
Lecture 7

In the last lecture we discussed another Proof Technique, the Contrapos-
itive Method. We also discussed the meaning of necessary and sufficient
conditions. In this lecture we will consider modelling problems.

Modelling problems are real world problems which need to be trans-
lated into a mathematical problem in order to be ”solved”. There are usually
three stages associated to a modelling problem:

(a) Modelling stage: We first translate a real world problem into a math-
ematical problem, that is, we try to identify knowns and unknowns,
name them and identify mathematical relations between them. This
leads to a well-posed mathematical problem (which might be an ideal-
isation/approximation of the real world probelm).

(b) Solution stage: Once the mathematical problem is derived, we try to
find a solution for it.

(c) Looking back stage: Finally, we investigate the relevance of the
solution for the original real world problem. Does the solution make
sense? Does it really solve the original problem? If there are doubts,
we may have to go back to stage (a) and construct a new mathematical
model.

The best way to illustrate this is to look at a concrete example:

Example (Sharp 1954, Overhanging domino problem): Given n
identical domino blocks. Aim: Create the largest possible overhang by stack-
ing them up over the table’s end, subject to the laws of gravity.

(a) Modelling stage:

We assume that all dominos have length 2. We start with one domino,
denoted by D1, and we can obviously place it on the table that it sticks
out 1. The the centre of gravity is precisely over the edge of the table
and we assume that this is sufficient that it does not tip over.

Table

D1

1
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The problem is that we cannot place a second domino on top of it
sticking out further, since then the centre of gravity of both dominos
would lie to the right of the table and the dominos would tip over.

This suggests that the answer is: The overhang cannot be larger than

1!

But this seems to easy!!!

We wonder whether it would be helpful not to move the domino sitting
on the table to its maximal position and therefore to have some freedom
to move another domino on top of it a bit further to the right. After
some thoughts we may realise that we should change our approach:
replace the ”bottom up” approach by a ”top bottom” approach. We
may use our first observation about one domino to place it on top of
another one, denoted by D2, so that D1 sticks out 1 above D2. Then
D1 will not tip over on top of D2. But we must also make sure that
the common centre of gravity of D1 and D2 lies precisely over the edge
of the table. We assume D2 sticks out a > 0 relative to the right end
of the table.

Table

D2
1

D1

a

The total centre of gravity of D1∪D2 is
1

2
(a− 1+ a) = 2a−1

2
relative to

the right end of the table. This leads to a = 1/2. Now we know how
we must deal with a third domino D3.

Table

1
1/2

a

D1
D2

D3
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We know already that D1 and D2 sit safely on top of D3, and the total
centre of gravity of D1 ∪D2 ∪D3 is

1

3
(a− 1+ a+ 1/2− 1+ a+1/2) =

3a−1

3
relative to the right end of the table. This leads to a = 1/3.

Here emerges a pattern, and we courageously formulate the following
conjecture:

Conjecture. Let k dominos Dk, Dk−1, . . . , D1 be stacked on a table,

each one on top of the previous one. Assume that Dj sticks out to the

right of Dj−1 by 1/j, and Dk sticks out to the right of the table by 1/k.
Then the centre of gravity of D1∪· · ·∪Dk lies right above the right end

of the table.

It this conjecture were true for all k, we would have a safe configuration
of n dominos sticking out in total by 1 + 1/2 + · · · + 1/n over the
table. We would need to think a bit more to make sure that this value
is maximal. But the completely suprising fact is that – having an
unlimited amount of dominos – we can create a stack of dominos as far
to the right as we wish, since the harmonic series is divergent.

(b) Solution stage: We like to prove the conjecture. The natural choice
of proof is Induction.

Induction Start (k=1): The conjecture is trivially true in this case.

Induction Step: Assume the conjecture is true for some k ≥ 1. We
stack D1, . . . , Dk on top of Dk+1 with the required overhangs, and as-
sume that Dk+1 sticks out

1

k+1
to the right of the table. The induction

hypothesis tells us that the total centre of gravity of D1 ∪ · · · ∪Dk lies
precisely over the right end of Dk+1, i.e.,

1

k+1
relative to the right end of

the table. To calculate the centre of gravity of D1 ∪ · · · ∪Dk+1 relative
to the right end of the table, we need to calculate the weighted average

1

k + 1

(

1 · (
1

k + 1
− 1) + k ·

1

k + 1

)

= 0,

which means that the centre of gravity of D1 ∪ · · · ∪Dk+1 lies precisely
over the right end of the table. This shows that the statement holds
also true for k + 1.

(c) Looking back stage: Once having obtained this result, we may try
it out with concrete objects like identical books etc., and see whether
our theoretical result agrees with practical experiments. The very slow
divergence of the harmonic series means that, in practice, we don’t
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really encounter a too big overhang. But already the fact that a book
might be placed into a position that even its left end is beyond the
table’s right end is quite impressive.
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