Comparing system reliabilities with ill-known probabilities

Laboratory Heudiasyc, University of Technology of Compiègne, France

Lanting YU Sébastien DESTERCKE Mohamed SALLAK Walter SCHÖN

22/06/2016

Contents

- Introduction
- Problem
- System reliability
- Comparison methods
- Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Introduction

Problem

System 1

System 2

Is system 1 more reliable than system 2 ?

- If working probabilities p_{i} of components c_{i} are precisely known \rightarrow OK
- What happens when p_{i} are imprecise (lie in intervals) \rightarrow ?

Introduction

System reliability

$$
R^{k}\left(p_{1}, \ldots, p_{n}\right)=\sum_{A \subseteq \mathscr{C}^{k}} d_{A} \prod_{i \in A} p_{i}^{\alpha_{A}^{k}, i}
$$

Notations:

- \mathscr{C}^{k} : set of components of system k
- $\alpha_{A, i}^{k}$: number of component of type $i\left(p_{i}\right)$ in subset A

Hypotheses :

- Each system is coherent $\rightarrow R$ is increasing along with p_{i};
- Components working probabilities are independent;
- p_{i} are expressed as intervals : $p_{i} \in\left[\underline{p_{i}}, \overline{p_{i}}\right]$

Contents

- Introduction
- Problem
- System reliability
- Comparison methods
- Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Interval Comparison (IC) method

The interval $[\underline{R}, \bar{R}]$ can be obtained by

$$
\begin{gathered}
\underline{R}=\inf _{p_{i} \in\left[\underline{p}_{i}, \bar{p}_{i}\right]} R=\sum_{A \subseteq \mathscr{C}} d_{A} \prod_{i \in A} p_{i}^{\alpha_{A, i}} \\
\bar{R}=\sup _{p_{i} \in\left[\underline{p}_{i}, \bar{p}_{i}\right]} R=\sum_{A \subseteq \mathscr{C}} d_{A} \prod_{i \in A} \bar{p}_{i}^{\alpha_{A, i} .} \\
S^{1}>_{I C} S^{2} \text { iff } \underline{R}^{1}>\bar{R}^{2}
\end{gathered}
$$

The calculation of IC method : simple but sometimes too rough

Numerical example with IC method

System 1

System 2

$$
\begin{gathered}
p_{1} \in[0.7,0.9], p_{2} \in[0.8,1] \text { and } p_{3} \in[0.8,0.9] . \\
R^{1}=p_{1} \cdot p_{2} \in[0.56,0.9] \\
R^{2}=p_{1} \cdot p_{2} \cdot p_{3} \in[0.448,0.81]
\end{gathered}
$$

S^{1} and S^{2} are incomparable according to the IC method.

Difference Comparison (DC) method

$$
\begin{aligned}
& R^{1-2}:=R^{1}-R^{2} \\
& R^{1-2}>=<0 ?
\end{aligned}
$$

$$
\begin{aligned}
\underline{R}^{1-2} & =\inf _{p_{i} \in\left[\underline{p_{i}}, \overline{p_{i}}\right]} R^{1}-R^{2} \\
& =\inf _{p_{i} \in\left[\underline{p_{i}}, \bar{p}_{i}\right]} \sum_{A \subseteq \mathscr{C}_{1}^{1}} d_{A} \prod_{i \in A} p_{i}^{\alpha_{A, i}^{1}}-\sum_{B \subseteq \mathscr{C}^{2}} d_{B} \prod_{i \in B} p_{i}^{\alpha_{B, i}^{2}}
\end{aligned}
$$

$$
S^{1}>_{D C} S^{2} \text { iff } \underline{R}^{1-2}>0, \forall p_{i} \in\left[\underline{p_{i}}, \overline{p_{i}}\right]
$$

With DC method, S^{1} and S^{2} may be comparable but R^{1-2} needs more computations.

