
Documentation for graphcurvature.py

David Cushing

George Stagg

April 15, 2016

Abstract

This documentation gives an overview of the file graphcurvature.py.

1 Introduction

Let G = (V, E) be a finite simple graph. For any vector (function) f : V → R and any
vertex x ∈ V, the Laplacian ∆ is defined via

∆ f (x) :=
1

µ(x) ∑
y,y∼x

(f (y)− f (x)), (1.1)

where µ : V → R is a positive measure on V. When µ(x) = 1, for any x ∈ V, we call ∆
the non-normalized Laplacian. When µ(x) = dx := ∑y,y∼x 1, for any x ∈ V, we call ∆
the normalized Laplacian.

For any two functions f , g : V → R, we define two operators Γ and Γ2 as follows:

2Γ(f , g) := ∆(f g)− f ∆g− (∆ f)g, (1.2)

2Γ2(f , g) := ∆(Γ(f , g))− Γ(f , ∆g)− Γ(∆ f , g). (1.3)

Note that Γ(f , f)(x) and Γ2(f , f)(x) can be represented as matrices defined on the two-
ball of x and acting on f restricted to the two-ball. We denote these matrices as Γ(x)
and Γ2(x).

1

2 The Programme

Definition 1.1. Let K ∈ R and N ∈ R+. We say that the graph G = (V, E) satisfies the
curvature-dimesion inequality (CD inequality) CD(K,N), if for any f : V → R and any
x ∈ V, we have

Γ2(f)(x) ≥ 1
N (∆ f (x))2 +KΓ(f)(x). (1.4)

Here, K is called a lower Ricci curvature bound of G = (V, E), and N a dimension parameter.
At a vertex x ∈ V, the precise N -dimensional Ricci curvature lower bound KN (G, x) is
defined as the largest K such that (1.4) holds for a given N .

2 The Programme

2.1 Calculating the curvature

We enter graphs into Python via their adjacency matrix. For example, a triangle, i.e.
the complete graph on 3 vertices, is entered as follows:

>>> T = [[0,1,1],[1,0,1],[1,1,0]]

Similarly the Petersen graph would be entered as:

>>> P=[[0,1,0,0,1,1,0,0,0,0],[1,0,1,0,0,0,1,0,0,0],[0,1,0,1,0,0,0,1,0,0],
[0,0,1,0,1,0,0,0,1,0],[1,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,1,0],
[0,1,0,0,0,0,0,0,1,1],[0,0,1,0,0,1,0,0,0,1],[0,0,0,1,0,1,1,0,0,0],
[0,0,0,0,1,0,1,1,0,0]]

The functions curv_calc and curv_calc_norm calculate the curvature at a specified ver-
tex with respect to the non-normalised and normalised Laplacian, respectively. Note
that the vertices are specified via their vertex numbers and that the enumeration starts
from 0.

>>> curv_calc(T, 0)
2.5
>>> curv_calc_norm(T, 0)
1.25
>>> curv_calc(T, 0)
-1.0
>>> curv_calc_norm(T, 0)
-0.33

2

2 The Programme

2.2 The matrices Γ and Γ2

In this section we discuss the commands generating the matrices Γ and Γ2. The matri-
ces are viewed conveniently via the numpy command array.

Generally 4Γ and 4Γ2 instead of Γ and Γ2 ensures that all the terms in the matrices
with respect to the non-normalised laplacian are integer valued. Again, the vertex
in these commands is specified by its vertex number. The commands are fourGamma,
fourGamma2, fourGammaNorm and fourGamma2Norm.

>>> np.array(fourGamma(T, 0))
[[4 -2 -2]
[-2 2 0]
[-2 0 2]]

>>> np.array(fourGamma2(T, 0))
[[10 -5 -5]
[-5 7 -2]
[-5 -2 7]]

>>> np.array(fourGammaNorm(T, 0))
[[2. -1. -1.]
[-1. 1. 0.]
[-1. 0. 1.]]

>>> np.array(fourGamma2Norm(T, 0))
[[2.5 -1.25 -1.25]
[-1.25 1.75 -0.5]
[-1.25 -0.5 1.75]]

Note that the Γ- and Γ2-matrices have a different vertex ordering than the original
adjacency matrix. It is convenient to build up these matrices by rearranging the vertices
in the order "centre, one-sphere, two-sphere". The command mat_order reveals this
order for a specified vertex in form of the original vertex numbers.

>>> np.array(fourGamma(P, 0))
[[6 -2 -2 -2 0 0 0 0 0 0]
[-2 2 0 0 0 0 0 0 0 0]
[-2 0 2 0 0 0 0 0 0 0]
[-2 0 0 2 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]

3

3 Edge and Vertex weights

[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]]

>>> np.array(fourGamma2(P, 0))
[[18 -8 -8 -8 1 1 1 1 1 1]
[-8 8 2 2 -2 0 -2 0 0 0]
[-8 2 8 2 0 -2 0 0 0 -2]
[-8 2 2 8 0 0 0 -2 -2 0]
[1 -2 0 0 1 0 0 0 0 0]
[1 0 -2 0 0 1 0 0 0 0]
[1 -2 0 0 0 0 1 0 0 0]
[1 0 0 -2 0 0 0 1 0 0]
[1 0 0 -2 0 0 0 0 1 0]
[1 0 -2 0 0 0 0 0 0 1]]

>>> mat_order(P, 0)
[0, [1, 4, 5], [2, 3, 6, 7, 8, 9]]

Note that you can also use this function to calculate the one-sphere and two-sphere of
a given vertex.

Finally, the command evs calculates the eigenvalues of a given symmetric matrix. For
example

>>> evs(fourGamma(T,0))
[0. 2. 6.]

3 Edge and Vertex weights

The functions fourGammaFULL(W, MU, i) and fourGamma2FULL(W, MU, i) calculate the
matrices, defined in (1.2) and (1.3), with edge weight matrix W and a vector containing
the vertex weights MU.

In this case the Laplacian assumes the form

∆ f (x) :=
1

µ(x) ∑
y,y∼x

wxy(f (y)− f (x)), (3.1)

4

4 Interactive website

with wxy = W(x, y) and µ(x) = MU(x).

For example, suppose we want to enter a triangle with edges weights 1, 2 and 3 and
calculate its 4Γ2 matrices about each vertex. We would do this as follows:

>>> T = [[0,1,2],[1,0,3],[2,3,0]]
>>> MU = [1,1,1]
>>> np.array(fourGammaFULL(T, MU, 0))
[[6. -2. -4.]
[-2. 2. 0.]
[-4. 0. 4.]]

>>> np.array(fourGammaFULL(T, MU, 1))
[[8. -2. -6.]
[-2. 2. 0.]
[-6. 0. 6.]]

>>> np.array(fourGammaFULL(T, MU, 2))
[[10. -4. -6.]
[-4. 4. 0.]
[-6. 0. 6.]]

Note that if you choose the adjacency matrix for W then you obtain the Laplacian
defined in equation (1.1).

4 Interactive website

In addition to the python programme there is an interactive website which allows you
to draw a graph and to view the curvature of the graph at each vertex with respect to
both the normalised and non-normalised Laplacian. Online instructions can be found
on the webpage itself.

To play with it go to http://teggers.eu/graph/.

5

	Introduction
	The Programme
	Calculating the curvature
	The matrices and 2

	Edge and Vertex weights
	Interactive website

