
1 Problems: Quantum mechanics essentials

1.1. Show that if a wavefunction ψ(x, t) satisfies the one-dimensional Schrödinger equa-
tion

ih̄
∂ψ

∂t
= −h̄2∂

2ψ

∂x2
+ V (x)ψ

for a real potential V (x), and assuming that ψ and ∂ψ
∂x vanish as x→ ±∞, then we

have
d

dt

∫ ∞

−∞
|ψ(x, t)|2 dx = 0.

What does this equation mean?

Solution:

First note that taking the complex conjugate of the Schrödinger equation gives

ih̄
∂ψ∗

∂t
= h̄2

∂2ψ∗

∂x2
− V (x)ψ∗.

The asymptotic conditions on ψ allow us to integrate by parts without any boundary
terms in the following:

ih̄
d

dt

∫ ∞

−∞
|ψ(x, t)|2 dx =

∫ ∞

−∞

[(
h̄2
∂2ψ∗

∂x2
− V (x)ψ∗

)
ψ + ψ∗

(
−h̄2 ∂

2ψ

∂x2
+ V (x)ψ

)]
dx

= h̄2
∫ ∞

−∞

[
∂2ψ∗

∂x2
ψ − ψ∗ ∂

2ψ

∂x2

]
dx

= h̄2
∫ ∞

−∞

[
−∂ψ

∗

∂x

∂ψ

∂x
+
∂ψ∗

∂x

∂ψ

∂x

]
dx = 0

The physical content of this equation is that the total probability of finding a particle
somewhere on the real line is constant in time (no probability “leaks out”).

1.2. Suppose |α〉 and |β〉 are eigenstates of a self-adjoint operator Â, with eigenvalues
α and β respectively. Using the definition of the adjoint of Â and inner products
such as

〈
α
∣∣∣Â∣∣∣α〉 and

〈
α
∣∣∣Â∣∣∣β〉, show that:

(a) α ∈ R (hence all eigenvalues of a self-adjoint operator are real.)
(b) If α 6= β then 〈α |β〉 = 0 (hence eigenstates of a self-adjoint operator with

different eigenvalues are orthogonal.)

Solution:

(a) We have Â |α〉 = α |α〉 so
〈
α
∣∣∣Â∣∣∣α〉 = α 〈α |α〉 . But taking the complex conju-

gate we have:

α∗ 〈α |α〉 =
〈
α
∣∣∣Â∣∣∣α〉∗ =

〈
α
∣∣∣Â†
∣∣∣α〉 =

〈
α
∣∣∣Â∣∣∣α〉 = α 〈α |α〉 .

So, unless |α〉 = 0 in which case it is not really an eigenstate of Â, we must
have α∗ = α.

(b) First calculate 〈
α
∣∣∣Â∣∣∣β〉 = β 〈α |β〉
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PROBLEMS CLASS 1

and then (noting from the previous part β must be real) take the complex
conjugate to find

β 〈β |α〉 =
〈
α
∣∣∣Â∣∣∣β〉∗ =

〈
β
∣∣∣Â†
∣∣∣α〉 =

〈
β
∣∣∣Â∣∣∣α〉 = α 〈β |α〉 .

So, if α 6= β the only way this can be true is if 〈β |α〉 = 0, as so also its complex
conjugate 〈α |β〉 = 0.

1.3. Suppose a self-adjoint operator Â has normalised eigenstates |1〉, |2〉 and |3〉 with
eigenvalues 1, 2, 3 respectively.

(a) What is the probability of measuring A = 2 if the system is described by the
state:

(i) |ψ〉 = 1
2 |1〉+

1
4 |2〉+

1
4 |3〉?

(ii) |φ〉 = 3
4 |1〉 −

1
2 |2〉+

1
4 |3〉?

(b) Calculate 〈A〉 for the state |ψ〉 and for the state |φ〉.

Solution:

(a) Note from the previous question we can deduce that the three eigenstates are
orthogonal. We then notice that the states |ψ〉 and |φ〉 are not normalised, so
first find the norms:

|| |ψ〉 ||2 = 〈ψ |ψ〉 =
1

4
+

1

16
+

1

16
=

3

8

|| |φ〉 ||2 = 〈φ |φ〉 =
9

16
+

1

4
+

1

16
=

7

8

Then the probability of measuring A = 2 is given by the magnitude squared of
the coefficient of |2〉 divided by the norm squared. I.e.

(i) For |ψ〉 the probability is 8
3 × | 14 |

2 = 1
6 .

(ii) For |φ〉 the probability is 8
7 × | − 1

2 |
2 = 2

7 .

(b) The expectation value of A is just the sum of each value of A weighted by the
probability of getting that value. The probabilities for A = 1 and A = 3 can
easily be calculated as for A = 2 above. The results are:

(i) For |ψ〉 the expectation value is 〈A〉 = 2
3 × 1 + 1

6 × 2 + 1
6 × 3 = 3

2 .
(ii) For |φ〉 the expectation value is 〈A〉 = 9

14 × 1 + 2
7 × 2 + 1

14 × 3 = 10
7 .

1.4. If we have a two-dimensional Hilbert space and represent states by two-component
column vectors such as u and v, find the necessary and sufficient conditions on the
2× 2 matrix M so that u†Mv defines an inner product on the Hilbert space.

Hint: Recall the three conditions for the inner product on physical states, but you
can just state without proof any properties which follow automatically from matrix
multiplication.

Solution:

The linear property follows immediately from the linearity of matrix multiplication
so there is no need to check anything.

The ‘symmetry’ of the inner product is the statement that the complex conjugate of
the inner product of v with u is the inner product of u with v. I.e.

u†Mv = (v†Mu)∗ = u†M†v.
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For this to hold for all vectors u and v we must have M† = M , i.e. M must be a
Hermitian matrix.

The ‘physical state’ property requires that for any non-zero vector u, its norm squared
(given by the inner product of u with itself) is positive, i.e. u†Mu > 0. This means
that M must be a positive definite matrix. Since we know that M is Hermitian, this
is equivalent to the requirement that the eigenvalues of M are all positive.

1.5. Recall that functions such as the exponential of operators are defined through their
Taylor series.

(a) Show that if
[
Â, B̂

]
= 0 then

exp
(
Â
)
exp

(
B̂
)
= exp

(
Â+ B̂

)
.

(b) Show that if
[
Â, B̂

]
6= 0 then

exp
(
αÂ
)
exp

(
βB̂
)
6= exp

(
αÂ+ βB̂

)
for arbitrary α, β ∈ C. (The expressions can be equal for specific values of
α, β.)

(c) Show that if Ĵ2 = −Î where Î is the identity operator then

exp
(
θĴ
)
= (cos θ)Î + (sin θ)Ĵ

for any θ ∈ C.

Solution:

(a) Since
[
Â, B̂

]
= 0 we can write any product of these operators as ÂmB̂n with

some coefficient and we don’t have to distinguish terms which differ by the
order of the products of the operators. E.g. we have ÂB̂ÂB̂3 = Â2B̂4. So,
to prove the identity we just have to show that the coefficient of ÂmB̂n is the
same on both sides for all (non-negative) integers m and n.
On the left hand side we have coefficient 1

m!
1
n! from the definition of the expo-

nential function. On the right hand side this term will appear when expanding
the term (Â+B̂)m+n. That term has a coefficient 1

(m+n)! from the exponential,

and then we have a binomial coefficient (m+n)!
m! n! from expanding the polyno-

mial. Therefore we see that the coefficient matches on both sides, so we have
proven the identity.

(b) Here we can think of the expressions on each side as ‘function’ of two variables,
α and β. Then expanding the exponentials will give a two-variable Taylor
series, and for the two functions to be equal their Taylor series must match.
This means that each term with any given powers of α and β must match.
It is easy to see that the terms with α0β0 = 1, α1β0 = α and α0β1 = β all
match as they don’t care about the commutation relation between Â and B̂.
In fact the same is true for any term αmβ0 = αm or α0βn = βn. The first
non-trivial check comes for the term with αβ. On the LHS we get αβÂB̂ while
on the RHS the term comes from the exponent squared so we have

1

2!
αβ
(
ÂB̂ + B̂Â

)
.

