Do Exercises 2 and 4 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time. Try also to do Exercise 5, even though this exercise will not be marked. Have a look at all solutions when you receive the solution sheet the following week.

- 1. This is a little warmup exercise about exterior derivatives, wedge products and pullbacks.
 - (a) Let ω_1 and ω_2 be two differential forms on $U \subset \mathbb{R}^n$. Assume that ω_1 is closed and ω_2 is exact. Show that $\omega_1 \wedge \omega_2$ is exact.
 - (b) Let $U = \mathbb{R}^2 \times (0, \infty)$ and $\varphi : U \to U$,

$$\varphi(x_1, x_2, x_3) = (y_1, y_2, y_3) = (e^{x_3}x_1, e^{-x_3}x_2, x_3^2).$$

Let $\omega = y_1^2 y_2 dy_1 \wedge dy_3 \in \Omega^2(U)$. Calculate $d\omega$ and $\varphi^*(d\omega)$. Then calculate $\varphi^*(\omega)$ and $d\varphi^*(\omega)$. (If you didn't make a mistake, you should have $\varphi^*(d\omega) = d\varphi^*(\omega)$.)

2. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(x_1, x_2, x_3) = (y_1, y_2, y_3) = (x_1 \cos x_2, x_1 \sin x_2, x_3).$$

- (a) Calculate the pullback $\omega = f^*(y_3 dy_1 \wedge dy_2 \wedge dy_3)$.
- (b) Calculate $\int_{(1,2)\times(0,2\pi)\times(0,1)} \omega$.
- 3. Prove the Transformation Rule in the following special case: Let $U = \times_{i=1}^{n}(a_i,b_i)$ and $V = \times_{i=1}^{n}(c_i,d_i)$ and $\varphi: U \to V$ a diffeomorphism of the form

$$\varphi(x_1,\ldots,x_n)=(\varphi_1(x_1),\ldots,\varphi_n(x_n)).$$

Let $f:V\to\mathbb{R}$ be a bounded integrable function. Using Fubini and the one-dimensional Substitution Rule for integrals, show that

$$\int_{V} f(y)dy = \int_{U} f \circ \varphi(x) |\det D\varphi(x)| dx.$$

- 4. Let $A_1, A_2, ...$ be a countable sequence of set of measure zero in \mathbb{R}^n . Show that the union $\bigcup_{i=1}^{\infty} A_i$ is, again, a set of measure zero. Carefully justify all your arguments. In particular, when giving a covering of the union, explain in detail why the sets in this covering are countably many.
- 5. Let $\omega = \frac{dx \wedge dy}{y^2}$ be the volume form of the hyperbolic upper half plane \mathbb{H}^2 . Check the following facts:

- (a) Let $f: \mathbb{H}^2 \to \mathbb{H}^2$, f(z) = z + b, $b \in \mathbb{R}$. Show that $f^*\omega = \omega$.
- (b) Let $g: \mathbb{H}^2 \to \mathbb{H}^2$, g(z) = az, a > 0. Show that $g^*\omega = \omega$.
- (c) Let $h: \mathbb{H}^2 \to \mathbb{H}^2$, h(z) = 1/z. Show that $h^*\omega = \omega$.

Since the maps f,g,h generate the Möbius transforms $k:\mathbb{H}^2\to\mathbb{H}^2$, $k(z)=\frac{az+b}{cz+d}$ with $a,b,c,d\in\mathbb{R}$ and ad-bc=1, we conclude from the above calculations that the Möbius transforms preserve the volume form ω of the hyperbolic upper half plane, i.e., the ω -volume (= hyperbolic area) of a set is preserved under Möbius transforms.

Hint: Write the functions f, g, h first as maps $\mathbb{R} \times (0, \infty) \to \mathbb{R} \times (0, \infty)$, before you start your calculations.