Algebraic Geometry III/IV

Problems, set 6. To be handed in on Wednesday, 5 March 2014, in the lecture.

Exercise 9. This exercise is devoted to the derivation of the Weierstraß normal form of a cubic. Let $C \subset \mathbb{P}^2_{\mathbb{C}}$ be a non-singular cubic defined by the polynomial $F \in \mathbb{C}[X,Y,Z]$. We start as in last term's lectures (when we transformed C into C_F with $F(X,Y,Z) = Y^2Z - X(X-Z)(X-\lambda Z)$ with $\lambda \in \mathbb{C}\setminus\{0,1\}$), and can assume that, after a suitable projective transformation, $P = [0,1,0] \in C_F$ is a flex and that Z = 0 is a tangent line to C_F at [0,1,0]. Analogously as in last term's lectures, this implies that F(X,Y,Z) has the form

$$F(X, Y, Z) = (\alpha X + \beta Y + \gamma Z)YZ + G(X, Z),$$

where G(X, Z) is homogeneous of degree 3 and $\beta \neq 0$. Moreover, G(X, Z) must contain a non-zero term aX^3 for, otherwise, Z would be factor of F(X, Y, Z) and C_F would be reducible and, therefore, singular. You don't need to prove this first step again. Therefore, we can start with the form

$$F(X,Y,Z) = aX^{3} + bX^{2}Z + cXYZ + dXZ^{2} + eY^{2}Z + fYZ^{2} + gZ^{3},$$

with $a \neq 0$ and $e \neq 0$.

(a) Show that the substitution of Y by $Y - \frac{c}{2e}X - \frac{f}{2e}Z$ implies vanishing of the coefficients of XYZ and YZ^2 , and that no new non-zero terms are generated. So, another projective transformation yields

$$F(X,Y,Z) = a'X^3 + b'X^2Z + d'XZ^2 + e'Y^2Z + gZ^3,$$

still with $a', e' \neq 0$.

(b) Show that substitution of X by $X - \frac{b'}{3a'}Z$ yields the equation

$$F(X,Y,Z) = a''X^3 + d''XZ^2 + e''Y^2Z + g''Z^3,$$

still with $a'', e'' \neq 0$.

(c) Argue, why we can, after another projective transformation, obtain the final equation

$$Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3, (1)$$

for the cubic C.

(d) Show that (1) defines a non-singular cubic if and only if $g_2^3 - 27g_3^2 \neq 0$.

Additional remarks to this exercise: The function $j = \frac{g_2^3}{g_2^3 - 27g_3^2}$ turns out to be a projective invariant of the Weierstraß normal form. Two normal forms $Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3$ of non-singular cubics are projectively equivalent if and only if the corresponding values of j coincide. In particular, there are uncountably many projectively non-equivalent non-singular cubics. The final classification of all cubics (non-singular and singular) looks as follows:

- (i) Every non-singular cubic is projectively equivalent to a curve of the type $Y^2Z = 4X^3 g_2XZ^2 g_3Z^3$.
- (ii) Every irreducible singular cubic is projectively equivalent to the curve $X^3 + Y^3 XYZ = 0$ (cubic with a nodal singularity) or to the curve $X^3 Y^2Z = 0$ (cubic with a cuspidal singularity).
- (iii) Every reducible cubic C is either a conic plus a chord, a conic plus a tangent line, or C consists of three lines L_1, L_2, L which meet in three different points (triangle), in one common point (triple point), or two or three of the lines L_j coincide.