Numerical example with DC method

System 1

System 2

$$
\begin{gathered}
R^{1}=p_{1} \cdot p_{2}, \quad R^{2}=p_{1} \cdot p_{2} \cdot p_{3} \\
R^{1-2}=p_{1} \cdot p_{2} \cdot\left(1-p_{3}\right)
\end{gathered}
$$

$$
\underline{R}^{1-2}=\inf _{\substack{p_{1} \in[0.7,0.9], p_{2} \in[0.8,1], p_{3} \in[0.8,0.9]}} p_{1} \cdot p_{2} \cdot\left(1-p_{3}\right)=0.7 \cdot 0.8 \cdot 0.1=0.056>0
$$

$S^{1} \succ_{D C} S^{2}$, but $S^{1} \nsucc_{I C} S^{2}!$

Contents

- Introduction
- Problem
- System reliability
- Comparison methods
- Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Proposition

Proposition 1

$$
\text { If } S^{1}>_{I C} S^{2} \text {, then } S^{1}>_{D C} S^{2} \text {. }
$$

$D C$ is

- more precise than $I C$, and still gives guarantees
- potentially much more complex to compute
\Rightarrow when does it remain easy ?

Proposition

Proposition 2

If S^{1} and S^{2} have distinct component types, then R^{1-2} is globally monotonic, and

$$
\underline{R}^{1}-\bar{R}^{2}=\underline{R}^{1-2} .
$$

If j first types in $S^{1}, n-j$ last in S^{2}, then

$$
\underline{R}^{1-2}=R^{1}\left(\underline{p_{1}}, \ldots, \underline{p_{j}}\right)-R^{2}\left(\bar{p}_{j+1}, \ldots, \bar{p}_{n}\right) .
$$

In this particular case, $D C$ and $I C$ coincide.
utc
Recherche

Example

System 1

System 2

$$
R^{1}-R^{2}=p_{1} \cdot p_{2}-p_{3} \cdot p_{4} \in\left[\underline{p_{1}} \cdot \underline{p_{2}}-\overline{p_{3}} \cdot \overline{p_{4}}, \overline{p_{1}} \cdot \overline{p_{2}}-\underline{p_{3}} \cdot \underline{p_{4}}\right]
$$

Proposition

Proposition 3

If a component C_{j} is

- present in both systems S^{1} and S^{2} but
- at most once in each of them
then
- \underline{R}^{1-2} reached for $p_{j} \in\left\{\underline{p}_{j}, \bar{p}_{j}\right\}$

If k components C_{1}, \ldots, C_{k} like that, \underline{R}^{1-2} reached on vertices

$$
x_{j=1}^{k}\left\{\underline{p}_{j}, \bar{p}_{j}\right\}
$$

Exponential, but still finite set of values to check (doable if k small)

Example

System 1

System 2

$$
R^{1}-R^{2}=p_{1} \cdot p_{2}-p_{3} \cdot p_{2}=p_{2} \cdot\left(p_{1}-p_{3}\right)
$$

- if $p_{1}=0.8, p_{3}=0.7, p_{2} \in[0.7,0.9]$

$$
\underline{R}^{1-2}=\underline{\mathbf{p}}_{2} \cdot\left(p_{1}-p_{3}\right)
$$

- if $p_{1}=0.8, p_{3}=0.9, p_{2} \in[0.7,0.9]$

$$
\underline{R}^{1-2}=\overline{\mathbf{p}}_{2} \cdot\left(p_{1}-p_{3}\right)
$$

utc

Proposition

Proposition 4

If some components appear

- in both systems S^{1} and S^{2}
- more than once in at least one of them
then R^{1-2} is in general a non-monotonic polynomial, and finding \underline{R}^{1-2} is a NP-hard problem.

Example

System 1

System 2

$$
R^{1}-R^{2}=p_{1}^{2}-p_{1}
$$

- if $p_{1} \in[0.4,0.6]$ we have

$$
\underline{R}^{1-2}=-0.25
$$

obtained for $p_{1}=0.5$ (not one bound)

Contents

- Introduction
- Problem
- System reliability
- Comparison methods
- Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Conclusions and future works

Conclusions

1. Two methods (IC/DC) to get guaranteed comparisons of system reliabilities
2. IC method easy to compute, but conservative,
3. DC less conservative, but computationally complex in some cases

Perspectives

1. Using approximated bounds to get \underline{R}^{1-2}
2. if S^{1} and S^{2} incomparable, which information to make them comparable?
3. Consider other comparison rules (E-admissibility)
utc

Thanks for your attention!

