

Comparing system reliabilities with ill-known probabilities

Laboratory Heudiasyc, University of Technology of Compiègne, France

Lanting YU Sébastien DESTERCKE Mohamed SALLAK Walter SCHÖN

22/06/2016

Introduction

- Problem
- o System reliability

Comparison methods

- o Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Introduction Problem

Is system 1 more reliable than system 2?

- If working probabilities *p_i* of components *c_i* are precisely known → *OK*
- What happens when p_i are imprecise (lie in intervals) \rightarrow ?

Introduction System reliability

$$R^{k}(p_{1},\ldots,p_{n})=\sum_{A\subseteq\mathscr{C}^{k}}d_{A}\prod_{i\in A}p_{i}^{\alpha_{A,i}^{k}}$$

Notations :

• \mathscr{C}^k : set of components of system k

α^k_{A,i} : number of component of type *i* (*p_i*) in subset A
 Hypotheses :

- Each system is coherent $\rightarrow R$ is increasing along with p_i ;
- Components working probabilities are independent;
- p_i are expressed as intervals : $p_i \in [p_i, \overline{p_i}]$

- Introduction
 - Problem
 - o System reliability

Comparison methods

- o Interval Comparison
- Difference Comparison
- Proposition
- Conclusion and future work

Interval Comparison (IC) method

The interval $[\underline{R}, \overline{R}]$ can be obtained by

$$\underline{R} = \inf_{p_i \in [\underline{p}_i, \overline{p}_i]} R = \sum_{A \subseteq \mathscr{C}} d_A \prod_{i \in A} \underline{p}_i^{\alpha_{A,i}}$$

$$\overline{R} = \sup_{p_i \in [\underline{p}_i, \overline{p}_i]} R = \sum_{A \subseteq \mathscr{C}} d_A \prod_{i \in A} \overline{p}_i^{\alpha_{A,i}}.$$

$$S^1 \succ_{IC} S^2$$
 iff $\underline{R}^1 > \overline{R}^2$

The calculation of IC method : simple but sometimes too rough

Numerical example with IC method

 S^1 and S^2 are incomparable according to the IC method.

Difference Comparison (DC) method

$$R^{1-2} := R^1 - R^2$$

$$R^{1-2} > = < 0 ?$$

$$\underline{R}^{1-2} = \inf_{p_i \in [\underline{p_i}, \overline{p_i}]} R^1 - R^2$$

$$= \inf_{p_i \in [\underline{p_i}, \overline{p_i}]} \sum_{A \subseteq \mathscr{C}^1} d_A \prod_{i \in A} p_i^{\alpha^1_{A,i}} - \sum_{B \subseteq \mathscr{C}^2} d_B \prod_{i \in B} p_i^{\alpha^2_{B,i}}$$

$$S^1 \succ_{DC} S^2$$
 iff $\underline{R}^{1-2} > 0, \forall p_i \in [p_i, \overline{p_i}]$

With DC method, S^1 and S^2 may be comparable but R^{1-2} needs more computations.

Numerical example with DC method

System 1

System 2

$$R^{1} = p_{1} \cdot p_{2}, \quad R^{2} = p_{1} \cdot p_{2} \cdot p_{3}$$

$$R^{1-2} = p_{1} \cdot p_{2} \cdot (1-p_{3})$$

$$\underline{R}^{1-2} = \inf_{\substack{p_{1} \in [0.7, 0.9], \\ p_{2} \in [0.8, 1], \\ p_{3} \in [0.8, 0.9]}} p_{1} \cdot p_{2} \cdot (1-p_{3}) = 0.7 \cdot 0.8 \cdot 0.1 = 0.056 > 0$$

$S^1 \succ_{DC} S^2$, but $S^1 \not\succeq_{IC} S^2$!

- Introduction
 - Problem
 - o System reliability
- Comparison methods
 - o Interval Comparison
 - o Difference Comparison
- Proposition
- Conclusion and future work

Proposition 1

If $S^1 >_{IC} S^2$, then $S^1 >_{DC} S^2$.

DC is

- more precise than IC, and still gives guarantees
- potentially much more complex to compute
- \Rightarrow when does it remain easy?

Proposition 2

If S^1 and S^2 have distinct component types, then R^{1-2} is globally monotonic, and

$$\underline{\mathbf{R}}^1 - \overline{\mathbf{R}}^2 = \underline{\mathbf{R}}^{1-2}.$$

If *j* first types in S^1 , n-j last in S^2 , then

$$\underline{R}^{1-2} = R^1(\underline{p_1},\ldots,p_j) - R^2(\overline{p}_{j+1},\ldots,\overline{p}_n).$$

In this particular case, *DC* and *IC* coincide.

Example

 $R^{1} - R^{2} = p_{1} \cdot p_{2} - p_{3} \cdot p_{4} \in [\underline{p_{1}} \cdot \underline{p_{2}} - \overline{p_{3}} \cdot \overline{p_{4}}, \overline{p_{1}} \cdot \overline{p_{2}} - \underline{p_{3}} \cdot \underline{p_{4}}]$

Proposition 3

If a component C_j is

- present in both systems S^1 and S^2 but
- at most once in each of them

then

•
$$\underline{R}^{1-2}$$
 reached for $p_j \in \{\underline{p}_i, \overline{p}_j\}$

If k components C_1, \ldots, C_k like that, \underline{R}^{1-2} reached on vertices

$$\times_{j=1}^{k} \{\underline{p}_{j}, \overline{p}_{j}\}$$

Exponential, but still finite set of values to check (doable if k small)

Example

$$R^{1} - R^{2} = p_{1} \cdot p_{2} - p_{3} \cdot p_{2} = p_{2} \cdot (p_{1} - p_{3})$$

• if
$$p_1 = 0.8, p_3 = 0.7, p_2 \in [0.7, 0.9]$$

 $\underline{R}^{1-2} = \underline{\mathbf{p}}_2 \cdot (p_1 - p_3)$
• if $p_1 = 0.8, p_3 = 0.9, p_2 \in [0.7, 0.9]$
 $\underline{R}^{1-2} = \overline{\mathbf{p}}_2 \cdot (p_1 - p_3)$

Proposition 4

If some components appear

- in both systems S^1 and S^2
- more than once in at least one of them

then R^{1-2} is in general a non-monotonic polynomial, and finding \underline{R}^{1-2} is a NP-hard problem.

Example

System 1

System 2

$$R^1 - R^2 = p_1^2 - p_1$$

• if $p_1 \in [0.4, 0.6]$ we have

$$\underline{R}^{1-2} = -0.25$$

obtained for $p_1 = 0.5$ (not one bound)

- Introduction
 - Problem
 - o System reliability
- Comparison methods
 - o Interval Comparison
 - o Difference Comparison
- Proposition
- Conclusion and future work

Conclusions and future works

Conclusions

- 1. Two methods (*IC/DC*) to get guaranteed comparisons of system reliabilities
- 2. IC method easy to compute, but conservative,
- 3. DC less conservative, but computationally complex in some cases

Perspectives

- 1. Using approximated bounds to get \underline{R}^{1-2}
- 2. if S^1 and S^2 incomparable, which information to make them comparable?
- 3. Consider other comparison rules (E-admissibility)

Thanks for your attention !