Documentation for graphcurvature.py

David Cushing

George Stagg

April 15, 2016

Abstract

This documentation gives an overview of the file graphcurvature.py.

1 Introduction

Let $G=(V, E)$ be a finite simple graph. For any vector (function) $f: V \rightarrow \mathbb{R}$ and any vertex $x \in V$, the Laplacian Δ is defined via

$$
\begin{equation*}
\Delta f(x):=\frac{1}{\mu(x)} \sum_{y, y \sim x}(f(y)-f(x)) \tag{1.1}
\end{equation*}
$$

where $\mu: V \rightarrow \mathbb{R}$ is a positive measure on V. When $\mu(x)=1$, for any $x \in V$, we call Δ the non-normalized Laplacian. When $\mu(x)=d_{x}:=\sum_{y, y \sim x} 1$, for any $x \in V$, we call Δ the normalized Laplacian.

For any two functions $f, g: V \rightarrow \mathbb{R}$, we define two operators Γ and Γ_{2} as follows:

$$
\begin{align*}
2 \Gamma(f, g) & :=\Delta(f g)-f \Delta g-(\Delta f) g \tag{1.2}\\
2 \Gamma_{2}(f, g) & :=\Delta(\Gamma(f, g))-\Gamma(f, \Delta g)-\Gamma(\Delta f, g) \tag{1.3}
\end{align*}
$$

Note that $\Gamma(f, f)(x)$ and $\Gamma_{2}(f, f)(x)$ can be represented as matrices defined on the twoball of x and acting on f restricted to the two-ball. We denote these matrices as $\Gamma(x)$ and $\Gamma_{2}(x)$.

Definition 1.1. Let $\mathcal{K} \in \mathbb{R}$ and $\mathcal{N} \in \mathbb{R}_{+}$. We say that the graph $G=(V, E)$ satisfies the curvature-dimesion inequality ($C D$ inequality) $C D(\mathcal{K}, \mathcal{N})$, if for any $f: V \rightarrow \mathbb{R}$ and any $x \in V$, we have

$$
\begin{equation*}
\Gamma_{2}(f)(x) \geq \frac{1}{\mathcal{N}}(\Delta f(x))^{2}+\mathcal{K} \Gamma(f)(x) \tag{1.4}
\end{equation*}
$$

Here, \mathcal{K} is called a lower Ricci curvature bound of $G=(V, E)$, and \mathcal{N} a dimension parameter. At a vertex $x \in V$, the precise \mathcal{N}-dimensional Ricci curvature lower bound $\mathcal{K}_{\mathcal{N}}(G, x)$ is defined as the largest \mathcal{K} such that (1.4) holds for a given \mathcal{N}.

2 The Programme

2.1 Calculating the curvature

We enter graphs into Python via their adjacency matrix. For example, a triangle, i.e. the complete graph on 3 vertices, is entered as follows:

```
>>> T = [[0,1,1],[1,0,1],[1,1,0]]
```

Similarly the Petersen graph would be entered as:

$$
\begin{aligned}
& \ggg P=[[0,1,0,0,1,1,0,0,0,0],[1,0,1,0,0,0,1,0,0,0],[0,1,0,1,0,0,0,1,0,0], \\
& {[0,0,1,0,1,0,0,0,1,0],[1,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,1,0],} \\
& {[0,1,0,0,0,0,0,0,1,1],[0,0,1,0,0,1,0,0,0,1],[0,0,0,1,0,1,1,0,0,0],} \\
& [0,0,0,0,1,0,1,1,0,0]]
\end{aligned}
$$

The functions curv_calc and curv_calc_norm calculate the curvature at a specified vertex with respect to the non-normalised and normalised Laplacian, respectively. Note that the vertices are specified via their vertex numbers and that the enumeration starts from 0 .

```
>>> curv_calc(T, 0)
```

2.5
>>> curv_calc_norm(T, 0)
1.25
>>> curv_calc(T, 0)
-1.0
>>> curv_calc_norm(T, 0)
-0. 33

2.2 The matrices Γ and Γ_{2}

In this section we discuss the commands generating the matrices Γ and Γ_{2}. The matrices are viewed conveniently via the numpy command array.