For non-zero α and β these expression are the same only if ÂB̂ = B̂Â, i.e. only
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if
[
Â, B̂

]
= 0.

(c) Use the definition of the exponential of an operator in terms of the Taylor
series. Since Ĵ2 = −Î all even powers of Ĵ will be proportional to the identity,
specifically Ĵ2n = (−1)nÎ. For odd powers there will be an extra factor of Ĵ so
Ĵ2n+1 = (−1)nĴ . Then we simply calculate

exp
(
θĴ
)

=

∞∑
m=0

1

m!

(
θĴ
)m

=

∞∑
n=0

1

(2n)!

(
θĴ
)2n

+

∞∑
n=0

1

(2n+ 1)!

(
θĴ
)2n+1

=

∞∑
n=0

(−1)n

(2n)!
θ2nÎ +

∞∑
n=0

(−1)n

(2n+ 1)!
θ2n+1Ĵ

= cos(θ)Î + sin(θ)Ĵ

2 Problems: Measurement and uncertainty

2.1. Consider a two-dimensional Hilbert space with states represented by two-component
column vectors, and with the standard inner product.

(a) Find the (normalised) density matrix for each of the following states:(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
−1

)
.

(b) Find states corresponding to the following density matrices, if possible:(
3
4

√
3
4 i

−
√
3
4 i

1
4

)
,

(
3
4

√
3
4 i√

3
4 i

1
4

)
,

(
3
4

√
3
4√

3
4

1
4

)
,

(
3
4 0
0 1

4

)
.

(c) Calculate Tr(ρ2) for each of the density matrices ρ in parts (a) and (b).

Solution:

(a) Recall that for a pure state |ψ〉 the density operator is ρ̂ = |ψ〉 〈ψ|. For the
usual vector representation of states this means that for a vector u we have
the density matrix ρ = uu†. If the state/vector is not normalised we need
to either first normalise it, or divide by the norm squared when calculating
the density operator/matrix. For the four given vectors we have the following
density matrices ρ: (

1
0

)(
1 0

)
=

(
1 0
0 0

)
(

0
1

)(
0 1

)
=

(
0 0
0 1

)
1

2

(
1
1

)(
1 1

)
=

1

2

(
1 1
1 1

)
1

2

(
1
−1

)(
1 −1

)
=

1

2

(
1 −1
−1 1

)
Note that in all cases the density matrices are properly normalised, i.e. Trρ = 1
and the matrices are Hermitian.
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(b) You can just consider an arbitrary normalised pure state which is represented

by a vector
(
a
b

)
for some a, b ∈ C with |a|2+ |b|2 = 1. This will have density

matrix

ρ =

(
a
b

)(
a∗ b∗

)
=

(
|a|2 ab∗

ba∗ |b|2
)
.

It is then easy to see that the first and the third matrices are given by the vectors( √
3
2
−i
2

)
and

( √
3
2
1
2

)
(and these vectors are unique up to multiplication by a

phase exp(iφ) for any φ ∈ R.
The second matrix is not Hermitian so it cannot be a density matrix (for a pure
or a mixed state.)
The final matrix clearly cannot be the density matrix for a pure state, but it
is Hermitian and has trace one. In fact it is also clearly a positive matrix so it
is a mixed state density matrix. For mixed states the ensemble is not unique,

but an obvious example here is
(

1
0

)
with probability 3

4 and
(

0
1

)
with

probability 1
4 .

(c) For the density matrices from part (a), and for the first and third matrices in
(b) you should find Tr(ρ2) = 1 since they are pure states. For the final matrix
in (b) Tr(ρ2) = 5

8 < 1 as expected for a mixed state.

3 Problems: Qubits and the Bloch sphere

3.1. An arbitrary qubit density matrix (for a mixed or pure state) can be written

ρ̂ =
1

2
(I + r · σ)

where I is the 2 × 2 identity matrix, σi are the three Pauli sigma-matrices and the
real ‘Bloch’ vector r has length |r| ≤ 1.

(a) Suppose ρ̂1 and ρ̂2 are density matrices for the pure states |ψ1〉 and |ψ2〉 re-
spectively. What condition on ρ̂1ρ̂2 is equivalent to the statement that |ψ1〉 is
orthogonal to |ψ2〉?

(b) Express the condition for ρ̂1ρ̂2 in part (a) (and now allowing pure or mixed
states) in terms of conditions on the Bloch vectors r1 and r2 defining the two
density matrices. How are two orthogonal qubit states represented on the
Bloch sphere?

Solution:

(a) Note that if |ψ1〉 is orthogonal to |ψ2〉 then 〈ψ1 |ψ2〉 = 0 so

ρ̂1ρ̂2 = |ψ1〉 〈ψ1| |ψ2〉 〈ψ2| = (〈ψ1 |ψ2〉 ) |ψ1〉 〈ψ2| = 0.

Conversely if ρ̂1ρ̂2 = 0 then

0 = Tr (ρ̂1ρ̂2) = (〈ψ1 |ψ2〉 )Tr (|ψ1〉 〈ψ2|) = (〈ψ1 |ψ2〉 )(〈ψ2 |ψ1〉 ) = |〈ψ1 |ψ2〉 |2 .

However, this means that 〈ψ1 |ψ2〉 = 0.
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Therefore we have the following:

ρ̂1ρ̂2 = 0 ⇐⇒ 〈ψ1 |ψ2〉 = 0 ⇐⇒ 〈ψ2 |ψ1〉 = 0 ⇐⇒ ρ̂2ρ̂1 = 0.

(b) Using the relation between the density matrix and the Bloch vector we have

4ρ̂1ρ̂2 = (I + r1 · σ) (I + r2 · σ) = I + (r1 + r2) · σ + (r1 · r2)I + i(r1 × r2) · σ

where the last two terms come from using an identity for the σ-matrices
in terms of their commutation ([σi, σj ] = 2iεijkσk) and anti-commutation
({σ̂i, σ̂j} ≡ σ̂iσ̂j + σ̂j σ̂i = 2δijI) relations.
Since the identity matrix and the three σ-matrices are linearly independent,
the product of density matrices can only vanish if

1 + r1 · r2 = 0

r1 + r2 + ir1 × r2 = 0

Recall that the Bloch vectors cannot have magnitude greater than one, i.e.
they must give points on (for pure states) or inside (for mixed states) the
Bloch sphere which has radius one. With this restriction the first condition
is equivalent to r2 = −r1 and |r1| = 1. I.e. the two states must be pure
states and must sit on antipodal points of the Bloch sphere. Clearly the second
condition is then satisfied. For a single qubit we see that a mixed state cannot
be orthogonal to any other state.
We could alternatively take the orthogonality condition to be Tr(ρ̂1ρ̂2) = 0
and since the σ-matrices are traceless we would only get the first constraint.
However, note that when r2 = −r1 the second condition above is automatically
satisfied, so these conditions for orthogonality are equivalent.

3.2. Consider a qubit system with standard basis {|0〉 , |1〉}. Define the following states:

|+〉 = 1√
2
(|0〉+ |1〉) , |−〉 = 1√

2
(|0〉 − |1〉)

|L〉 = 1√
2
(|0〉+ i |1〉) , |R〉 = 1√

2
(|0〉 − i |1〉)

(a) Find the density matrices for each of the pure states |0〉 , |1〉 , |+〉 , |−〉 , |L〉 , |R〉.
(b) Find the density matrices for each of the following mixed states:

(i) |0〉 with probability 1
2 , |1〉 with probability 1

4 , |+〉 with probability 1
4 .

(ii) |0〉 with probability 1
2 , |1〉 with probability 1

2 .
(iii) |+〉 with probability 1

2 , |−〉 with probability 1
2 .

