±1. The realism property tells us that any state of this system must
have specific values for these four observables, i.e. (q, r, s, t) .

Take a large number of states of this system (which can have different values of
these observables) and measure the quantity QS + RS + QT − RT for each such
state and calculate the average, i.e. the expectation value E(QS +RS +QT −RT ).
Now, due to the restricted values for each observable Q = ±R, so on each state
when we measure we either have Q + R = 0 and Q − R = ±2 or Q + R = ±2 and
Q − R = 0. Hence either (Q + R)S = 0 and (Q − R)T = ±2 or (Q + R)S = ±2
and (Q−R)T = 0, so QS +RS +QT −RT can only take the values ±2. Obviously
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taking the average we must have

− 2 ≤ E(QS +RS +QT −RT ) =

E(QS) + E(RS) + E(QT )− E(RT ) ≤ 2 . (6.5)

Note that the above argument used realism since we assumed that each state of this
system had definite values of all 4 observables, i.e. we can really assign values to
both Q and R for each state.

Now, consider the following EPR experiment: we have a system where Alice and Bob
are separated (as far as we want) and Charlie is exactly in the middle.

1. Charlie will prepare lots and lots of Bell states |β11〉 and send one qubit of each
simultaneously to Alice and Bob so that they receive them at exactly the same
time.

2. On receiving each qubit Alice will make a random choice of Q or R and imme-
diately measure the qubit, and similarly Bob will measure randomly either S
or T . Assuming locality, this setup excludes the possibility that Alice or Bob’s
measurement can affect the other via something travelling at finite speed2.

3. If our quantum mechanics were really a local realism theory we would have
that Alice and Bob results are predetermined by some hidden variable that
describe the Bell state sent out by Charlie.

4. For each qubit Alice and Bob record their choice of measurement and the
result. This way they can later compare and calculate E(QS), E(RS), E(QT )
and E(RT ).

Note that each Bell state is only contributing to one of those expectation values, so
Alice and Bob never really measure QS + RS + QT − RT for any individual state.
However, by the assumption of realism, measuring say E(QS) on a random subset of
states will give a good estimate (subject only to statistical errors) of E(QS) averaged
over all states.

Specifically, we can take measurements using matrices (in the standard representa-
tion)

Q = σ1 ⊗ I2 , R = σ3 ⊗ I2

which Alice can measure using only her qubit, and

S = I2 ⊗
−1√
2
(σ1 + σ3) , T = I2 ⊗

−1√
2
(σ1 − σ3)

which Bob can measure.

Note that since [Q,R] 6= 0 and [S, T ] 6= 0 we cannot simultaneously measure both Q
and R, or similarly S and T . Hower both Alice and Bob only measure one and then
we just consider the average over many copies of the same state.

2Knowing the time taken to measure, the distance between Alice and Bob give a lower bound on
the speed of any propagation. It is certainly possible to ensure that any such propagation must be
faster than the speed of light, and so violate relativity.
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Using QM we predict that the outcome of each measurement is either ±1 (Check the
eigenvalues of all these operators) and that for the Bell state |β11〉 we can calculate

E(QS) = 〈QS〉 = 〈β11 |QS|β11〉 = 〈β11| (σ1 ⊗ I2)

(
I2 ⊗

−1√
2
(σ1 + σ3)

)
|β11〉

= − 1

2
√
2
(〈01| − 〈10|)σ1 ⊗ (σ1 + σ3) (|01〉 − |10〉)

= − 1

2
√
2
(〈01| − 〈10|) I2 ⊗ (σ1 + σ3) (|11〉 − |00〉)

= − 1

2
√
2
(〈01| − 〈10|) (|10〉 − |01〉 − |11〉 − |00〉)

= − 1

2
√
2
(−1− 1) =

1√
2
,

and similarly (exercise)

E(RS) = E(QT ) = −E(RT ) =
1√
2
.

However, the combination

E(QS) + E(RS) + E(QT )− E(RT ) =
4√
2
= 2
√
2 > 2

so this clearly violates the Bell (CHSH) inequality.

Experiments have confirmed this violation of the Bell inequality, so nature is not
described by a theory obeying local realism. Nature is consistent with QM.

However there are loopholes to this argument. In particular there is something
called super-determinism where everything is predetermined, including the “ran-
domness” of Alice and Bob choices of the observable to measure. There is no such
thing as free will and all our choices and actions are dictated by a fully deterministic
world. Whenever one wants to understand the foundations of quantum mechanics
inevitably the discussion will turn philosophical and for us it is a good point to stop.
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7
Information theory

We review some basic concepts of classical and quantum information theory. Essen-
tially this is about quantifying measures of information and quantum entanglement.
Typically when we quantify information we describe it in terms of a number of bits,
corresponding to the minimum length message required to convey that information.
However, note that typically the length of a message will be much longer than this
as most communication systems contain redundancy. E.g. a paragraph with correct
punctuation and grammar will be longer than a text message, yet both can convey
exactly the same information, and even most text messages could be compressed
(but at the cost of readability.)

