
Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 5 7.11.2011

1. (xn) is Cauchy: Note that
∑

∞

j=1
1
j2 = π2

6 < ∞. For every ǫ > 0 there is

n0 such that
∑

∞

j=n0

1
j2 < ǫ and therefore, for n,m ≥ n0, m ≥ n:

d(xn, xm) ≤ d(xn, xn+1)+· · ·+d(xm−1, xm) ≤ summ−1
j=n

1

j2
≤ sum∞

j=n0

1

j2
< ǫ.

Since (M,d) is complete, (xn) is convergent.

2. Choose the ray (x, y) = t(cos θ, sin θ) with t > 0. Then

f(x, y) =
t2 cos θ sin θ

t2
=

1

2
sin(2θ).

Therefore, we can find rays on which f assumes any fixed value between
−1/2 and 1/2. If f were continuous in the origin, the limit of f along all
rays at (x, y) = 0 would have to be 0. Contradiction!

The first partial derivatives are obviously well defined at all points (x, y) 6=
0. Let (x, y) = 0. Then

∂f

∂x
(0, 0) = lim

h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

Similarly, ∂f
∂y (0, 0) = 0. If both partial derivatives would be continuous

at (x, y) = 0, then f would be totally differentiable there and therefore,
also continuous. But we showed that f is not continuous at the origin.

3. Let f, g ∈ C(Iǫ). We have

‖Tf(t) − Tg(t)‖ ≤

∫ t

t0

|F (f(s), s) − F (g(s), s)| ds

≤ L

∫ t

t0

|f(s) − g(s)| ds ≤ L · ǫ · ‖f − g‖∞.

This implies that

d∞(Tf, Tg) = ‖Tf − Tg‖∞ ≤ Lǫ‖f − g‖∞ = Lǫd∞(f, g).

If we choose ǫ < 1/L, we see that T is a contraction.

4. We prove the equivalence by (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (i):

(i) ⇒ (ii): Let T be bounded, i.e., ‖Tv‖W ≤ C‖v‖V for all v ∈ V . Let
vn ∈ V with vn → 0. This means that ‖vn‖V → 0. We conclude that

‖T (vn) − T (0)‖W = ‖T (vn)‖W ≤ C‖vn‖V → 0.



Continuity at v = 0 follows now from Proposition 1.24.

(ii) ⇒ (iii): Let T be continuous at 0. Let vn → v ∈ V . Then vn−v → 0.
We know from the continuity at 0 that T (vn − v) → 0. But this means
that T (vn) − T (v) → 0, or T (vn) → T (v). This is continuity at v, again
by Proposition 1.24.

(iii) ⇒ (i): We prove that the negation of (i) contradicts to the continuity
of T . Let T be unbounded. Then there exists a sequence vn ∈ V with
‖vn‖V ≤ 1 such that ‖T (vn)‖ ≥ n. Let xn = 1

nvn. Then we have
‖xn‖ ≤ 1/n → 0, i.e., xn → 0. If T were continuous at 0, we would have
T (xn) → T (0) = 0, and therefore ‖T (xn)‖W → 0. But

‖T (xn)‖W =
1

n
‖T (vn)‖W ≥ 1.

This is a contradiction.

5. (i) The inequality holds trivially if x = 0 or y = 0. So we assume that
both sequences are not zero. Note that

∑

∞

n=1 ξn = 1 =
∑

∞

n=1 ηn.
Applying (1) to ξn and ηn yields

1

‖x‖p · ‖y‖q

∞
∑

n=1

|xnyn| =
∑

n

ξ1/p
n η1/q

n ≤
∑

n

ξn

p
+

ηn

q
=

1

p
+

1

q
= 1.

(ii) We know that (xn + yn) ∈ lp(C), i.e.,
∑

n |xn + yn|
p < ∞. Since

1
p + 1

q = 1, we conclude that q = p
p−1 and

∑

n

|zn|
q =

∑

n

(|xn + yn|
p−1)

p

p−1 =
∑

n

|xn + yn|
p < ∞,

i.e., z = (zn) ∈ lq(C).

(iii) We have

‖x+y‖p
p =

∑

n

|xn +yn| · |xn +yn|
p−1 ≤

∑

n

|xn| · |zn|+
∑

n

|yn| · |zn|.

Applying Hölder on the right hand side, we obtain

‖x + y‖p
p ≤ (‖x‖p + ‖y‖q) ·

(

∑

n

|xn + yn|
(p−1)q

)1/q

.

Note that (p − 1)q = p and 1/q = (p − 1)/p. Therefore,

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p) · ‖x + y‖p−1

p .

Note that if ‖x + y‖p = 0, Minkowski’s Inequality is trivial. There-
fore, we assume that ‖x + y‖p 6= 0, and we can divide the previous

inequality by ‖x + y‖p−1
p and obtain

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Finally, we provide the solutions for the homeworks:



2. (From Exercise Sheet 1) (a) We only need to check for x0 = 1 − 1/n that

n

2
x0 −

n − 1

2
= 0,

and for x1 = 1 + 1/n that

n

2
x1 −

n − 1

2
= 1.

This is obviously true.

(b) Note that 0 ≤ fn(x) ≤ 1 and, consequently |fn(x) − fm(x)|2 ≤ 1.
Moreover, for n,m ≥ n0, the two functions fn, fm can only differ in
the interval (1 − 1/n0, 1 + 1/n0). We obtain

d(fn, fm)2 = 〈fn − fm, fn − fm〉

=

∫ 1+1/n0

1−1/n0

|fn(x) − fm(x)|2dx ≤
2

n0
→ 0 as n0 → ∞.

This shows that fn is a Cauchy sequence.

It is convincing that the sequence fn, if convergent, would have to have
the limit

f(x) =

{

0 for x ∈ [0, 1)
1 for x ∈ (1, 2]

and the value of f at x = 1 could be anything. But this function would
not be continuous and, therefore, V cannot be complete.

2. (From Exercise Sheet 3) Assume f is not uniformly continuous. Then there
exists an ǫ > 0 such that for every δ there exists a pair x = x(δ) and
y = y(δ) such that d(x, y) < δ and d(f(x), f(y)) ≥ ǫ. Choosing δ = 1/n,
we obtain a sequence xn, yn with d(xn, yn) < 1/n and d(f(xn), f(yn)) ≥ ǫ.
Since M is compact, we can choose a convergent subsequence xnj

→
x0 ∈ M . Since d(xn, yn) < 1/n, we also have ynj

→ x0 ∈ M . Since f
is continuous in x0, there exists a δ0 such that d(f(x0), f(y)) < ǫ/2 for
all y ∈ M with d(x0, y) < δ0. Since both xnj

and ynj
converge to x0,

there must exist a j0 such that d(x0, xnj
) < δ0 and d(x0, ynj

) < δ0 for all
j ≥ j0. This implies, for j ≥ j0,

ǫ ≤ d(f(xnj
), f(ynj

)) ≤ d(f(xnj
), f(x0))+d(f(x0), f(ynj

)) < ǫ/2+ǫ/2 = ǫ,

a contradiction.