(iv) |L〉 with probability 1
2 , |R〉 with probability 1

2 .

(c) Using the Bloch sphere, sketch the regions which can be described as an en-
semble (with arbitrary probabilities whose total is 1) of the following pure
states:

(i) |0〉 and |1〉
(ii) |+〉 and |−〉

(iii) |L〉 and |R〉
(iv) |1〉 and |L〉
(v) |0〉, |+〉 and |R〉
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Solution:

(a) For any pure state |ψ〉 the density operator is ρ̂ = |ψ〉 〈ψ|. For a qubit system
we can always write the operator ρ̂ using the standard basis as

ρ̂ = ρ00 |0〉 〈0|+ ρ01 |0〉 〈1|+ ρ10 |1〉 〈0|+ ρ11 |1〉 〈1| .

Obviously this can be represented in matrix form as

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
You can either calculate in Dirac notation or immediately write the states as
vectors u and then calculate ρ = uu†. E.g. for |L〉 either note that 〈L| =
1√
2
(〈0| − i 〈1|) or just calculate

ρL =

(
1√
2

)2(
1
i

)
( 1 −i ) =

1

2

(
1 −i
i 1

)
.

Similarly for the other cases you should find

ρ0 =

(
1 0
0 0

)
ρ1 =

(
0 0
0 1

)
ρ+ =

1

2

(
1 1
1 1

)
ρ− =

1

2

(
1 −1
−1 1

)
ρR =

1

2

(
1 i
−i 1

)
.

(b) For a mixed state the density matrix is just the linear combination of the den-
sity matrices for each component of the ensemble, weighted by the probability.
For the four cases in this question we have density matrices

1

2
ρ0 +

1

4
ρ1 +

1

4
ρ+ =

1

8

(
5 1
1 3

)
1

2
ρ0 +

1

2
ρ1 =

1

2

(
1 0
0 1

)
1

2
ρ+ +

1

2
ρ− =

1

2

(
1 0
0 1

)
1

2
ρL +

1

2
ρR =

1

2

(
1 0
0 1

)
.

(c) Either recall for lectures, or check by extracting the Bloch vector from the
density matrix, where each of these pure states sits on the Bloch sphere. You
should find that |0〉 and |1〉 sit on the positive and negative z-axis respectively.
Similarly for |+〉 and |−〉 on the x-axis and |L〉 and |R〉 on the y-axis. Of course,
being pure states, all are distance one from the origin.
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Now a mixed state of |0〉 and |1〉 will have density matrix given by a linear
combination of ρ0 and ρ1, but the coefficients are probabilities adding up to
one so the density matrix must be of the form

ρ = (1− λ)ρ0 + λρ1 = ρ0 + λ(ρ1 − ρ0)

where 0 ≤ λ ≤ 1. But this is just the parametric equation for the straight line
between the points on the Bloch sphere given by ρ0 and ρ1, i.e. in this case the
points on the z-axis with z = 1 and z = −1. The limited range of λ means that
we only consider the line segment with endpoints given by ρ0 and ρ1.
Similarly we can describe the other mixed states of two pure states. Note that
as for |0〉 and |1〉, the lines for |+〉 and |−〉 and for |L〉 and |R〉 go through the
origin. Indeed the origin is the point corresponding to equal weighting in each
case, and this explains the corresponding results in the previous part.
For the final case we have a mixture of 3 pure states. Then the linear combi-
nation gives the parametric equation for the plane containing the three points
on the Bloch sphere. Again the coefficients are probabilities totally one, and
this constraint defines the triangle with the three points giving the vertices.
In general a mixed state ensemble with arbitrary probabilities will be repre-
sented by the polyhedron, and its interior, defined by the vertices given by the
pure states in the ensemble. In special cases where the vertices are co-planar
or co-linear the shape will degenerate to a polygon or a line.

3.3. Suppose a single qubit system is in the state |0〉.

(a) What are the possible outcomes, and associated probabilities, of a measure-
ment of the observable σ3?

(b) If instead σ1 is measured, what are the possible outcomes and probabilities?

(c) Now suppose σ1 is measured first, then σ3 is measured and then σ1 is mea-
sured again. Describe the possible outcomes and probabilities at each stage.
Is there any relation between the results of the two measurements of σ1?

Solution:

(a) The outcome would be 1 with probability 1 since |0〉 is an eigenstate of σ3 with
eigenvalue 1.

(b) The eigenstates of σ1 are |±〉 = (|0〉 ± |1〉)/
√
2 with eigenvalues ±1. Since

|0〉 = (|+〉+ |−〉)/
√
2, either outcome ±1 is possible with probability 1/2.

(c) The first measurement of σ1 will produce result ±1 and change the state to |±〉
with equal probability. Since the states |±〉 = (|0〉± |1〉)/

√
2, the measurement

of σ3 will give result ±1 and change the state to |0〉 or |1〉 with equal probability,
and without any correlation to the earlier measurement of σ1. Since these
states are (|+〉±|−〉)/

√
2 the second measurement of σ1 will give result ±1 and

produce the state |±〉 with equal probability. The final result does not depend
in any way on the previous measurements, in particular it is independent of
the result of the first measurement of σ1.

8



4 Problems: Bipartite systems

4.1. For a single classical bit the NOT gate implements the logical operation

m→ m ≡ NOT (m)

defined by
0 = 1 , 1 = 0.

(a) Show that a quantum NOT gate can be implemented as a unitary operation
on a single qubit, i.e. sending |m〉 → |m〉, and write the unitary operator as a
2× 2 matrix in the standard basis.

(b) We can erase a classical bit by sending

0 → 0 and 1 → 0.

Explain why this operation cannot be implemented by a unitary transforma-
tion of a single qubit system.

(c) Can we construct a unitary transformation to erase a single qubit in a larger
system formed by taking a tensor product of the qubit Hilbert space with
another (finite dimensional) Hilbert space?

Solution:

1. Note that any linear operator is fully determined by its action on the basis
states. Also, for a qubit system we can write any linear operator in the form

Â = |ψ0〉 〈0|+ |ψ1〉 〈1|

and it will map |0〉 → |ψ0〉 and |1〉 → |ψ1〉.
So, in this case the operator must be

ÛN = |1〉 〈0|+ |0〉 〈1| .

Written in the standard basis this is

UN =

(
0 1
1 0

)
.

To show that the operator is unitary, it is sufficient to note that the matrix is
unitary. Alternatively, since the adjoint of |ψ〉 〈φ| is |φ〉 〈ψ|, we see that Û†

N =

ÛN and using the orthonormality of the basis it is easy to see that

Û†
N ÛN = |0〉 〈0|+ |1〉 〈1| = Î

as required to show that ÛN is a unitary operator.

2. By definition, a unitary operator must be invertible. Since the linearly inde-
pendent states |0〉 and |1〉 are both mapped to |0〉, this is not an invertible
map.

3. Yes, this is possible and there is not a unique way to do it. To check this,
let’s embed the single qubit states into a 2-qubit system (this is the simplest
possibility, so we try it first) as

|0〉 → |0〉 ⊗ |0〉 , |1〉 → |1〉 ⊗ |0〉 .
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(Another natural choice is |1〉 → |1〉 ⊗ |1〉 which will give a slightly different
solution.)
Now the erase operation should set the first qubit to |0〉 but we can choose
what happens to the second qubit. From part (b) we know that we cannot set
it to the same state for both cases. So, let’s choose a linear operator which acts
as

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉 , |1〉 ⊗ |0〉 → |0〉 ⊗ |1〉 .

Note that we are still free to decide how the operator acts of the other 2-qubit
basis states |0〉 ⊗ |1〉 and |1〉 ⊗ |1〉. It is straightforward to check that we get a
unitary transformation if we choose

|0〉 ⊗ |1〉 → |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉 → |1〉 ⊗ |1〉 .

