
Answers to More Logic and Sets Problems

Question 1

1. The long version is: ”For all C > 0 there exist n ∈ N such that we
have xn > C.” In plain terms: The sequence (xn) is not bounded from
above.

The negation is:
∃C > 0 ∀n ∈ N : xn ≤ C.

In plain terms: The sequence (xn) is bounded from above.

2. The long version is: ”There exists L > 0 such that for all x, y ∈ R,
we have |f(x) − f(y)| ≤ L|x − y|.” In plain terms: The y-difference
between any two points on the graph of f is bounded from above by L
times the x-distance of these two points.

The negation is:

∀L > 0 ∃x, y ∈ R : |f(x)− f(y)| > L|x− y|.

In plain terms: For every L > 0 there are two points on the graph of
f such that the y-distance between them is bigger than L times the
x-distance between them.

3. The long version is: ”For all y ∈ Y there exists x ∈ X such that
y = g(x).” In plain terms: Any element of Y is an image point of g,
i.e., g is surjective.

The negation is
∃y ∈ Y ∀x ∈ X : y 6= g(x),

or even shorter
∃y ∈ Y : y 6∈ g(A).

In plain terms: The image of g does not cover all of Y .

Question 2

1.
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n∈N
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= (0, 1). Since every set [1/n, 1) is contained in (0, 1), we

have the inclusion ”⊂”. On the other hand, for every x ∈ (0, 1) we have
x > 0 and there exists n ∈ N such that 1/x < n, i.e., 1/n < x. This
shows that x ∈ [1/n, 1) and, therefore, x lies in the union

⋃

n∈N[1/n, 1).
This shows the inclusion ”⊃”, and both sets are equal.
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= {0}. Since 0 ∈ (−1/n, 2/n) for all n ∈ N, we have

the inclusion ”⊃”. We show that there is no real x 6= 0 in this inter-
section. We can find n ∈ N such that |x| > 1/n. This implies that
x 6∈ (−1/n, 2/n) and, therefore, x 6∈

⋂

n∈N(−1/n, 2/n). This shows the
inclusion ”⊂”, and both sets are equal.

3.
⋃

n∈N

[1, n) = [1,∞). Obviously, we have [1, n) ⊂ [1,∞), which shows the

inclusion ”⊂”. For every x ∈ [1,∞), there exists n ∈ N with x < n,
and we see that x ∈

⋃

n∈N[1, n). This shows the inclusion ”⊃”, and
both sets are equal.
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= R. This follows from the fact that the

rational numbers are dense in the set of real numbers. Obviously, we
have the inclusion ”⊂”. Now that x ∈ R. Then there is a rational
number q agreeing with x up to the first 5 digits after the decimal
point, so we have |q−x| ≤ 10−5 and x ∈ (q−1/1000, q+1/1000). This
shows the inclusion ”⊃”, and both sets are equal.

Question 3

(i) The intersection consists of those subsets of {1, 2, 3, 4, 5} which contain
1 and not 5 and consist of three numbers. This leads to

R ∩ S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

(ii) The statement is false: Let X = N. Then X ∈ P(N) and X has
infinitely many elements. If X were an element of the right hand set, it
would have to be an element of a power set P({1, 2, . . . , N}), for some
N ∈ N. But each of the power sets P({1, 2, . . . , N}) has only finite
many elements. Therefore, X is not an element on the right hand set.

Question 4 We see that the last digits of the powers 2n follow the repet-
itive pattern 2, 4, 8, 6, 2, 4, 8, 6, . . . , i.e., we have for all n ∈ N

last digit of 2n =



















2 if divison of n by 4 leaves remainder 1,

4 if divison of n by 4 leaves remainder 2,

8 if divison of n by 4 leaves remainder 3,

6 if n is divisible by 4.



This immediately implies equality of both sets.

Question 5 Since every sequence having a limit is bounded, we have
S2 ⊂ S1. Bounded or convergent sequences do not need to be monotone
increasing, so neither S1 nor S2 are subsets of S3 or S4. On the other hand,
the sequence (xn = n) is monotone increasing, but neither bounded nor
convergent, therefore S3 is not a subset of S1 or of S2. S4 is obviously
a subset of S3. But every monotone increasing sequence of real numbers,
bounded from above has a limit convergent, by the completeness of the real
numbers. Therefore, we have S4 ⊂ S2 ⊂ S1.

Question 6 There can be parties with 5 people where it is not true that
at least three people who do not know each other or there are at least three

people who know each other. To see this, look at the following graph with
5 points representing the people and lines connecting these points if and
only if the people know each other. There are obviously now three people
knowing each other pairwise. On the other hand, each of the 5 people does
not know precisly two people who know each other. Therefore, there are no
three people who do not know each other pairwise.

Peter

Claire

Joanne

Suzanne

James

Next, we show that for every party with 6 people we always have at least
three people who do not know each other or there are at least three people

who know each other. Choose one of them. We call this person Jimmy. Since
there are 5 more people at the party, Jimmy knows at least three of them or
Jimmy does not know at least three of them. Let us go through both cases:

Case 1: Jimmy knows (at least) three other people: We choose
three of them. Either all three of them do not know each other, in which case
there are at least three people who do not know each other, or there are two
of them knowing each other, in which case these two together with Jimmy



form a group of three people knowing each other pairwise. This confirms for
this case that the required condition is satisfied.

Case 2: Jimmy does not know (at least) three other people: We
choose three of them. Either all three of them know each other, in which
case there are at least three people who know each other, or there are two of
them who do not know each other, in which case these two together with
Jimmy form a group of three people who do not know each other pairwise.
So the required condition is also satisfied in this case.

The upshot is: There are at least 6 people at this party.


