Do Exercise 3 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time. Try to do at least one of the other exercises as well for your own benefit. All of them are very useful. Have a look at all solutions when you receive the solution sheet the following week.

In the Exercises below there appears one important concept, which will be introduced properly a bit later in the lectures for general differential forms (not only 1-forms): "A differential form ω is closed if $d\omega = 0$." For our purposes it suffices to use th following description of closedness: Let $U \subset \mathbb{R}^n$ be open. A 1-form $\omega = \sum_{j=1}^n f_j dx_j \in \Omega^1(U)$ is closed if and only if we have

$$\frac{\partial f_j}{\partial x_k} = \frac{\partial f_k}{\partial x_j}$$
 for all $j, k \in \{1, \dots, n\}$.

Use this characterisation whenever a 1-form is said to be "closed" in the exercises below.

1. Let $\omega = 2xy^3 dx + 3x^2y^2 dy \in \Omega^1(\mathbb{R}^2)$. Show that ω is exact, i.e., there exists $f \in C^{\infty}(\mathbb{R}^2)$ with $\omega = df$. Calculate

$$\int_{c} \omega$$
,

where c is the arc of the parabola $y = x^2$ from (0,0) to (x,y).

- 2. This exercise tells us that every exact differential form is closed, but not every closed differential form is exact.
 - (a) Let $U \subset \mathbb{R}^n$ be open. Show that every exact differential form $\omega \in \Omega^1(U)$ is closed.
 - (b) Let $\omega_0 \in \Omega^1(\mathbb{R}^2 0)$ be defined as

$$\omega_0 = -\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy.$$

We showed in the lectures that ω_0 cannot be exact, since $\int_c \omega_0 \neq 0$ for certain closed curves (cf. Proposition 5.13 and Example thereafter). Check that ω_0 is closed.

3. A function $f: \mathbb{R}^3 \to \mathbb{R}$ is said to be homogeneous of degree k if $f(sx, sy, sz) = s^k f(x, y, z)$ for all s > 0 and $(x, y, z) \in \mathbb{R}^3$. Prove the following facts:

(a) If f is differentiable and homogeneous of degree k, then we have Euler's relation:

$$x\frac{\partial f}{\partial x}(x,y,z) + y\frac{\partial f}{\partial y}(x,y,z) + z\frac{\partial f}{\partial z}(x,y,z) = kf(x,y,z).$$

Hint: Differentiate f(sx, sy, sz) in s and use the chain rule.

(b) If the differential form

$$\mu = u \, dx + v \, dy + w \, dz \in \Omega^1(\mathbb{R}^3)$$

is such that the coefficient functions u, v, w are homogeneous of degree k and μ is closed, then we have $\mu = df$ with

$$f = \frac{xu + yv + zw}{k+1} \in C^{\infty}(\mathbb{R}^2).$$

4. Let $U = \mathbb{R}^n - 0$ and $\omega \in \Omega^1(U)$ be defined by

$$\omega = \frac{1}{\|x\|_2^2} \sum_{i=1}^n x_i \, dx_i,$$

where $\|\cdot\|_2$ denotes the Euclidean norm. Show that ω is exact. Now fix n=3. Let k be an integer and $c:[0,2k\pi]\to\mathbb{R}^3$ be the helix $c(t)=(\cos t,\sin t,t)$. Calculate $\int_c \omega$.

5. Let $c:[0,1] \to U = \mathbb{R}^2 - 0$ be a smooth closed curve, i.e., c(1) = c(0) and $c(t) = r(t)(\cos\alpha(t), \sin\alpha(t))$ be its polar coordinate description with smooth functions $r:[0,1] \to (0,\infty)$ and $\alpha:[0,1] \to \mathbb{R}$. Since c is closed, the angle difference $\alpha(1) - \alpha(0)$ must be an integer multiple of 2π , i.e., $\alpha(1) - \alpha(0) = n(c)2\pi$, and the integer n(c) describes how many times the curve c surrounds the origin counterclockwise. n(c) is called the winding number of c. Let $\omega_0 \in \Omega^1(U)$ be the 1-form

$$\omega_0 = -\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy.$$

Show that we have

$$n(c) = \frac{1}{2\pi} \int_c \omega_0.$$

Remark: In Complex Analysis, the *winding number* of a closed curve $c:[0,1]\to\mathbb{C}-0$ is defined as

$$n(c) = \frac{1}{2\pi i} \int_c \frac{1}{z} dz.$$

This exercise presents an analogue in the context of differential forms.