Analysis ITI/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 5 7.11.2011

1. (x,) is Cauchy: Note that Y 72, ]% = %2 < o0. For every € > 0 there is
ng such that Z;’;no ]% < € and therefore, for n,m > ng, m > n:
m—

n

7=y

o0
— < SUM—p— < €.

1 1
d(p, ) < AT, Tp1)+ - +d( @1, ) < suml N — ;

Since (M, d) is complete, (x,) is convergent.
2. Choose the ray (z,y) = t(cosf,sin @) with ¢ > 0. Then

t2cosfsinf® 1 .
— Y —5 sin(26).

fla,y) =
Therefore, we can find rays on which f assumes any fixed value between
—1/2 and 1/2. If f were continuous in the origin, the limit of f along all
rays at (z,y) = 0 would have to be 0. Contradiction!

The first partial derivatives are obviously well defined at all points (x, y) #
0. Let (x,y) = 0. Then

o F(O,h) = f(0,0) . 0-0
gy (00) = finy h = pm = =0

Similarly, 2—5(0,0) = 0. If both partial derivatives would be continuous
at (z,y) = 0, then f would be totally differentiable there and therefore,
also continuous. But we showed that f is not continuous at the origin.

3. Let f,g € C(I.). We have

ITf(t) =Tg@D)] < [F'(f(s),8) = F(g(s), )| ds

to
t
< L[ 1) - o) ds < Loe-[f ~ gl

This implies that

doo(Tf, Tg) = ITf = Tglloo < Lellf = glloc = Ledoo(f, 9)-

If we choose € < 1/L, we see that T is a contraction.

4. We prove the equivalence by (i) = (i7), (#7) = (i), and (i73) = (4):

(1) = (it): Let T be bounded, i.e., ||Tv|lw < Clv|y for all v € V. Let
v, € V with v, — 0. This means that ||v,||y — 0. We conclude that

1T (vn) = T(O)llw = 1T (vn) lw < Cllvnllv — 0.



5.

Continuity at v = 0 follows now from Proposition 1.24.

(#i) = (ii1): Let T be continuous at 0. Let v,, — v € V. Then v, —v — 0.
We know from the continuity at 0 that T'(v, —v) — 0. But this means
that T'(v,) — T'(v) — 0, or T(v,) — T'(v). This is continuity at v, again
by Proposition 1.24.

(791) = (i): We prove that the negation of (7) contradicts to the continuity
of T. Let T be unbounded. Then there exists a sequence v, € V with
|vp|lvy < 1 such that ||T(vy)| > n. Let #, = 1v,. Then we have
|lzn|l <1/n — 0, ie., x, — 0. If T were continuous at 0, we would have
T(xy,) — T(0) =0, and therefore || T(z,)|lw — 0. But

1
1T (@n)llw = — 1T (vn)llw = 1.

This is a contradiction.

(i) The inequality holds trivially if x = 0 or y = 0. So we assume that
both sequences are not zero. Note that Y 2 & =1 =" .
Applying (1) to &, and n,, yields

Sl = S s 8 Bl

(i) We know that (z, + yn) € [,(C), ie., >, |xn + yn|P < co. Since
% + % =1, we conclude that ¢ =

HXHp 1ylly 2=

_pb_
>zl =Dz + gl T =Y Jwn +yal? < o0,
n n n

ie., z = (z,) € [4(C).
(iii) We have
||X+YH§ = Z |~Tn +yn| ’ |~Tn +yn|p_1 < Z ‘xn‘ ’ ‘Zn| +Z |yn‘ ’ ‘Zn|
n n

n

Applying Holder on the right hand side, we obtain

1/q
[x +yl5 < (xllp + llyllg) - (Z |z + ynl(p_l)q> :

n

Note that (p —1)g =p and 1/q = (p — 1)/p. Therefore,

e+ yli5 < (lxllp + llyllp) - I+ vl

Note that if |x + y||, = 0, Minkowski’s Inequality is trivial. There-
fore, we assume that ||x 4+ y||, # 0, and we can divide the previous
inequality by ||x + y||7;_1 and obtain

1%+ yllp < lIxllp + [[yllp-

Finally, we provide the solutions for the homeworks:



2. (From Exercise Sheet 1) (a) We only need to check for zg =1 — 1/n that

n n—1

DU -0

2.1‘() 2 )
and for 1 = 14 1/n that

n n—1

—T] — =1.

271 T T

This is obviously true.

(b) Note that 0 < f,(x) < 1 and, consequently |f,,(z) — fm(2)]* < 1.
Moreover, for n, m > ng, the two functions f,, f,, can only differ in
the interval (1 —1/ng,1 + 1/ng). We obtain

d(fnafm)Z = <fn - fm:fn - fm>

1+1/no 9
- / ) — fn(@)Pdz < 2 =0 as np — oo,
1—1/1’10 n()

This shows that f, is a Cauchy sequence.

It is convincing that the sequence f,, if convergent, would have to have
the limit

B 0 for z€]0,1)
fz) = {1 for € (1,2]

and the value of f at x = 1 could be anything. But this function would
not be continuous and, therefore, V' cannot be complete.

2. (From Exercise Sheet 3) Assume f is not uniformly continuous. Then there
exists an € > 0 such that for every 0 there exists a pair x = z(4) and
y = y(0) such that d(z,y) < § and d(f(z), f(y)) > €. Choosing § = 1/n,
we obtain a sequence z,, y, with d(z,, y,) < 1/n and d(f(x,), f(yn)) > €.
Since M is compact, we can choose a convergent subsequence z,; —
rg € M. Since d(wp,yn) < 1/n, we also have y,, — xo € M. Since f
is continuous in g, there exists a dy such that d(f(zo), f(y)) < €/2 for
all y € M with d(wo,y) < do. Since both w,; and y,,; converge to zo,
there must exist a jo such that d(xo, z,;) < do and d(xo, yn,) < do for all
7 > jo. This implies, for 5 > jo,

€< d(f(xn]’)? f(ynj)) < d(f(xnj)7 f(z0))+d(f (o), f(yn]>) <€/2+€/2=¢,

a contradiction.



