Analysis ITI/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 4 31.10.2011

1. We have to check the norm axioms. Firstly, ||z|| = 0 is equivalent to
|lz||1 = 0 and ||z||2 = 0, which is true iff x = 0. Secondly,

Azl = afAlllz]ly + BIAl[[]l2
= [zl + Bllzll2) = [Alll]-

Finally,

lz+yll < allzl +llyl) + B(zll2 + llyll2)
= (allzlly + Bllzll2) + («lylly + Bllyll2) = ll=ll + [lyll-

For the concrete norm we have the equivalences

1 2
§(|$1\ + |z2|) + g\xﬂ <land
1 2
(2] +faal) + Slzaf <1
< 3|xy| + |x2] < 3and |x1| + 3|xs] < 3,

[z <1 <

so the shape of the unit ball looks as follows (shaded area):

2. Let A,, := > _ ai. If A, is convergent, then it is a Cauchy. This means
that for every € > 0 there exists ng such that for all n > m > ng:

vp(Ap — Ap) < e



This shows that, in particular, vp(am41) = Vp(Amy1 — Am) < ¢, for all
m > ng, which means a; — 0. Conversely, let us assume that ap — 0. We
need to show that A, is Cauchy. We conclude from the strong triangle
inequality that
n
vo(An — Ap) = vy D a) < max{vp(amr1), Vp(ams1), - - vplan)}.
k=m+1

For every e > 0, there exists ng such that v,(a,) < € for all n > ng. This
implies that, for all n > m > ng:

Up(Ap — Am) < €,
ie., A, is Cauchy.

. It is easy to see that B(V,W) is a vector space and that the operator
norm is actually a norm on this vector space. We focus on proving that
if T,, € B(V,W) is a Cauchy sequence, then there exists an operator
T € B(V,W) such that T,, — T, i.e., |[T, —T|| — 0. We first have to
define the limit operator T : V — W. Let v € V. Then w,, :=T,v € W
is a Cauchy sequence because of

[wn = wmllw = [|Two = Tovllw < |[Tn = Tn| - [|0llv

and the fact that T, is a Cauchy sequence. Since (W, || - ||w) is a Banach
space, wy, € W must be convergent and we define

Tv = lim w, = lim T,v.
n—oo n—oo

This defined the operator T pointwise. Let us first check that 7" is linear:

T(v1+v2) = UmT,(vy +vy) =limT,v1 + Thv
lim T, vy + lim Ty,ve = Ty 4+ Tvs,
T(h) = limT,(\v) =lmAT,(v) = Alim T, (v) = A\Tv.
Next, we need to show that T is bounded. Since T}, is a Cauchy sequence,
T, is bounded (see Exercise 3 on Sheet 1), i.e., there exists C' > 0 such

that || T,,|| < C for all n. Let v € V with ||v|y < 1. Since T,v — Tw
there exists ng such that ||Tv — Ty, v|jw < 1. This implies that

ITollw < IT0 — Tugollw + [Tagvllw < 1+ [Tugll - 0l < 1+ C,

ie, T € B(V,W). It only remains to show that 7,, — 7. Let ¢ > 0
be given. Since T, is a Cauchy sequence, there exists a ng such that
T — Tl < €/2 for all n,m > ng. Let v € V with |Jv]|yy < 1. Since
T,v — Tw, there exists ng(v) such that ||T,v — Tv|lw < €/2 for all
n > no(v). We can assume, without loss of generality, that no(v) > no.
Then we have for all n > ng:

ITo—Twollw < T0 = Togyllw + [Taogeyv — Tuvllw
< €24 [ Tng) = Tl - vl < €/24¢€/2-1 =€
This shows that || 1" — T,,|| < € for all n > ng, i.e., T, = T.



4.

(i)

Let f(z) = e—ibecx. Then ||f|lo = 1 and f’(z) = C f(x). Therefore,
we have

HD f ||<>o =C.
Since C' > 0 can be arbitrarily, D is unbounded.

The fastest way to show boundedness of the restricted operator D
is to identify Pyla,b] with the vector space R¥*! via

akxk+ et a1+ ag = (akv"'valva())‘
By this identification, D translates into the linear operator
D(ag,...,a1,a0) = (0, kag, ..., 2as,a1),

which can be written as a matrix, if required. Since all norms in
RF*1 are equivalent and every matrix is a bounded operator with
respect to any norm, we conclude that D is bounded on Py[a, b].

Let f € C'[a,b] be a non-vanishing constant function. Then || . =
0, but f # 0, a contradiction to the norm axioms.

This is not a norm on C'[0, 1] for similar reasons as in (iii). Choose a
non-vanishing continuous function f on [0, 1] which vanishes at the
k+1 points £ for j = 0,1,..., k. Then ||f||, = 0 but f # 0. Such an
example does not exist for polynomials of degree < k. If p € P[0, 1]
and [|p||a = 0, we conclude that p has k+1 distinct zeroes on the real
line. Since p is of degree k, it cannot have more than k zeros, unless
it is identically zero. This shows ||p[[s =0 < p =0 in FP,[0,1]. The
other norm axioms are easily checked.

The norm axioms are easily checks, only || f||. = 0 < f = 0 needs
to be considered. But this follows immediately from || f|c = 0 <
f = 0. The boundedness of D is shown as follows: Let f € C'[a, b]
with || f|lc1 < 1. Then

ID(Hllse = 1loe < lIfller <1,

i.e., D is bounded.

The norm axioms are easily checked, only |/ f|lc =0 < f = 0 needs
consideration. If || f||o = 0 we have f’ = 0. Since [a, b] is a connected
set, f must be a constant function. Since f(a) = 0, f must vanish
everywhere. This shows f = 0. The converse direction is trivial.

Look at g(z) = f(z)—x. Then g(a) > 0 and g(b) < 0, so there must
be z € [a,b] with g(x) = 0. This implies f(x) = x.

Since |f/(z)| < 1 for all x € [a,b] and || f'(z)|| is continuous on [a, b],
it attains a maximum M on [a,b] with M < 1. Using the Mean
Value Theorem, we obtain

1f(z) = FWI < 1Ol - |z =yl < M- | =y,



for some & between z and y. This means that f : [a,b] — [a,b] is a
contraction on the complete metric space

(M, d) = ([a,b], d(z,y) = |z —yl).

The statement of the exercise is then just an application of the
Contraction Mapping Principle.

(iii) Choose f(z) = a+b—x. Then f'(z) = —1. Choose, e.g., g = a,
then we have x,, = b for all odd n and x,, = a for all even n.