If you work in the standard vector representation, the required mapping is
1
0
0
0

→


1
0
0
0

 ,


0
0
1
0

→


0
1
0
0


so the matrix must be of the form

1 ∗ 0 ∗
0 ∗ 1 ∗
0 ∗ 0 ∗
0 ∗ 0 ∗


and then it is easy to check that

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


is a unitary matrix of that form.

4.2. Consider a two-qubit bipartite system and use the standard orthonormal basis
states for each qubit subsystem.

(a) Explain why any pure state can be written in the form

|Ψ〉 = a |0〉 ⊗ |φ0〉+ b |1〉 ⊗ |φ1〉

where |φ0〉 and |φ1〉 are normalised states in system B.

(b) What, if any, constraints must a, b ∈ C, |φ0〉 and |φ1〉 satisfy so that |Ψ〉 is
normalised.

(c) Write the density operator ρ̂ for the system, and calculate the reduced density
operators ρ̂A and ρ̂B.

(d) Show that Tr(ρ̂2A) = Tr(ρ̂2B) and find the range of possible values for this
quantity.

(e) What conditions must be satisfied in order to maximise the value of Tr(ρ̂2A)
and what property does the state |Ψ〉 have in this case.

(f) What conditions must be satisfied in order to minimise the value of Tr(ρ̂2A).

(g) Suppose now that system B has a Hilbert space with dimension larger than
two, but system A is still an single qubit. Does that change any of the results
above?
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Solution:

1. We can take the basis {|0〉⊗ |i〉 , |1〉⊗ |i〉} for the system where i ∈ {0, 1} but in
fact we could easily generalise to the case where system B was a larger system
by simply allowing more values for i. Then an arbitrary pure state must be a
linear combination of these basis states, so for some constants cxi,

|Ψ〉 =
∑
x,i

cxi |x〉 ⊗ |i〉

where x ∈ {0, 1}. However, for each x,
∑

i cxi |i〉 is a linear combination of
the basis states for system B, hence is a state (not necessarily normalised) in
system B. Then we just choose normalisation constants so that

|φ0〉 =
1

a

∑
i

c0i |i〉 and |φ1〉 =
1

b

∑
i

c1i |i〉

are normalised. (In the exceptional case where
∑

i c0i |i〉 = 0 we can take any
normalised state |φ0〉 with a = 0, and similarly b = 0 if

∑
i c1i |i〉 = 0.)

2. Since {|0〉 , |1〉} are orthonormal, and 〈φ0 |φ0〉 = 〈φ1 |φ1〉 = 1 (but without
assuming anything about 〈φ0 |φ1〉),

1 = 〈Ψ |Ψ〉 = |a|2 + |b|2 .

3. By definition

ρ̂ = |Ψ〉 〈Ψ| =
(
a |0〉 ⊗ |φ0〉+ b |1〉 ⊗ |φ1〉

)
⊗
(
a∗ 〈0| ⊗ 〈φ0|+ b∗ 〈1| ⊗ 〈φ1|

)
= |a|2 |0〉 〈0| ⊗ |φ0〉 〈φ0|+ ab∗ |0〉 〈1| ⊗ |φ0〉 〈φ1|+
+ ba∗ |1〉 〈0| ⊗ |φ1〉 〈φ0|+ |b|2 |1〉 〈1| ⊗ |φ1〉 〈φ1|

We can then easily calculate ρ̂A = TrB(ρ̂) and ρ̂B = TrA(ρ̂).

ρ̂A = |a|2 |0〉 〈0|+ ab∗ 〈φ1 |φ0〉 |0〉 〈1|+ ba∗ 〈φ0 |φ1〉 |1〉 〈0|+ |b|2 |1〉 〈1|
ρ̂B = |a|2 |φ0〉 〈φ0|+ |b|2 |φ1〉 〈φ1|

4. Using the properties of the states we find

Tr(ρ̂2A) = Tr(ρ̂2B) = |a|4 + 2|a|2|b|2| 〈φ0 |φ1〉 |2 + |b|4

= 2|a|2(|a|2 − 1)
(
1− | 〈φ0 |φ1〉 |2

)
+ 1

Note that in the first line the 3 quantities are non-negative, while the first term
in the second line is non-positive.

5. This means that the maximum value is 1 which is attained precisely when
either |a| = 0, |a| = 1, or | 〈φ0 |φ1〉 | = 1. These conditions are equivalent to
a = 0, b = 0, or |φ0〉 = eiφ |φ1〉. In all cases this means that |Ψ〉 is separable
(and any separable state is of that form.)

6. For any (non-zero) values of a and b the minimum value is clearly obtained
when | 〈φ0 |φ1〉 | = 0 so that the middle term in the first line vanishes. Then
using the constraint |a|2 = |b|2 = 1 it is simple algebra to check that the
minimum value is 1/2, attained when |a|2 = |b|2 = 1/2.

7. No, since we did not assume that system B was a single qubit system above.

4.3. Repeat question 4.2 for a bipartite system where system A is a two-qubit system and
system B is a two-qubit system or a larger system. Write a suitable generalisation

11



PROBLEMS CLASS 2

of the form of a pure state |Ψ〉 in part (a).

Solution:

This is similar to the solution to question 4.2 but letting x run over 4 values cor-
responding to 4 orthonormal basis states for the 2-qubit system. E.g. by similar
arguments

|Ψ〉 =
∑
x

ax |x〉 ⊗ |φx〉 .

5 Problems: Entanglement applications

5.1. Consider the operators

N̂1 ≡ σ1 ⊗ Î and N̂2 ≡ σ3 ⊗ σ1

acting on a 2-qubit system.

(a) Write N̂1 and N̂2 as 4 × 4 matrices in the representation where the standard
basis states |m〉 ⊗ |n〉 are written as 4-component column vectors with all
components zero except a 1 in the row counted by the 2-digit binary number
(mn)2, e.g. |1〉 ⊗ |0〉 → (0 0 1 0)T .

(b) Write the operators N̂+ ≡ N̂1 + N̂2 and N̂× ≡ N̂1N̂2 in matrix form. Explain
why the structure of the 4 × 4 matrices shows that N̂× can be written in the
form Â⊗ B̂ but N̂+ cannot.

(c) Show that Û ≡ 1√
2
N̂+ and N̂× are unitary operators.

(d) Show that Û acting on the 4 basis states |m〉 ⊗ |n〉 produces the 4 Bell states

|βxy〉 ≡
1√
2
(|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y〉)

and show that none of the Bell states is a separable state.
(e) Find the 4 states produced by Û acting on the 4 states |±〉 ⊗ |±〉 where

|±〉 ≡ 1√
2
(|0〉 ± |1〉). Are any of the resulting states separable?

If any are separable, can you explain why? (Hint: look at N̂1 and N̂2 acting
on these states.)

Solution:

1. In this representation standard matrix multiplication shows that the columns
of the matrices are (left to right) the results of the action of the basis vectors
corresponding to the binary numbers 00, 01, 10, 11 in that order. Also recall that
σ1 acts as |0〉 → |1〉 and |1〉 → |0〉 while σ3 acts as |0〉 → |0〉 and |1〉 → − |1〉.
E.g. for N̂1 we map |0〉 ⊗ |0〉 → |1〉 ⊗ |0〉 so the first column of N̂1 is given by
the vector for |1〉⊗ |0〉, i.e. (0 0 1 0)T . Repeating for the other basis states, and
doing the same for N̂2 we find

N1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , N2 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

Note the structure is of 2 × 2 blocks given by the form of the first operator in
the tensor product (i.e. σ1 for N̂1) and the structure of each individual block

12
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(itself a 2× 2 matrix) is given by the second operator in the tensor product i.e.
I for N̂1).

2. Just add and multiply the matrices to find

N+ =


0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

 , N× =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

We see that the blocks in N+ are not of the same form (some are proportional
to σ1, others to I) so it cannot be written as a single tensor product. For N×
all the blocks are proportional to σ1 so it can be written as −iσ2 ⊗ σ1.

