
Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 5 7.11.2011

Do Exercise 3 as homework for this week. Exercises 1 and 2 should be
relatively easy, but instructive.

Your homework for this week and the cumulative homework over the previ-
ous weeks, i.e.,

• Exercise 2, Sheet 1

• Exercise 2, Sheet 3

• Exercise 3, Sheet 5

will be collected on Monday, 14 November, after the lecture. Do not submit
any other homework questions, but check your solutions against the weekly
distributed solution sheets.

1. (Easy Warmup) Let (M,d) be a complete metric space and xn ∈ M a
sequence satisfying d(xn, xn+1) ≤

1

n2 . Show that xn is convergent.

2. Consider the function

f(x, y) =

{

xy
x2+y2 if (x, y) 6= 0,

0 if (x, y) = 0.

Show that f is discontinuous at (x, y) = 0 (consider the behaviour of
the function along different straight lines through the origin) but, at the
same time, that f has globally well defined first partial derivatives. Can
these partial derivatives be continuous?

3. Let I ⊂ R be an open interval and F : R × I → R be continuous and
Lipschitz continuous in the first variable, i.e., there exists L > 0 such
that

|F (x1, t) − F (x2, t)| ≤ L|x1 − x2| for all x1, x2 ∈ R and all t ∈ I.

Let t0 ∈ I and x0 ∈ R and, for ǫ > 0, let Iǫ := [t0 − ǫ, t0 + ǫ]. Show that,
for ǫ > 0 small enough, the map

T : C(Iǫ) → C(Iǫ),

defined by

Tf(t) := x0 +

∫ t

t0

F (f(s), s) ds

is a contraction in the complete metric space C(Iǫ) with metric d∞(f, g) =
‖f − g‖∞.



4. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed vector spaces and T : V → W
be a linear map. Prove that the following properties are equivalent:

(i) T is a bounded linear operator.

(ii) T is continuous at v = 0 ∈ V .

(iii) T is a continuous map everywhere.

5. For p ≥ 1 let lp(C) = {x = (xn) |
∑∞

n=1
|xn|

p < ∞}. Note that this is a
vector space since for and x, y ≥ 0, we have

(x + y)p ≤ (x + x)p + (y + y)p = 2n(xn + yn).

We define a norm ‖ · ‖p on lp(C) as follows:

‖x‖p =

(

∞
∑

n=1

|xn|
p

)1/p

.

Our aim is to prove that this norm satisfies the triangle inequality for
p > 1. You may use without proof that, for p, q > 1 with 1

p + 1

q = 1 and
for x, y ≥ 0, we have

x1/py1/q ≤
x

p
+

y

q
. (1)

(This follows from ln′′(x) = −1/x2 < 0 and is an application of the
concavity of the logarithm function.)

(i) Let p, q > 1 and 1

p + 1

q = 1. Let x = (xn) ∈ lp(C) and y = (yn) ∈
lq(C). Show Hölder’s Inequality, i.e.,

∞
∑

n=1

|xnyn| ≤ ‖x‖p‖y‖q .

Hint: Define ξn = |xn|p

‖x‖p

p

and ηn = |yn|q

‖y‖q

q

and apply (1) to ξn and ηn.

(ii) Let p > 1 and x = (xn),y = (yn) ∈ lp(C). Let q > 1 such that
1

p + 1

q = 1. Let z = (zn) with zn = |xn + yn|
p−1. Show that

z ∈ lq(C).

(iii) Derive

‖x + y‖p
p ≤

∑

|xn| · |zn| +
∑

|yn| · |zn|,

and apply Hölder’s inequality to the terms on the right hand side
to obtain Minkowski’s Inequality, namely,

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Remark: Note that Minkowski’s Inequality is just the triangle in-
equality in the normed vector space lp(C). Moreover, Hölder’s In-
equality in the special case p = q = 2 is just Cauchy-Schwarz. We
already saw in the lectures that Cauchy-Schwarz implies the triangle
inequality.


