

Evelyn Heylen

- 2011-2013: Master in Energy, KU Leuven
- PhD student KU Leuven Energyville since Autumn 2013
 - Research interest: Performance evaluation of power system reliability criteria and their management
- Group: ESAT ELECTA (Electrical engineering)
 - Electrical energy systems and robust control of industrial systems
 - Power group: Power system reliability & HVDC
- Supervisors: Prof. Dirk Van Hertem & Prof. Geert Deconinck
- Work supported by Research Foundation Flanders (FWO)

Research Foundation - Flanders

Evelyn Heylen

- 2011-2013: Master in Energy, KU Leuven
- PhD student KU Leuven Energyville since Autumn 2013
 - Research interest: Performance evaluation of power system reliability criteria and their management
- Group: ESAT ELECTA (Electrical engineering)
 - Electrical energy systems and robust control of industrial systems
 - Power group: Power system reliability & HVDC
- Supervisors: Prof. Dirk Van Hertem & Prof. Geert Deconinck
- Work supported by Research Foundation Flanders (FWO)

Research Foundation - Flanders

Three main time domains:

- Long term: System development
- Mid term: Asset management
- Short term: Operational planning and real time operation

Three main time domains:

- Long term: System development
- Mid term: Asset management
- <u>Short term</u>: Operational planning and real time operation

Operational planning

No action Contracting reserves Contracting flexibility Generation rescheduling + Actions real time operation

Uncertain!!!

Current approach to handle uncertainties in preventive reliability management: Deterministic N-1

The system should be able to withstand at all times the loss of any of its main elements without significant degradation of service quality

Current approach to handle uncertainties in preventive reliability management: Deterministic N-1

The system should be able to withstand at all times the loss of any of its main elements without significant degradation of service quality

'Challenges' with deterministic N-1

- Only single contingencies
- Only single renewable generation and load scenario
- Ideal corrective control behaviour
- All credible states assumed to be equally probable and severe
- No economic incentive

However... transmission system operators (TSO) are not eager to change:

- Transparent
- Good results so far

→ Convince TSOs that alternatives are 'better'!!!

Alternative probabilistic approaches should consider uncertainties in more "clever" way

- Improve probabilities of contingencies
- Consider multiple load and RES scenarios
- Consider more decision stages

How much better do these alternatives perform and in which conditions? Should the TSO change? → Quantification platform

- Focus on short term reliability management
- Tool to compare performance of different power system reliability criteria and their management

Simulation module

Mixed integer linear optimization

• Operational planning

$$\min_{a_p, a_c^s, P_{curt}} C_{OP}(v) = \min[C_{prev}(a_p) + \sum_{s \in S} \pi_s(C_{corr}(a_c^s) + P_{curt}^s(c), v)]$$

s.t. operational limits $\forall s$

• Real time operation

$$\min_{\substack{a_c^{RT}, P_{curt}^{RT}}} C_{RT}(v) = \min_{\substack{a_c^{RT}, P_{curt}^{RT}}} [C_{corr}(a_c^{rt}) + P_{curt}^{rt}(c).v]$$

s.t.operational limits

Simulation module

Mixed integer linear optimization

• Operational planning

$$\min_{a_p, a_c^s, P_{curt}} C_{OP}(v) = \min[C_{prev}(a_p) + \sum_{s \in S} \pi_s(C_{corr}(a_c^s) + P_{curt}^s(c), v)]$$

s.t. operational limits $\forall s$

• Real time operation

$$\min_{a_{c}^{RT}, P_{curt}^{RT}} C_{RT}(v) = \min_{a_{c}^{RT}, P_{curt}^{RT}} [C_{corr}(a_{c}^{rt}) + P_{curt}^{rt}(c).v]$$
s.t.operational limits
Computationally
intensive for large
systems!!!

ЗV

Evaluation module

- Evaluate performance indicators for various states defined by:
 - Contingency
 - Load realization
 - Renewable power generation realization

- Performance indicators:
 - Total system cost
 - Reliability level
 - Equality between consumers

- Select appropriate system states to evaluate to obtain reliable and unbiased performance evaluation?
 - Contingencies: Very few data \rightarrow No exact failure probabilities

- Select appropriate system states to evaluate to obtain reliable and unbiased performance evaluation?
 - Contingencies: Very few data \rightarrow No exact failure probabilities
 - Load:
 - Spatial and temporal correlation
 - Depending on type of consumers

- Select appropriate system states to evaluate to obtain reliable and unbiased performance evaluation?
 - Contingencies: Very few data \rightarrow No exact failure probabilities
 - Load:
 - Spatial and temporal correlation
 - Depending on type of consumers
 - Renewable power generation
 - Spatial and temporal correlation

- Select appropriate system states to evaluate to obtain reliable and unbiased performance evaluation?
 - Contingencies: Very few data \rightarrow No exact failure probabilities
 - Load:
 - Spatial and temporal correlation
 - Depending on type of consumers
 - Renewable power generation
 - Spatial and temporal correlation
- How to show quality of the result?
- How to convince decision maker?

Current approach

- Contingencies
 - Two state component models: constant failure rates & repair times
 - Most probable contingencies up to particular cumulative probability

Current approach

- Contingencies
- Corrective control behaviour
 - Perfect behaviour

Problem: Real time load and generation from renewable energy sources

- For all load points (1000) in the system we get 100 samples of active power per node given a particular forecast value
- Loads are spatially correlated
- The type of consumers at the nodes is not known

• Similar data for renewables, but let's focus on load now!

Discussion

- Are 100 samples sufficient to obtain a reliable performance evaluation or can we reduce the number samples?
- How to efficiently select a representative number of states? (e.g. Categorize similar nodes in terms of distributions? How to consider correlation and unknown consumer groups?)
- Can we combine simulations of the N-1 and alternative approach with practical N-1 outcomes to improve the performance evaluation, also for the alternative method?
- Can we use the samples to improve alternative reliability management strategies?

Thank you!

evelyn.heylen@esat.kuleuven.be