7.1 Classical Information and Shannon Entropy

One way to describe information is through Shannon Entropy which gives the av-
erage number of bits required to specify a message from a set of possible messages
where we know the probability of each message. In terms of probability theory, we
consider a random variable X and define p(x) to be the probability that X = x.
Then the Shannon entropy H(X) is defined to be

H(X) = −
∑
x

p(x) log p(x)

where conventionally we take log to mean logarithm base 2. We also take the con-
vention that 0 log 0 = 0 as we don’t expect very small probabilities to be much
different from probability zero, and limp→0 p log p = 0.

This definition can be interpreted as either a measure of how unsure we are about
the value of X, or on average how much information we gain when we learn the
value of X. Note that the average is over all possible values x, weighted by the prob-
ability that X = x. The quantity − log p(x) is a choice of measure of information.
The interpretation is that for p(x) ' 1, we do not gain much information if X takes
that value since we anyway expected that to be the case. However, if we find X = x
for some value with small p(x), that is surprising and we gain a lot of information.
The choice of normalisation, or reason for taking logarithms base 2, is so that if x
can take one of 2N values with equal probability, H(X) = N . It is fairly obvious
that we could not encode such message using fewer than n bits. The fact that in
general H(X) is the lower bound on the average number of bits required to encode
the messages is Shannon’s Noiseless Coding Theorem. Also note that if we have a
fixed set of possible message, H(X) is maximised when the probability distribution
is uniform. A standard example of coding which attains the bound is:
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Example:

Suppose there are four possible values with p(1) = 1/2, p(2) = 1/4 and p(3) =
p(4) = 1/8. Then H(X) = 7/4. Obviously we could encode the four possible
messages using two bits per message. However, we can achieve 7/4 bits on average
with the following coding, using shorter message for more common messages:

1→ 0 , 2→ 10 , 3→ 110 , 4→ 111 .

It is easy to check that the average length (weighted by the above probabilities) is
7/4. Note that the coding is such that we don’t need any extra bits to indicate the
start or finish of the message. The receiver knows that 0 or the third consecutive
1 indicates the end of the message. Such messages can be sent one after the other
without any ambiguity.

Now consider entropies involving two random variables X and Y .

7.1.1 Joint Entropy

This is written
H(X,Y ) = −

∑
x,y

p(x, y) log p(x, y) .

It obeys a property called subadditivity:

H(X,Y ) ≤ H(X) +H(Y ) .

It is easy to see that H(X,Y ) = H(X) + H(Y ) when X and Y are independent
variables, i.e. when p(x, y) = p(X = x)p(Y = y).

7.1.2 Relative Entropy

This is defined for two random variables which take the same values but with dif-
ferent probability distributions, say p(x) and q(x). The relative entropy of the distri-
bution p(x) to q(x) is

H(p(x)||q(x)) =
∑
x

(p(x) log p(x)− p(x) log q(x))

= −H(X)−
∑
x

p(x) log q(x) . (7.1)

The relative entropy is non-negative and

H(p(x)||q(x)) = 0 ⇐⇒ p(x) = q(x) ∀x .

A corollary of this is the subadditivity property of joint entropy, with equality if and
only if the variables are independent. To see this, calculate the relative entropy of
the distribution of variables X and Y with probabilities p(x, y) to the distribution
with probabilities p(X = x)p(Y = y) where p(X = x) =

∑
y p(x, y) and p(Y = y) =∑

x p(x, y).

7.1.3 Conditional Entropy and Mutual Information

The conditional entropy of X given Y is the average (over the values of Y ) uncer-
tainty left about X when we know Y , or equivalently the information we gain by
learning the value of X if we already knew the value of Y . It is given by

H(X|Y ) = H(X,Y )−H(Y ) ≤ H(X) .
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Measurement turns a pure
state (entropy S(A,B) = 0)
to a mixed state (entropy
S(A) = S(B) > 0). The
conditional entropy S(A|B)
can thus be negative.

A related concept is the mutual information of X and Y which is the amount of in-
formation we gain about one by knowing the other, or equivalently the information
shared (or duplicated) by X and Y rather than being in one of them alone:

H(Y : X) = H(X : Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X) ≥ 0 . (7.2)

7.2 Quantum Entropy

The von Neumann entropy of a quantum state with density operator ρ̂ is defined to
be

S(ρ̂) = −Tr (ρ̂ log ρ̂) .