3. Just check that the corresponding matrices are unitary.

4. Just write the 4 Bell states in vector form and note that these are the 4 columns
of the matrix N+. Note that the values of x and y are x = m and y = n for
m = 0 while y = n for m = 1.
Any separable state can be written in the form |ψ〉 ⊗ |φ〉. Since we can always
write |ψ〉 = |0〉 + b |1〉 for a qubit system, we see that any separable state
must be of the form a |0〉 ⊗ |φ〉 + b |1〉 ⊗ |φ〉 but in the Bell states, since |y〉
and |y〉 are linearly independent, we clearly cannot have both a |φ〉 = |y〉 and
b |φ〉 = (−1)x |y〉.

5. Either write these states as a linear combination of the standard basis states
(and we know how Û acts on these states from the above parts) or just cal-
culate the action of N̂1 and N̂2 directly. In particular note that σ3 |±〉 = |∓〉
while σ1 |±〉 = ± |±〉. This means that if we denote the ± signs by s1 = ±1
and s2 = ±1 we have

N̂1 |s1〉 ⊗ |s2〉 = s1 |s1〉 ⊗ |s2〉 , N̂2 |s1〉 ⊗ |s2〉 = s2 |−s1〉 ⊗ |s2〉 .

Obviously the second factor in the tensor product is the same in both cases so
the linear combination corresponding to the action of Û is the separable state

1√
2

(
s1 |s1〉+ s2 |−s1〉

)
⊗ |s2〉 .

Note that if s1 = s2 the first factor is proportional to |0〉 while if s1 = −s2 it is
proportional to |1〉.

5.2. For a 2-qubit system we define the 4 Bell states in terms of the standard basis states
as:

|βxy〉 ≡
1√
2
(|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y〉) .

(a) Write the Bell states in the basis
{
|++〉 , |+−〉 , |−+〉 , |−−〉

}
.

(b) Write the Bell states in the basis
{
|LL〉 , |LR〉 , |RL〉 , |RR〉

}
.

(c) If Alice and Bob share the Bell state |β00〉 (one qubit each) what are the pos-
sible outcomes and the associated probabilities, and what are Alice and Bob’s
final states in each case:
(i) Alice measures σ3.

(ii) Bob measures σ3.
(iii) Alice measures σ1.
(iv) Alice measures σ2.
(v) Alice measures σ1 and then Bob measures σ3.

(vi) Alice measures σ1 after Bob measures σ3.
(vii) Alice measures σ1 and then Bob measures σ1.

13



Solution:

1. Just replace the basis states using

|0〉 = 1√
2

(
|+〉+ |−〉

)
, |1〉 = 1√

2

(
|+〉 − |−〉

)
.

For example, using notation |01〉 = |0〉 ⊗ |1〉 etc.

|00〉 = 1

2

(
|+〉+ |−〉

)
⊗
(
|+〉+ |−〉

)
=

1

2

(
|++〉+ |+−〉+ |−+〉+ |−−〉

)
.

similarly we find

|01〉 =
1

2

(
|++〉 − |+−〉+ |−+〉 − |−−〉

)
|10〉 =

1

2

(
|++〉+ |+−〉 − |−+〉 − |−−〉

)
|11〉 =

1

2

(
|++〉 − |+−〉 − |−+〉+ |−−〉

)
.

Then we just take the appropriate linear combinations to find

|β00〉 =
1√
2

(
|++〉+ |−−〉

)
|β01〉 =

1√
2

(
|++〉 − |−−〉

)
|β10〉 =

1√
2

(
|+−〉+ |−+〉

)
|β11〉 =

1√
2

(
− |+−〉+ |−+〉

)
.

2. This part is essentially the same as above, using

|0〉 = 1√
2

(
|L〉+ |R〉

)
, |1〉 = −i√

2

(
|L〉 − |R〉

)
.

The result is

|β00〉 =
1√
2

(
|LR〉+ |RL〉

)
|β01〉 =

−i√
2

(
|LL〉 − |RR〉

)
|β10〉 =

1√
2

(
|LL〉+ |RR〉

)
|β11〉 =

−i√
2

(
− |LR〉+ |RL〉

)
.

3. Noting that the eigenstates of σ1, σ2, σ3 are respectively |+〉, |L〉, |0〉 with
eigenvalue 1 and |−〉, |R〉, |1〉 with eigenvalue −1, the above results can be
used:

(i) With probability 1/2 in each case, Alice measures 1 and the state becomes
|00〉 or −1 and the state becomes |11〉.

(ii) Exactly as above, with probability 1/2 in each case, Bob measures 1 and
the state becomes |00〉 or −1 and the state becomes |11〉.
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(iii) Now noting that

|β00〉 =
1√
2

(
|++〉+ |−−〉

)
again with probability 1/2 in each case, Alice measures 1 and the state
becomes |++〉 or −1 and the state becomes |−−〉.

(iv) This time noting that

|β00〉 =
1√
2

(
|LR〉+ |RL〉

)
again with probability 1/2 in each case, Alice measures 1 and the state
becomes |LR〉 or −1 and the state becomes |RL〉.

For parts (v) and (vi) use the results from parts (iii) and (ii) respectively. Note
that in both cases, after the first measurement the state is a separable state,
so for (v) Bob’s measurement does not change Alice’s state (which is either
|+〉 or |−〉), and for (vi) Alice’s measurement does not change Bob’s state (|0〉
or |1〉). Also, if Bob has the state |+〉 or |−〉 and measures σ3, in either case
he will get results 1 or −1 with probability 1/2 and his state will become |0〉
or |1〉 respectively. Similarly, Alice gets 1 or −1, producing state |+〉 or |−〉
respectively, with probability 1/2 when measuring σ1 on state |0〉 or |1〉. The
final result is that for (v) or (vi) the results are exactly the same (as should
be expected since the measurements correspond to the commuting operators
σ1 ⊗ I and I ⊗ σ3). With probability 1/4 we have the following results and
final states:

(1, 1) , |+0〉 ; (1,−1) , |+1〉 ; (−1, 1) , |−0〉 ; (−1,−1) , − |−1〉 .

Part (vii) follows immediately from part (iii). Bob will always get the same
result as Alice so with probability 1/2 the combined results and final states are
:

(1, 1) , |++〉 ; (−1,−1) , |−−〉 .

5.3. Charlie knows that Alice and Bob are meeting for lunch on Saturday. He wants to
send them a message with a surprise announcement that they can read together
at that time, and not before. The problem is, he will be travelling and unable to
communicate with them that day. However, he will see Alice on Thursday and Bob
on Friday before he leaves, so he decides to give them each half the message with
instructions to combine the information over lunch on Saturday. Suppose Charlie
needs 100 bits for his message.

(a) At first Charlie decides to give Alice half the bits, say the odd ones (i.e. the
first, the third, the fifth, etc.) and to give Bob the even ones. However, he
soon realises that this won’t work since Alice and Bob will probably be able to
guess some of the message from their 50 bits. After some thought he realises
that he can avoid this problem by giving them each 100 bits. How might this
work?

(b) Just before Alice arrives on Thursday, Charlie realises the flaw in his plan.
Alice and Bob are both impatient so will just send each other the information
before Saturday! Then (what luck!) he remembers he has 50 Bell states. He
checks his 100-bit message and performs some unitary transformations of the
Bell states. When Alice leaves he gives her 50 qubits and some instructions,
and the next day gives the remaining 50 qubits to Bob.
Assuming Alice and Bob cannot meet before Saturday, and they do not have a
quantum communication channel, explain how Charlie’s plan might work.

15



Solution:

1. One way is that the message can be found by combining Alice and Bob’s 100
bits using bitwise addition modulo 2. I.e. each bit of the message will be a 0 if
Alice and Bob’s corresponding bits are the same, and a 1 if they are different.
Obviously Alice or Bob alone cannot deduce anything about the message since
for each bit they have it is equally likely that the other will have the same or
different value for that bit.

