Riemannian Geometry IV

Solutions, set 10.

Exercise 23. (a) Let
$$A = \begin{pmatrix} 0 & t & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. We have

So the power series Exp(A) terminates after 4 terms and we conclude that

$$\operatorname{Exp}(A) = I + A + \frac{1}{2}A^2 + \frac{1}{3!}A^3 = \begin{pmatrix} 1 & t & t^2/2 & t^3/(3!) \\ 0 & 1 & t & t^2/2 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(b) Let B = tcI, where I denotes the 4×4 identity matrix and let A be as in (a). Then we have $\text{Exp}(B) = e^{tc}I$ and A and B commute. This implies that

$$\operatorname{Exp}\left(t\begin{pmatrix}c&1&0&0\\0&c&1&0\\0&0&c&1\\0&0&0&c\end{pmatrix}\right) = \operatorname{Exp}(A+B)$$

$$= \operatorname{Exp}(B)\operatorname{Exp}(A) = e^{tc}\begin{pmatrix}1&t&t^2/2&t^3/(3!)\\0&1&t&t^2/2\\0&0&1&t\\0&0&0&1\end{pmatrix}.$$

Exercise 24. (a) We have

$$\langle \langle Ad(h^{-1})v_1, Ad(h^{-1})v_2 \rangle \rangle_e = \int_G \langle Ad(g^{-1})Ad(h^{-1})v_1, Ad(g^{-1})Ad(h^{-1})v_2 \rangle_e \, dvol(g)$$

$$= \int_G \langle Ad((hg)^{-1})v_1, Ad((hg)^{-1})v_2 \rangle_e \, dvol(g).$$

Let $f: G \to \mathbb{R}$, $f(g) = \langle Ad(g^{-1})v_1, Ad(g^{-1})v_2 \rangle_e$. Then we have

$$\langle \langle Ad(h^{-1})v_1, Ad(h^{-1})v_2 \rangle \rangle_e = \int_G f(hg) \, dvol(g) = \int_G f(g) \, dvol(g)$$
$$= \int_G \langle Ad(g^{-1})v_1, Ad(g^{-1})v_2 \rangle_e \, dvol(g) = \langle \langle v_1, v_2 \rangle \rangle_e.$$

(b) We have

$$\langle \langle DR_h(e)v_1, DR_h(e)v_2 \rangle \rangle_h = \langle DL_{h^{-1}}(h)DR_h(e)v_1, DL_{h^{-1}}(h)DR_h(e)v_2 \rangle \rangle_e$$
$$= \langle Ad(h^{-1})v_1, Ad(h^{-1})v_2 \rangle \rangle_e = \langle \langle v_1, v_2 \rangle \rangle_e.$$

Exercise 25. The relation in the hint implies that

$$\langle X, \nabla_Y Y \rangle =$$

$$\frac{1}{2}\left(Y\langle X,Y\rangle + Y\langle X,Y\rangle - X\langle Y,Y\rangle + \langle Y,[X,Y]\rangle + \langle Y,[X,Y]\rangle - \langle X,[Y,Y]\rangle\right) = \frac{1}{2}\left(\langle Y,[X,Y]\rangle + \langle Y,[X,Y]\rangle\right),$$

since the inner product of two left invariant vector fields is constant and, therefore, the first three derivatives of the right hand side of the relation vanish. Moreover, we have [Y, Y] = 0. So we conclude that

$$\langle X, \nabla_Y Y \rangle = \langle Y, [X, Y] \rangle.$$

The bi-invariance implies that

$$\langle [Y, X], Y \rangle = -\langle Y, [Y, X] \rangle = -\langle [Y, X], Y \rangle,$$

so $\langle [Y, X], Y \rangle = 0$. This gives us $\langle X, \nabla_Y Y \rangle = 0$ for all left invariant X, so we have $\nabla_Y Y = 0$ for all left invariant Y. Using this fact, we calculate

$$0 = \nabla_{X+Y}X + Y = \nabla_XY + \nabla_YX + \nabla_XX + \nabla_YY = \nabla_XY + \nabla_YX = 2\nabla_XY - [X, Y].$$

Division by two finally yields

$$\nabla_X Y = \frac{1}{2} [X, Y].$$