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Miķelis Bickis
with Naeima Ashleik

University of Saskatchewan

Workshop on Principles and Methods of Statistical Inference with Interval Probabilities
Durham, UK

6 September 2016

Research supported by

Bickis U of S

Imprecise Inference for 2 × 2 Tables



One can parametrize the multinomial distribution for a 2 × 2 table
with cell probabilities

p00 p01
p10 p11

.

Likelihood arguments can be based on the idea of a single
multinomial observation yij which indicates which of the four cells
is observed. The likelihood for n independent observations would
be just the product of the likelihoods of the observations, which
would be of the same form.
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Does it make sense to talk about (classical) independence using
imprecise probabilities?

Bickis U of S

Imprecise Inference for 2 × 2 Tables



00
10

Column effect

10
00

Interaction

00
01

Row effect

01
00

Bickis U of S

Imprecise Inference for 2 × 2 Tables



00
10

Column effect

10
00

log-odds ratio = 0

Interaction

00
01

Row effect

01
00

Bickis U of S

Imprecise Inference for 2 × 2 Tables



00
10

Column effect

10
00

log-odds ratio = 4

Interaction

00
01

Row effect

01
00

Bickis U of S

Imprecise Inference for 2 × 2 Tables



00
10

Column effect

10
00

log-odds ratio = -6:2:6

Interaction

00
01

Row effect

01
00

Bickis U of S

Imprecise Inference for 2 × 2 Tables



What can be said about the geometry of the various kinds of
independence/irrelevance properties in the theory of imprecise
probability?
Epistemic irrelance, epistemic independence, strong independence
etc.?
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Let us now reparametrize to:

θ1 = log

√
p10p11
p00p01

(1)

θ2 = log

√
p01p11
p00p10

(2)

θ3 = log

√
p00p11
p01p10

. (3)

Note that 2θ3 is the log odds ratio which is zero in the case of
independence.
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The inverse transformation then becomes:

1

1 + eθ1−θ3 + eθ2−θ3 + eθ1+θ2

eθ2−θ3

1 + eθ1−θ3 + eθ2−θ3 + eθ1+θ2

eθ1−θ3

1 + eθ1−θ3 + eθ2−θ3 + eθ1+θ2

eθ1+θ2

1 + eθ1−θ3 + eθ2−θ3 + eθ1+θ2
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Denote the observations of the table as:

y00 y01
y10 y11

.

With a single observation, only one of the cell entries would be 1,
the others being zeros.
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Let’s centre the observations with the new variables:

`1 = y10 + y11 − 1
2 (4)

`2 = y01 + y11 − 1
2 (5)

`3 = y00 + y11 − 1
2 , (6)

from which it follows that

y00 y01

y10 y11
=

1
4

1
4

1
4

1
4

+
−1

2`1 −
1
2`2 + 1

2`3 −1
2`1 + 1

2`2 −
1
2`3

1
2`1 −

1
2`2 −

1
2`3

1
2`1 + 1

2`2 + 1
2`3

.
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Thus the `j variables quantify the deviation of the observation
from the uniform expected value of 1

4 in all cells.
Now, we can write

log pij = `1θ1 + `2θ2 + `3θ3 − φ(θ), i , j = 1, 2, (7)

where

φ(θ) = −1
4 log

∏
ij

pij (8)

= log
(

1 + eθ1−θ3 + eθ2−θ3 + eθ1+θ2
)
− 1

2(θ1 + θ2 − θ3). (9)
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Now, from (7) we can see that the distributions of the 2 × 2 table
form an exponential family, with the θ’s being canonical
parameters and the `’s being minimal sufficient statistics. Note
that 2θ3 is in fact the log-odds ratio.
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Now, if we put a Dirichlet prior on the pij ’s, this will induce a prior
on the the θj ’s, and indeed it will be conjugate (in the sense of
Diaconis and Ylvisaker).
An imprecise Dirichlet prior will similarly induce an imprecise prior
on the θj ’s. We might be particularly interested in upper and lower
posterior expectations of the θ3, which is half the log odds ratio.
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If the Dirichlet prior is parametrized in the usual fashion in terms
of a concentration parameter s, and marginal expectations tij , then
the posterior expectation of the log odds ratio can be expressed as

ψ(y00 + st00) − ψ(y01 + st01) − ψ(y10 + st10) + psi(y11 + st11)

where ψ is the digamma function

ψ(x) =
d

dx
log

∫ ∞
0

ux−1e−u du.

By evaluating this expression for tij over the simplex, one can find
upper and lower posterior expectations.
Will these occur at the extreme points of the simplex?
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Suppose now that we put a multivariate normal prior on the θ’s?
What can we say about the posterior distribution? In particular,
what can we say about the posterior marginal distribution of θ3?
Can we put an imprecise prior on the θ’s such that we have prior
ignorance on θ3 but allowing learning from data?
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What can we say about convexity of sets of posterior distributions?

I A one-dimensional exponential family is stochastically
monontone.

I This means that the posterior CDF’s corresponding to sets in
an interval of hyperparameters will be bracketed by the CDF’s
at the end points.

I Thus the extreme points of the hyperparameter set will define
a P-box.

I This cannot be automatically generalized to multidimensional
families because the one-dimensional marginals of an
exponential family do not necessarily form an exponential
family.
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I Under what conditions will extreme points of hyperparmeter
sets define extreme points (in the sense of stochastic ordering)
of posterior distributions?

I Are there problems of interpretation when this is not the case?

I Is this the case for posterior distributions of log-odds ratio?
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