Algebraic Geometry III/IV

Problems, set 3.

Exercise 5. (Zariski Topology) Let (X, \mathcal{T}) be a topological space. A subset $A \subset X$ is called a *closed subset* iff its complement $A^c = X \setminus A$ is open, i.e.,

$$A \text{ closed} \Leftrightarrow A^c \in \mathcal{T}.$$

Let \mathcal{C} be the collection of all closed subsets of X. Obviously, a set X can also be made to a topological space by specifying all its closed sets, i.e., by giving \mathcal{C} . Check first that the conditions on the open sets then translate into

- (a) $\emptyset, X \in \mathcal{C}$.
- (b) If A_1, \ldots, A_k are finitely many closed sets (i.e., $A_j \in \mathcal{C}$ for $1 \leq j \leq k$) then we also have $\bigcup_{j=1}^k A_j \in \mathcal{C}$.
- (c) If $(A_{\alpha})_{\alpha \in I}$ is an arbitrary (finite or infinite) collection of closed sets (i.e., $A_{\alpha} \in \mathcal{C}$ for all $\alpha \in I$) then we also have $\bigcap_{\alpha \in I} A_{\alpha} \in \mathcal{C}$.

Now we introduce algebraic subsets of \mathbb{C}^2 . Let $f(x,y) \in \mathbb{C}[x,y]$ be a polynomial. The subset of points $(a,b) \in \mathbb{C}^2$ with f(a,b) = 0 is denoted by V_f ("variety of F"). A subset $A \subset \mathbb{C}^2$ is called an algebraic set, if there are finitely many polynomials f_1, \ldots, f_k (k = 0 is allowed) such that $A = V_{f_1} \cap \cdots \cap V_{f_k}$. In the Zariski topology of \mathbb{C}^2 , the closed subsets are precisely the algebraic sets. Show that the Zariski topology makes indeed \mathbb{C}^2 a topological space. You may use the following fact without proof: Every ideal $I \subset \mathbb{C}[x,y]$ is finitely generated, i.e., there are finitely many polynomials $f_1,\ldots,f_k \in \mathbb{C}[x,y]$ such that

$$I = \{ \sum_{i=1}^{k} f_i g_i \mid g_i \in \mathbb{C}[x, y] \}.$$

(This is an application of Hilbert's Basis Theorem.) Finally show that every open set $U \subset \mathbb{C}^2$ in the Zariski topology is also open in the usual Euclidean topology of \mathbb{C}^2 . You may use the fact that if \mathbb{C}, \mathbb{C}^2 carry the usual Euclidean topology, then every polynomial $f(x,y) \in \mathbb{C}[x,y]$ defines a continuous function $f: \mathbb{C}^2 \to \mathbb{C}$.