1. We have to check the norm axioms. Firstly, ||x|| = 0 is equivalent to $||x||_1 = 0$ and $||x||_2 = 0$, which is true iff x = 0. Secondly,

$$||\lambda x|| = \alpha |\lambda| ||x||_1 + \beta |\lambda| ||x||_2$$

= $|\lambda| (\alpha ||x||_1 + \beta ||x||_2) = |\lambda| ||x||.$

Finally,

$$||x + y|| \le \alpha(||x||_1 + ||y||_1) + \beta(||x||_2 + ||y||_2)$$

= $(\alpha ||x||_1 + \beta ||x||_2) + (\alpha ||y||_1 + \beta ||y||_2) = ||x|| + ||y||.$

For the concrete norm we have the equivalences

$$||x|| \le 1 \Leftrightarrow \frac{1}{3}(|x_1| + |x_2|) + \frac{2}{3}|x_1| \le 1 \text{ and}$$

$$\frac{1}{3}(|x_1| + |x_2|) + \frac{2}{3}|x_2| \le 1$$

$$\Leftrightarrow 3|x_1| + |x_2| \le 3 \text{ and } |x_1| + 3|x_2| \le 3,$$

so the shape of the unit ball looks as follows (shaded area):

2. Let $A_n := \sum_{k=1}^n a_k$. If A_n is convergent, then it is a Cauchy. This means that for every $\epsilon > 0$ there exists n_0 such that for all $n \ge m \ge n_0$:

$$\nu_p(A_n - A_m) < \epsilon.$$

This shows that, in particular, $\nu_p(a_{m+1}) = \nu_p(A_{m+1} - A_m) < \epsilon$, for all $m \ge n_0$, which means $a_k \to 0$. Conversely, let us assume that $a_k \to 0$. We need to show that A_n is Cauchy. We conclude from the strong triangle inequality that

$$\nu_v(A_n - A_m) = \nu_v(\sum_{k=m+1}^n a_k) \le \max\{\nu_p(a_{m+1}), \nu_p(a_{m+1}), \dots \nu_p(a_n)\}.$$

For every $\epsilon > 0$, there exists n_0 such that $\nu_p(a_n) < \epsilon$ for all $n \ge n_0$. This implies that, for all $n > m \ge n_0$:

$$\nu_v(A_n - A_m) < \epsilon,$$

i.e., A_n is Cauchy.

3. It is easy to see that $\mathcal{B}(V,W)$ is a vector space and that the operator norm is actually a norm on this vector space. We focus on proving that if $T_n \in \mathcal{B}(V,W)$ is a Cauchy sequence, then there exists an operator $T \in \mathcal{B}(V,W)$ such that $T_n \to T$, i.e., $||T_n - T|| \to 0$. We first have to define the limit operator $T: V \to W$. Let $v \in V$. Then $w_n := T_n v \in W$ is a Cauchy sequence because of

$$||w_n - w_m||_W = ||T_n v - T_m v||_W \le ||T_n - T_m|| \cdot ||v||_V$$

and the fact that T_n is a Cauchy sequence. Since $(W, \|\cdot\|_W)$ is a Banach space, $w_n \in W$ must be convergent and we define

$$Tv = \lim_{n \to \infty} w_n = \lim_{n \to \infty} T_n v.$$

This defined the operator T pointwise. Let us first check that T is linear:

$$T(v_1 + v_2) = \lim T_n(v_1 + v_2) = \lim T_n v_1 + T_n v_2$$

= $\lim T_n v_1 + \lim T_n v_2 = Tv_1 + Tv_2$,
 $T(\lambda v) = \lim T_n(\lambda v) = \lim \lambda T_n(v) = \lambda \lim T_n(v) = \lambda Tv$.

Next, we need to show that T is bounded. Since T_n is a Cauchy sequence, T_n is bounded (see Exercise 3 on Sheet 1), i.e., there exists C > 0 such that $||T_n|| \leq C$ for all n. Let $v \in V$ with $||v||_V \leq 1$. Since $T_n v \to T v$ there exists n_0 such that $||Tv - T_{n_0}v||_W < 1$. This implies that

$$||Tv||_W \le ||Tv - T_{n_0}v||_W + ||T_{n_0}v||_W < 1 + ||T_{n_0}|| \cdot ||v||_V \le 1 + C,$$