2. He can use the 50 Bell states to encode 50 pairs of bits. As in superdense
coding, if Alice and Bob have one qubit of each Bell pair, they cannot deter-
mine anything about which of the four Bell states it is. Of course, when they
meet they can combine the qubits and measure which Bell states they have,
generating the 100 = 50× 2 bit message.
Note that this is not necessarily a flawless mechanism to keep the message
secret. E.g. if Alice and Bob each measure σ3 and discuss their results (using
classical communication), they can determine half the message. This is be-
cause they will get the same result for |β00〉 or |β10〉, but different results for
|β01〉 or |β11〉. Of course, once they have done this they will never be able to
recover the full message, so it is not quite the same as the case where they
each have 50 classical bits of the message.

5.4. Alice needs to urgently send a secret message to Bob. For simplicity, assume she
can do this with just 2 bits. They would like to do this using superdense coding, but
they don’t share any entangled states and to make matters worse someone ordered
the wrong equipment – Alice’s quantum entangler is broken, as is her quantum
receiver and Bob’s quantum transmitter. Fortunately, they each share a Bell state
with Charlie whom they trust. So, their plan is for Alice to send the message to
Charlie using superdense coding, and for Charlie to read it and transmit it to Bob,
again using superdense coding. Then, they get news that Eve is spying on Charlie
(it is vital that she does not see the message) and also blocking all his quantum
communications. All seems lost, but actually there is a way for Alice to send the
message to Bob using superdense coding with Charlie’s help. Explain how this can
be done in a way that does not require Charlie to use quantum communication,
and so that Eve gains no information about the message from eavesdropping on
any classical communications, or watching what Charlie does.

Solution:

You can picture this in terms of a line connecting Alice to Charlie, and another line
connecting Bob to Charlie. Each line represents a shared Bell state. Effectively, since
there is a line from Alice to Charlie to Bob, it is possible for Charlie to manipulate
the two qubits he has so that Alice and Bob share a Bell state. This can be done
using teleportation. E.g. Alice can transform the Bell pair she shares according to
her 2-bit message (the first part of superdense coding), Charlie can teleport the qubit
he shares with Alice to Bob (using classical communication which does not reveal
any details of the state being teleported), Alice can send her qubit to Bob (quantum
communication). Finally Bob will have the Bell state chosen by Alice so can measure
to read the 2-bit message. Of course Alice must transform the Bell state before she
sends her qubit to Bob, but otherwise the order of the three steps does not matter.
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6 Problems: Information theory

6.1. (a) Show that the operator Ŝ = n · σ, where n is a three-dimensional unit vector,
has eigenvalues ±1.

(b) Recall that any qubit density matrix can be written in terms of a Bloch vector
r. Calculate the expectation value of Ŝ in terms of n and r.

(c) By considering the range of values possible in part (b), state what the eigen-
states of Ŝ are in terms of a relation between r and n.

(d) For each Bell state, how is the expectation value of Ŝ ⊗ Î related to that of
Î ⊗ Ŝ?

(e) For each Bell state, calculate the expectation value of Ŝ ⊗ σ3 and Ŝ ⊗ σ1.

Solution:

(a) You could write out Ŝ as a 2 × 2 matrix and calculate the eigenvalues. Alter-
natively, note that since Trσi = 0, TrŜ = 0 which means that the sum of the
(two) eigenvalues is 0. Then note that Ŝ2 = Î since

(n·σ)2 = ninjσiσj =
1

2
(ninjσiσj+njniσjσi) =

1

2
ninj(σiσj+σjσi) =

1

2
ninj2δijI = (n·n)I = I .

Therefore each eigenvalue must square to 1, hence the two eigenvalues are 1
and −1.

(b) Since the trace is cyclic

Tr(σiσj) = Tr(σjσi) =
1

2
Tr(σiσj + σjσi) =

1

2
Tr(2δijI) = δijTrI = 2δij .

Therefore we have〈
Ŝ
〉
= Tr(ρ̂Ŝ) =

1

2
Tr
(
(I + riσi)njσj

)
=

1

2
rinj2δij = r · n .

(c) Since |r| ≤ 1 and n is a unit vector, −1 ≤ r · n ≤ 1. On the other hand,
for an eigenstate of Ŝ, the expectation value is equal to the eigenvalue. Since
the expectation value is an average over the possible outcomes (given by the
eigenvalues), in this case any state which is not an eigenstate must have ex-
pectation value strictly between −1 and 1. Hence the eigenstates are exactly
the states with r = ±n.

(d) One approach is to directly calculate the expectation value by considering the
action of these operators on the Bell states. Another approach is to note that
we can calculate the trace in a bipartite system by first taking the partial trace
in one subsystem, then taking the trace in the other. So〈

Ŝ ⊗ Î
〉
= Tr(ρ̂(Ŝ ⊗ Î)) = TrATrB(ρ̂(Ŝ ⊗ Î)) = TrA(ρ̂AŜ) .

Similarly 〈
Î ⊗ Ŝ

〉
= TrB(ρ̂BŜ) .
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Also, recall that for any Bell state both reduced density matrices are equal to
1
2 Î. This means that is all cases we have the same result〈

Ŝ ⊗ Î
〉
=
〈
Î ⊗ Ŝ

〉
=

1

2
Tr(Ŝ) .

The above is true for any operator Ŝ, but in this specific case we also know
that Tr(Ŝ) = 0.

(e) Consider
√
2Ŝ ⊗ σ3 |βxy〉 = Ŝ |0〉 ⊗ σ3 |y〉+ (−1)xŜ |1〉 ⊗ σ3 |y〉

= (−1)y
(
Ŝ |0〉 ⊗ |y〉 − (−1)xŜ |1〉 ⊗ |y〉

)
So we see that

2
〈
Ŝ ⊗ σ3

〉
= 〈βxy| Ŝ ⊗ σ3 |βxy〉 = (−1)y

(
〈0| Ŝ |0〉 − 〈1| Ŝ |1〉

)
The above didn’t use any properties of Ŝ. It is easy to now evaluate explicitly,
noting that only σ3 contributes since the other σ-matrices have vanishing di-
agonal components. Alternatively, note that we can also use σ3 |0〉 = |0〉 and
σ3 |1〉 = − |1〉 to write

2
〈
Ŝ ⊗ σ3

〉
= (−1)y

(
〈0| Ŝσ3 |0〉+ 〈1| Ŝσ3 |1〉

)
= (−1)yTr(Ŝσ3) .

Then, since Tr(σiσj) = 2δij we see that〈
Ŝ ⊗ σ3

〉
= (−1)yn3 .

Similarly, note that since σ1 |0〉 = |1〉 and σ1 |1〉 = |0〉 we can write σ1 |y〉 = |y〉
so

√
2Ŝ ⊗ σ1 |βxy〉 = Ŝ |0〉 ⊗ σ1 |y〉+ (−1)xŜ |1〉 ⊗ σ1 |y〉

= Ŝ |0〉 ⊗ |y〉+ (−1)xŜ |1〉 ⊗ |y〉
= Ŝσ1 |1〉 ⊗ |y〉+ (−1)xŜσ1 |0〉 ⊗ |y〉
= (−1)x(Ŝσ1 ⊗ Î) |βxy〉 .

As above we can then easily calculate〈
Ŝ ⊗ σ1

〉
= (−1)x

1

2
Tr(Ŝσ1) = (−1)xn1 .

For completeness, note that we can calculate the similar expression with σ2.
Using σ2 |0〉 = i |1〉 and σ2 |1〉 = −i |0〉 we can write σ2 |y〉 = i(−1)y |y〉 so

√
2Ŝ ⊗ σ2 |βxy〉 = Ŝ |0〉 ⊗ σ2 |y〉+ (−1)xŜ |1〉 ⊗ σ2 |y〉

= i(−1)y
(
Ŝ |0〉 ⊗ |y〉 − (−1)xŜ |1〉 ⊗ |y〉

)
= −(−1)y

(
Ŝσ2 |1〉 ⊗ |y〉+ (−1)xŜσ2 |0〉 ⊗ |y〉

)
= −(−1)x+y(Ŝσ2 ⊗ Î) |βxy〉 .

