Algebraic Geometry III/IV

Solutions, set 7.

Exercise 10.

(a) Let $f(x,y) = x^2 - x^4 - y^4$. We have

$$f_x(x,y) = 2x(1-\sqrt{2}x)(1+\sqrt{2}x),$$

 $f_y(x,y) = -4y^3.$

The condition $f_y(x,y) = 0$ implies y = 0 and, because of $f(x,0) = x^2(1-x)(1+x)$, we see that $f(x,y) = f_x(x,y) = f_y(x,y) = 0$ has the only solution (x,y) = (0,0). Next we calculate the tangent lines of C_f at (0,0). We have

$$f(x,y) = f_2(x,y) + f_4(x,y),$$

with $f_2(x, y) = x^2$ and $f_4(x, y) = -x^4 - y^4$. Therefore, we have a double tangent line given by x = 0. So we need to consider the blow-up in U_1 . We set $(x, y) = (x_1y_1, y_1)$ and obtain

$$f(x_1y_1, y_1) = y_1^2(x_1^2 - x_1^4y_1^2 - y_1^2),$$

so the strict transform of f in U_1 is

$$f^{(1)}(x_1, y_1) = x_1^2 - x_1^4 y_1^2 - y_1^2.$$

We now have

$$f_{x_1}^{(1)}(x_1, y_1) = 2x_1(1 - 2x_1^2y_1^2),$$

$$f_{y_1}^{(1)}(x_1, y_1) = -2y_1(x_1^4 + 1).$$

The preimages of (x, y) = (0, 0) under the strict transform are given by $y_1 = y = 0$ and $f^{(1)}(x_1, 0) = x_1^2 = 0$, i.e., only $(x_1, y_1) = (0, 0)$, which

is still a singular point of $C_{f^{(1)}}$. Next we calculate the tangent lines of $C_{f^{(1)}}$ at (0,0). We have

$$f^{(1)}(x_1, y_1) = f_2^{(1)}(x_1, y_1) + f_6^{(1)}(x_1, y_1)$$

with $f_2^{(1)}(x_1, y_1) = (x_1 - y_1)(x_1 + y_1)$ and $f_6^{(1)}(x_1, y_1) = -x_1^4 y_1^2$. Therefore, we have the two tangent lines $x_1 = y_1$ and $x_1 = -y_1$. So we can consider the next blow-up in U_0 . We set $(x_1, y_1) = (x_2, x_2 y_2)$ and obtain

$$f^{(1)}(x_2, x_2y_2) = x_2^2(1 - x_2^4y_2^2 - y_2^2),$$

so the strict transform of $f^{(1)}$ in U_0 is

$$f^{(2)}(x_2, y_2) = 1 - x_2^4 y_2^2 - y_2^2.$$

The preimages of $(x_1, y_1) = (0, 0)$ under the strict transform are given by $x_2 = x_1 = 0$ and $f^{(2)}(0, y_2) = 1 - y_2^2 = 0$, i.e., $(x_2, y_2) = (0, \pm 1)$. We now have

$$f_{x_2}^{(2)}(x_2, y_2) = -4x_2^3 y_2^2,$$

$$f_{y_2}^{(2)}(x_2, y_2) = -2y_2(x_2^4 + 1).$$

Since $f_{y_2}^{(2)}(0,\pm 1) = \mp 2 \neq 0$, all singularities are now resolved and the blow-up process stops.

(b) Let $g(x, y) = y^3 - x^5$. We have

$$g_x(x,y) = -5x^4,$$

$$g_y(x,y) = 3y^2,$$

so $g_x(x,y) = g_y(x,y) = 0$ implies that (x,y) = (0,0). Therefore, the only singularity of C_g is (0,0). The tangent lines of C_g at (0,0) are y=0 (trice) and we can consider the blow-up in U_0 . We set $(x,y) = (x_1,x_1y_1)$ and obtain

$$g(x_1, x_1y_1) = x_1^3(y_1^3 - x_1^2),$$

i.e., the strict transform of g in U_0 is

$$g^{(1)}(x_1, y_1) = y_1^3 - x_1^2.$$

The preimages of (x, y) = (0, 0) under the strict transform are given by $x_1 = x = 0$ and $g^{(1)}(0, y_1) = y_1^3 = 0$, i.e., $(x_1, y_1) = (0, 0)$. Since

$$g_{x_1}^{(1)}(x_1, y_1) = -2x_1,$$

$$g_{y_1}^{(1)}(x_1, y_1) = -3y_1^2,$$

the point (0,0) is still a singularity of $C_{g^{(1)}}$. The tangent lines of $C_{g^{(1)}}$ at (0,0) are x=0 (twice) and we need to carry out the blow-up in U_1 . We set $(x_1,y_1)=(x_2y_2,y_2)$ and obtain

$$g^{(1)}(x_2y_2, y_2) = y_2^2(y_2 - x_2^2).$$

The strict transform of $g^{(1)}$ in U_1 is therefore

$$g^{(2)}(x_2, y_2) = y_2 - x_2^2.$$

The preimages of $(x_1, y_1) = (0, 0)$ under the strict transform are given by $y_2 = y_1 = 0$ and $g^{(2)}(x_2, 0) = -x_2^2 = 0$, i.e., $(x_2, y_2) = (0, 0)$. Since $g_{y_2}^{(2)}(x_2, y_2) = 1 \neq 0$, all singularities are resolved and the blow-up process stops.