Analysis ITI/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 12 25.1.2012

1. (a) Let w = Y1, fidz;. Then we have c¢*dx; = ¢(t)dt and c*fw =
S (fioe)didt. This implies that
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where the last equation is just the definition of the integration of a
one-form over the 1-dimensional rectangle I = [a,b] C R.

(b) We have
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2. We first check Lipschitz continuity:
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This implies that F : R? x (=T,T) — R? is Lipschitz continuous with
L = T. The Picard-Lindelof iterations are
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An educated guess of the solution would be
_ (sin(t?/2)
z(t) = <cos(t2/2) ’
and one easily checks
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(a) We have A= = 0 —1 >, and so A*F = 0 (—1)k
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Therefore we get
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(b) Note that

(B7'AB) = (B 'AB)(B7!AB)---(B7'AB) = B 'A*B

and therefore
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(a) Assume |f(z) — f(y)| < L-|x —y| for all z,y € I with I C R non-
negative and closed and 0 € I and f(0) = 0. Then in particular
flx) < L-xzforxel Soifxel, weget
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but the last line can be violated by choosing 0 < x < % Therefore
f does not satisfy a Lipschitz condition near 0.

(b) Choose g(x) = |z|, then g is not differentiable at z = 0, but
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l9(x) —gW)| = [lzl=1lyl| < |z—yl

so g satisfies a Lipschitz condition with L = 1.