i.e., $T \in \mathcal{B}(V, W)$. It only remains to show that $T_n \to T$. Let $\epsilon > 0$ be given. Since T_n is a Cauchy sequence, there exists a n_0 such that $||T_n - T_m|| < \epsilon/2$ for all $n, m \ge n_0$. Let $v \in V$ with $||v||_V \le 1$. Since $T_n v \to T v$, there exists $n_0(v)$ such that $||T_n v - T v||_W < \epsilon/2$ for all $n \ge n_0(v)$. We can assume, without loss of generality, that $n_0(v) \ge n_0$. Then we have for all $n \ge n_0$:

$$||Tv - T_n v||_W \le ||Tv - T_{n_0(v)}v||_W + ||T_{n_0(v)}v - T_n v||_W < \epsilon/2 + ||T_{n_0(v)} - T_n|| \cdot ||v||_V < \epsilon/2 + \epsilon/2 \cdot 1 = \epsilon.$$

This shows that $||T - T_n|| < \epsilon$ for all $n \ge n_0$, i.e., $T_n \to T$.

4. (i) Let $f(x) = \frac{1}{e^{cb}}e^{Cx}$. Then $||f||_{\infty} = 1$ and f'(x) = Cf(x). Therefore, we have

$$||Df||_{\infty} = C.$$

Since C > 0 can be arbitrarily, D is unbounded.

(ii) The fastest way to show boundedness of the restricted operator D is to identify $P_k[a,b]$ with the vector space \mathbb{R}^{k+1} via

$$a_k x^k + \dots + a_1 x + a_0 \mapsto (a_k, \dots, a_1, a_0).$$

By this identification, D translates into the linear operator

$$D(a_k,\ldots,a_1,a_0)=(0,ka_k,\ldots,2a_2,a_1),$$

which can be written as a matrix, if required. Since all norms in \mathbb{R}^{k+1} are equivalent and every matrix is a bounded operator with respect to any norm, we conclude that D is bounded on $P_k[a, b]$.

- (iii) Let $f \in C^1[a, b]$ be a non-vanishing constant function. Then $||f||_* = 0$, but $f \neq 0$, a contradiction to the norm axioms.
- (iv) This is not a norm on C[0,1] for similar reasons as in (iii). Choose a non-vanishing continuous function f on [0,1] which vanishes at the k+1 points $\frac{j}{k}$ for $j=0,1,\ldots,k$. Then $\|f\|_{\Delta}=0$ but $f\neq 0$. Such an example does not exist for polynomials of degree $\leq k$. If $p\in P_k[0,1]$ and $\|p\|_{\Delta}=0$, we conclude that p has k+1 distinct zeroes on the real line. Since p is of degree k, it cannot have more than k zeros, unless it is identically zero. This shows $\|p\|_{\Delta}=0 \Leftrightarrow p=0$ in $P_k[0,1]$. The other norm axioms are easily checked.
- (v) The norm axioms are easily checks, only $||f||_{c^1} = 0 \Leftrightarrow f = 0$ needs to be considered. But this follows immediately from $||f||_{\infty} = 0 \Leftrightarrow f = 0$. The boundedness of D is shown as follows: Let $f \in C^1[a, b]$ with $||f||_{C^1} \leq 1$. Then

$$||D(f)||_{\infty} = ||f'||_{\infty} \le ||f||_{C^1} \le 1,$$

i.e., D is bounded.

- (iv) The norm axioms are easily checked, only $||f||_{\diamond} = 0 \Leftrightarrow f = 0$ needs consideration. If $||f||_{\diamond} = 0$ we have f' = 0. Since [a, b] is a connected set, f must be a constant function. Since f(a) = 0, f must vanish everywhere. This shows f = 0. The converse direction is trivial.
- 5. (i) Look at g(x) = f(x) x. Then $g(a) \ge 0$ and $g(b) \le 0$, so there must be $x \in [a, b]$ with g(x) = 0. This implies f(x) = x.
 - (ii) Since |f'(x)| < 1 for all $x \in [a, b]$ and ||f'(x)|| is continuous on [a, b], it attains a maximum M on [a, b] with M < 1. Using the Mean Value Theorem, we obtain

$$||f(x) - f(y)|| \le ||f'(\xi)|| \cdot |x - y| \le M \cdot |x - y|,$$

for some ξ between x and y. This means that $f:[a,b]\to [a,b]$ is a contraction on the complete metric space

$$(M,d) = ([a,b], d(x,y) = |x-y|).$$

The statement of the exercise is then just an application of the Contraction Mapping Principle.

(iii) Choose f(x) = a + b - x. Then f'(x) = -1. Choose, e.g., $x_0 = a$, then we have $x_n = b$ for all odd n and $x_n = a$ for all even n.