As above we can then easily calculate〈
Ŝ ⊗ σ2

〉
= −(−1)x+y 1

2
Tr(Ŝσ2) = −(−1)x+yn2 .

6.2. Suppose a device performs a unitary transformation on the tensor product of any
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input state with a fixed state |Ω〉. For two different input states |ψ〉 and |φ〉 the
device seems to be a quantum copier, i.e. it maps

|ψ〉 ⊗ |Ω〉 → |ψ〉 ⊗ |ψ〉 and |φ〉 ⊗ |Ω〉 → |φ〉 ⊗ |φ〉 .

Show that this is only possible if the two states |ψ〉 and |φ〉 are either the same or
orthogonal.

Solution:

Unitary transformations preserve inner products. Therefore the norm of |ψ〉 ⊗ |Ω〉
must equal the norm of |ψ〉⊗|ψ〉, which means that |ψ〉 and |Ω〉 have the same norm.
Similarly we see that |φ〉 also. has the same norm.

Now compare the inner product of the two states before and after the transforma-
tion, i.e.

〈ψ |φ〉 〈Ω |Ω〉 = (〈ψ |φ〉 )2

so either 〈ψ |φ〉 = 0, in which case |ψ〉 and |φ〉 are orthogonal, or 〈ψ |φ〉 = 〈Ω |Ω〉 .
Since the states all have the same norm, the final relation is only possible if |ψ〉 =

|φ〉.

6.3. Show that the Shannon entropy of a random variable which can take N different
values is maximised if and only if the probability distribution is uniform. Calculate
the maximum Shannon entropy (for a given fixed N).

Solution:

Recall that the Shannon entropy is

H = −
N∑
i=1

pi log pi

where the pi are the probabilities of each possible outcome. Note that these are not
N independent variables since we have the constraint

∑N
i=1 pi = 1. There are two

obvious ways to look for the maximum value. We could substitute pN = 1−
∑N−1

i=1 pi
and then set ∂H

∂pi
= 0 for i ∈ {1, 2, . . . , N − 1} or we could instead introduce a

Lagrange multiplier λ and set ∂H̃
∂λ = 0 and ∂H̃

∂pi
= 0 for i ∈ {1, 2, . . . , N} where

H̃ = H + λ

(
N∑
i=1

pi − 1

)
.

Using the second method we find

0 =
∂H̃

∂λ
=

N∑
i=1

pi − 1

0 =
∂H̃

∂pi
= − log pi −

1

ln 2
+ λ

The second equation shows that all pi have the same value, and so from the first
equation (imposing the constraint on the total probability) we see that pi = 1/N . In
this case we find

H = −
N∑
i=1

1

N
log

(
1

N

)
= logN .

You could check that this is really a maximum and not some other turning point.
A simple argument is that since we only found one turning point, the only other
possibility for a maximum is at the boundary of the region on parameter space, i.e.
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where some of the pi = 0. (This includes the case where one pi = 1 since then
all other pi must vanish.) However, these give lower values for H, log(N −M) for
M ∈ {1, 2, . . . , N − 1}.

6.4. Suppose we have messages encoded as strings of N bits, where each bit can be
considered a random variable having value 1 with probability p.

(a) Calculate the Shannon entropy of a single bit.
(b) What is the Shannon entropy of a string of N bits? (Recall that if X and Y

are independent random variables, H(X,Y ) = H(X) +H(Y ).)
(c) Suppose N = 1000 and p = 3/4. What is the minimum average length of

message which could contain the same information? (You do not have to give
a specific method to encode the message.)

Solution:

(a) We have two possible outcomes, 1 with probability p and 0 with probability
1− p. Therefore the Shannon entropy is

H = −p log p− (1− p) log(1− p) .

(b) Let’s consider a string of N bits, XN , as a string of N − 1 bits, XN−1, plus a
single bit, X1. Since the bits are independent

H(XN ) ≡ H(XN−1, X1) = H(XN−1) +H(X1); .

So, by induction we find

H(XN ) = NH(X1) = −Np log p−N(1− p) log(1− p)

using the result in part (a) for H(X1).

(c) For p = 3/4 we find

H(X1000) = −750 log(3/4)−250 log(1/4) = 750×2−750 log 3+250×2 = 2000−750 log 3 ' 811.3

so such a message could on average be encoded using only about 811.3 bits.

6.5. Suppose two bits are described by random variables X and Y .

(a) Calculate the joint Shannon entropy, the conditional entropy of X given Y ,
the conditional entropy of Y given X, and the mutual information in each of
the following cases, where (X,Y ) can take (with equal probability) only the
values:
(i) (0, 0), (0, 1), (1, 0), (1, 1)

(ii) (0, 1), (1, 0), (1, 1)

(iii) (0, 1), (1, 0)

(iv) (0, 1), (1, 1)

(b) Calculate the relative entropy for the above probability distributions of
• Case (iii) to case (ii)
• Case (iii) to case (i)
• Case (ii) to case (i)
• Case (iv) to case (ii)
• Case (iv) to case (i)
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Solution:

1. Let’s use notation px = P (X = x), py = P (Y = y) and px,y = P (X = x & Y =
y), where for the different cases we have the following probabilities

Case P (X = 0) P (X = 1) P (Y = 1) P (Y = 1) p0,0 p0,1 p1,0 p1,1

(i) 1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

(ii) 1
3

2
3

1
3

2
3 0 1

3
1
3

1
3

(iii) 1
2

1
2

1
2

1
2 0 1

2
1
2 0

(iv) 1
2

1
2 0 1 0 1

2 0 1
2

1. First let’s calculate the Shannon entropy for X and for Y, then the joint
entropy. Remember that for these calculations we take logarithms in base
2.

H(X) ≡ −
∑
x

px log(px) = −2× 1

2
log

(
1

2

)
= 1

H(Y ) ≡ −
∑
y

py log(py) = −2× 1

2
log

(
1

2

)
= 1

H(X,Y ) ≡ −
∑
x,y

px,y log(px,y) = −4× 1

4
log

(
1

4

)
= 2

We can now calculate the conditional entropy of X given Y , H(X|Y ) and
similarly of Y given X, H(Y |X)

H(X|Y ) ≡ H(X,Y )−H(Y ) = 2− 1 = 1

H(Y |X) ≡ H(X,Y )−H(X) = 2− 1 = 1

noting that H(X,Y ) = H(Y,X). Finally, the mutual information is

H(X : Y ) ≡ H(X) +H(Y )−H(X,Y ) = 1 + 1− 2 = 0 .

2.

H(X) = −1

3
log

(
1

3

)
− 2

3
log

(
2

3

)
= log(3)− 2

3

H(Y ) = −1

3
log

(
1

3

)
− 2

3
log

(
2

3

)
= log(3)− 2

3

H(X,Y ) = −3× 1

3
log

(
1

3

)
= log(3)

H(X|Y ) = log(3)−
(
log(3)− 2

3

)
=

2

3

H(Y |X) = log(3)−
(
log(3)− 2

3

)
=

2

3

H(X : Y ) = log(3)− 4

3
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3.

H(X) = −2× 1

2
log

(
1

2

)
= 1

H(Y ) = −2× 1

2
log

(
1

2

)
= 1

H(X,Y ) = −2× 1

2
log

(
1

2

)
= 1

H(X|Y ) = 1− 1 = 0

H(Y |X) = 1− 1 = 0

H(X : Y ) = 1 + 1− 1 = 1

4.

H(X) = −2× 1

2
log

(
1

2

)
= 1

H(Y ) = −1 log (1) = 0

H(X,Y ) = −2× 1

2
log

(
1

2

)
= 1

H(X|Y ) = 1− 0 = 1

H(Y |X) = 1− 1 = 0

H(X : Y ) = 1 + 0− 1 = 0

2. For the relative entropy let’s label the probability distribution of case A, px,y
and the probability distribution of case B, qx,y. Then the relative entropy of
case A to case B is

H(A||B) ≡
∑
x,y

px,y (log(px,y)− log(qx,y)) .