By interpreting the state as an ensemble (of one or more) orthogonal pure states,
this is just the Shannon entropy of that ensemble. I.e. we can always diagonalise
the density matrix to write ρ̂ =

∑
i pi |i〉 〈i| where |i〉 are orthonormal which we can

use to form (at least part of) a basis. Then the density matrix is a diagonal matrix
with entries pi (and perhaps some zeroes) where these diagonal elements are the
eigenvalues of ρ̂. Then

−Tr (ρ̂ log ρ̂) = −
∑
i

pi log pi = H(pi) .

Note that for a pure state S(ρ̂) = −1 log 1 = 0.

As for the classical case, we can use this to define various related concepts.

7.2.1 Relative Entropy

This is a measure of the difference (or in fact a notion of the distance) between two
states (in the full system) with density matrices ρ̂1 and ρ̂2:

S(ρ̂1||ρ̂2) = Tr (ρ̂1 log ρ̂1)− Tr (ρ̂1 log ρ̂2) ≥ 0

with equality if and only if ρ̂1 = ρ̂2.

7.2.2 Joint Entropy, Conditional Entropy and Mutual Information

If we have a bipartite system with Hilbert space H = HA ⊗HB, a density matrix ρ̂
and reduced density matrices ρ̂A and ρ̂B for each system, we write

S(A) = S(ρ̂A) , S(B) = S(ρ̂B) , S(A,B) = S(ρ̂)

where S(A,B) is called the joint entropy of systems A and B.

By analogy with the classical case we can also define the conditional entropy

S(A|B) = S(A,B)− S(B)

but unlike the classical case this can be negative. Indeed, if ρ̂ is a pure state,
S(A,B) = 0 but this does not imply S(B) = 0 so we have in this case S(A|B) =
−S(B) ≤ 0. The point here is that initially we know everything about the system
since it is in a pure state, but say Bob makes a measurement, this typically results
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Entanglement entropy is the
Von Neumann entropy of the
reduced density matrix.

in Alice having a mixed state so she can only be certain what her state is when Bob
communicates the result of the measurement.

The mutual information is written I(A : B) or S(A : B) and is given by

I(A : B) = S(A) + S(B)− S(A,B) = S(A)− S(A|B) = S(B)− S(B|A) .

In the case where ρ̂ is a pure state

I(A : B) = S(A) + S(B)− S(A,B) = S(A) + S(B) = 2S(A)

so we see that entanglement can be interpreted as mutual information, i.e. the
information shared by A and B and not in either subsystem alone. This agrees with
what we have seen for Bell states which are maximally entangled 2-qubit states.
The reduced density matrix for each qubit is 1

2I. As we have seen earlier, each qubit
alone gives no information about which of the four Bell states we have, this must be
stored in the entanglement, i.e. it is a shared quantity.

7.3 Bipartite Entanglement Entropy

The aim is to quantify the quantum entanglement (as opposed to the classical cor-
relations) between two subsystems of a quantum system. We will assume that the
full system is in a pure state ρ̂. Then we define the entanglement entropy to be

S(A) = S(B) .

We will see below that these quantities are indeed equal since the reduced density
matrices have the same non-zero eigenvalues, even if HA and HB have different
dimensions (in which case the number of zero eigenvalues differs, but they don’t
contribute to the von Neumann entropy.)

7.3.1 Schmidt Decomposition and Schmidt Number

Diagonalise ρ̂A so that we have non-zero probabilities pi and orthonormal states
|i〉 ∈ HA with

ρ̂A =
∑
i

pi |i〉 〈i| .

Note that the range of i is the number of non-zero eigenvalues of ρ̂A which may
be less than the dimension of HA. Now, since the full system is in some pure state
|Ψ〉 ∈ HA ⊗HB, we can write

|Ψ〉 =
∑
i

√
pi |i〉 ⊗ |φi〉 .

Checking that this gives the correct expression for ρ̂A shows that the |φi〉 are or-
thonormal states in HB, and so the number of non-zero probabilities is also no
larger than the dimension of HB. We call this number of non-zero probabilities the
Schmidt Number NS . Note that we can calculate

ρ̂B =
∑
i

pi |φi〉 〈φi|

which shows that S(A) = S(B).

The Schmidt number is a (somewhat crude, as it is integer valued) measure of the
entanglement between systems A and B. It satisfied the following properties:
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• It is invariant under unitary transformation in A or B.

• Any measurements made locally in A or B cannot increase the Schmidt num-
ber.

• The Schmidt number is 1 if and only if ρ̂A and ρ̂B are pure states, or equiva-
lently ρ̂ is a separable pure state.

We know that for a given number of non-zero probabilities, the Shannon entropy is
maximised when the probabilities are equal. So here we have

S(A) = S(B) = H(pi) ≤ logNS ≤ logD

where D = min {dimHA,dimHB}.
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8
Changelog

2024-01-16 Added FAQ example in the no-cloning section.
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