Generally 4Γ and $4 \Gamma_{2}$ instead of Γ and Γ_{2} ensures that all the terms in the matrices with respect to the non-normalised laplacian are integer valued. Again, the vertex in these commands is specified by its vertex number. The commands are fourGamma, fourGamma2, fourGammaNorm and fourGamma2Norm.

```
>>> np.array(fourGamma(T, 0))
[[ 4 -2 -2]
    [-2 2- 0]
    [-2 0 2]]
>>> np.array(fourGamma2(T, 0))
[[10 -5 -5]
    [-5 7-2]
    [-5 -2 7]]
>>> np.array(fourGammaNorm(T, O))
[[ 2. -1. -1.]
    [-1. 1. 0.]
    [-1. 0. 1.]]
>>> np.array(fourGamma2Norm(T, 0))
[[ 2.5 -1.25 -1.25]
    [-1.25 1.75 -0.5 ]
    [-1.25 -0.5 1.75]]
```

Note that the Γ - and Γ_{2}-matrices have a different vertex ordering than the original adjacency matrix. It is convenient to build up these matrices by rearranging the vertices in the order "centre, one-sphere, two-sphere". The command mat_order reveals this order for a specified vertex in form of the original vertex numbers.

```
>>> np.array(fourGamma(P, 0))
[[ [ 6 -2 -2 -2 0
    [-2 2 2 0 0 0 0
    [-2 [0
    [-2 0
    [ 0 0 0 0 0 0 0 0}0
    [ 0
```

```
[ 0}0
[ 0
[ 0}0
[ 0 0 0 0 0 0 0 0 0 0 0 0]]
>>> np.array(fourGamma2(P, 0))
[[18 -8 -8 -8 1 1 1 1 1 1 1 1 1 1]
[-8
[-8
[\begin{array}{lllllllllll}{-8}&{2}&{2}&{8}&{0}&{0}&{0}&{-2}&{-2}&{0}\end{array}]
[ 1 -2 0
[ 1 0 -2 0
[ 1-2 00 0 0 0 0 1 1 0 0
[ 1 0 0 -2 0
[ 1 0 0 0 -2 0
[ 1 0 -2 0 0 0 0 0 0 0 1] 1]
>>> mat_order(P, 0)
[0, [1, 4, 5], [2, 3, 6, 7, 8, 9]]
```

Note that you can also use this function to calculate the one-sphere and two-sphere of a given vertex.

Finally, the command evs calculates the eigenvalues of a given symmetric matrix. For example

```
>>> evs(fourGamma(T,0))
```

[0. 2. 6.]

3 Edge and Vertex weights

The functions fourGammaFULL($\mathrm{W}, \mathrm{MU}, \mathrm{i}$) and fourGamma2FULL(W, MU, i) calculate the matrices, defined in (1.2) and (1.3), with edge weight matrix W and a vector containing the vertex weights MU.

In this case the Laplacian assumes the form

$$
\begin{equation*}
\Delta f(x):=\frac{1}{\mu(x)} \sum_{y, y \sim x} w_{x y}(f(y)-f(x)) \tag{3.1}
\end{equation*}
$$

with $w_{x y}=W(x, y)$ and $\mu(x)=M U(x)$.
For example, suppose we want to enter a triangle with edges weights 1,2 and 3 and calculate its $4 \Gamma_{2}$ matrices about each vertex. We would do this as follows:

```
>>> T = [[0,1,2],[1,0,3],[2,3,0]]
>>> MU = [1,1,1]
>>> np.array(fourGammaFULL(T, MU, 0))
[[ 6. -2. -4.]
    [-2. 2. 0.]
    [-4. 0. 4.]]
>>> np.array(fourGammaFULL(T, MU, 1))
[[ 8. -2. -6.]
    [-2. 2. 0.]
    [-6. 0. 6.]]
>>> np.array(fourGammaFULL(T, MU, 2))
[[ 10. -4. -6.]
    [ -4. 4. 0.]
    [ -6. 0. 6.]]
```

Note that if you choose the adjacency matrix for W then you obtain the Laplacian defined in equation (1.1).

4 Interactive website

In addition to the python programme there is an interactive website which allows you to draw a graph and to view the curvature of the graph at each vertex with respect to both the normalised and non-normalised Laplacian. Online instructions can be found on the webpage itself.

To play with it go to http://teggers.eu/graph/.