Note that it is not symmetric. We then find

H(iii||ii) = 2× 1

2

(
log

(
1

2

)
− log

(
1

3

))
= log(3)− 1

H(iii||i) = 2× 1

2

(
log

(
1

2

)
− log

(
1

4

))
= −1 + 2 = 1

H(ii||i) = 3× 1

3

(
log

(
1

3

)
− log

(
1

4

))
= 2− log(3)

H(iv||ii) = 2× 1

2

(
log

(
1

2

)
− log

(
1

3

))
= log(3)− 1

H(iv||i) = 2× 1

2

(
log

(
1

2

)
− log

(
1

4

))
= 1

6.6. Consider a qubit with density matrix

ρ =
1

2

(
1 + z 0
0 1− z

)
(a) Calculate the von Neumann entropy S(ρ) as a function of z.

(b) Show that S(ρ) is a monotonic function for z ∈ [0, 1] and find the minimum
and maximum values of the entropy.

(c) Calculate the entanglement entropy, as a function of θ, of the state

|Ψ〉 = cos θ |0〉 ⊗ |0〉+ sin θ |1〉 ⊗ |1〉 .
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Solution:

(a) Since ρ is diagonal we can easily calculate

S(ρ) = −Tr (ρ log ρ) = −1 + z

2
log

(
1 + z

2

)
− 1− z

2
log

(
1− z

2

)
= 1− 1

2
(1 + z) log(1 + z)− 1

2
(1− z) log(1− z)

(b) We can then easily find

dS

dz
= −1

2
log(1 + z)− 1

2 ln 2
+

1

2
log(1− z) +

1

2 ln 2
=

1

2
log

(
1− z

1 + z

)
.

For the given range of z, this quantity vanishes at the endpoint z = 0 and is
negative for all other values of z, so the function is monotonic with maximum
S = 1 at z = 0 and minimum

S = 1− 1

2
2 log 2− 1

2
0 log 0 = 1− 1− 0 = 0

with our usual understanding that 0 log 0 = 0 by considering it as the limit
limp→0 p log p.

(c) The entanglement entropy is the von Neumann entropy of the reduced density
matrix (in either subsystem). Here we have

ρ̂A = TrB
(
cos2 θ |0〉 〈0| ⊗ |0〉 〈0|+ sin2 θ |1〉 〈1| ⊗ |1〉 〈1|

)
= cos2 θ |0〉 〈0|+sin2 θ |1〉 〈1|

Therefore the entanglement entropy is

S(A) = S(ρ̂A) = − cos2 θ log(cos2 θ)− sin2 θ log(sin2 θ) .

6.7. Calculate the von Neumann entropy of

(i) 1√
2
(|0〉+ |1〉)

(ii) The ensemble of |0〉 and |1〉 with equal probabilities.

and calculate the relative entropy of state (i) to state (ii).

Solution:

The state (i) is a pure state so its von Neumann entropy is 0. If you want to see this
explicitly, work in the orthonormal basis {|±〉 = (|0〉 ± |1〉)/

√
2} and represent |+〉

by
(

1
0

)
and |−〉 by

(
0
1

)
. Then the state (i) is just |+〉 so its density matrix is

ρ =

(
1
0

)
(1 0) =

(
1 0
0 0

)
.

Therefore we have
S(ρ) = −1 log 1− 0 log 0 = 0 .

For the mixed state (ii) we can work in the usual basis, representing |0〉 by
(

1
0

)
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and |1〉 by
(

0
1

)
. Then we easily find

ρ =
1

2

(
1
0

)
(1 0) +

1

2

(
0
1

)
(0 1) =

(
1/2 0
0 1/2

)
giving the von Neumann entropy

S(ρ) = −1

2
log

(
1

2

)
− 1

2
log

(
1

2

)
= log 2 = 1 .

Now, to calculate the relative entropy we use the definition

S(ρ1||ρ2) = Tr(ρ1 log ρ1)− Tr(ρ1 log ρ2) .

Here we take ρ1 to be the density matrix for state (i), and ρ2 for state (ii). The first
term is just minus the von Neumann entropy of state (i) so we know from above
that this is 0. To calculate the second term we must write the two density matrices
in the same representation. There are two natural ways to do this. We could note
that since ρ2 is proportional to the identity matrix in one orthonormal basis, it is the
same in any orthonormal basis. However, to illustrate the method more generally,

let’s work in the basis representing |0〉 by
(

1
0

)
and |1〉 by

(
0
1

)
. note that when

choosing the basis, it is important that ρ2 is diagonal so that we can calculate log ρ2
be just taking the logarithm of each diagonal element. In this representation state

(i) is 1√
2

(
1
1

)
so

ρ1 =
1

2

(
1
1

)
(1 1) =

1

2

(
1 1
1 1

)
.

Then we can calculate

Tr(ρ1 log ρ2) = Tr

[
1

2

(
1 1
1 1

)(
log(1/2) 0

0 log(1/2)

)]
= −1

2
Tr

(
1 1
1 1

)
= −1

which gives
S(ρ1||ρ2) = 0− (−1) = 1 .

6.8. Consider the state

|Ψ〉 = cos θ |0〉 ⊗ |0〉+ sin θ |1〉 ⊗ |1〉 ∈ HA ⊗HB.

Calculate the relative entropy of this state to the state with density matrix

ρ̂ = ρ̂A ⊗ ρ̂B

where ρ̂A and ρ̂B are the reduced density matrices in each system.

Solution:

Here we want to calculate

S(ρ̂||ρ̂A ⊗ ρ̂B) = Tr(ρ̂ log ρ̂)− Tr(ρ̂ log(ρ̂A ⊗ ρ̂B)) .

Since ρ̂ is the density matrix for the pure state |Ψ〉 we know that the first term, which
is −S(ρ̂), is 0.

For the second term we need to calculate the reduced density matrices. This is easy
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and by the symmetry both have the same form

cos2 θ |0〉 〈0|+ sin2 θ |1〉 〈1|

so we find

ρ̂A ⊗ ρ̂B = cos4 θ(|0〉 ⊗ |0〉)(〈0| ⊗ 〈0|) + cos2 θ sin2 θ(|0〉 ⊗ |1〉)(〈0| ⊗ 〈1|) +
+cos2 θ sin2 θ(|1〉 ⊗ |0〉)(〈1| ⊗ 〈0|) + sin4 θ(|1〉 ⊗ |1〉)(〈1| ⊗ 〈1|) .

This means that in the standard basis for the 2-qubit system

ρA ⊗ ρB = diag(cos4 θ, cos2 θ sin2 θ, cos2 θ sin2 θ, sin4 θ) .

On the other hand

ρ̂ = |Ψ〉 〈Ψ| = cos2 θ(|0〉 ⊗ |0〉)(〈0| ⊗ 〈0|) + cos θ sin θ(|0〉 ⊗ |0〉)(〈1| ⊗ 〈1|) +
+cos θ sin θ(|1〉 ⊗ |1〉)(〈0| ⊗ 〈0|) + sin2 θ(|1〉 ⊗ |1〉)(〈1| ⊗ 〈1|) .

So, in 4× 4 matrix form we have

S(ρ̂||ρ̂A ⊗ ρ̂B) = −Tr(ρ̂ log(ρ̂A ⊗ ρ̂B))

= −Tr




cos2 θ 0 0 cos θ sin θ
0 0 0 0
0 0 0 0

cos θ sin θ 0 0 sin2 θ

×

×


log(cos4 θ) 0 0 0

0 log(cos2 θ sin2 θ) 0 0
0 0 log(cos2 θ sin2 θ) 0
0 0 0 log(sin4 θ)




= −2
(
cos2 θ log(cos2 θ) + sin2 θ log(sin2 θ)

)
.
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