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Riemannian Geometry IV

Solutions, set 6.

Exercise 14. The normal vector is given by

N(x1, x2) =
∂

∂x1

× ∂
∂x2

‖ ∂
∂x1

× ∂
∂x2

‖ = (cos x1 cos x2, cos x1 sin x2, sin x1).

This implies that

∂N

∂x1
(x1, x2) = (− sin x1 cos x2,− sin x1 sin x2, cos x1),

∂N

∂x2

(x1, x2) = (− cos x1 sin x2, cos x1 cos x2, 0),

and

L = −〈∂N

∂x1

(x1, x2),
∂

∂x1

|ϕ−1(x1,x2)〉 = r,

M = −〈∂N

∂x1

(x1, x2),
∂

∂x2

|ϕ−1(x1,x2)〉 = 0,

N = −〈∂N

∂x2

(x1, x2),
∂

∂x2

|ϕ−1(x1,x2)〉 = (R + r cos x1) cosx1.

Using E = g11(ϕ
−1(x1, x2)) = r2, F = g12(ϕ

−1(x1, x2)) = 0 and G =
g22(ϕ

−1(x1, x2)) = (R + r cos x1)
2, we conclude that

K(ϕ−1(x1, x2)) =
LN − M2

EG − F 2
=

r(R + r cos x1) cosx1

r2(R + r cos x1)2
=

cos x1

r(R + r cos x1)
.

x1 = π/2 or x1 = 3π/2 describe points of the torus intersected with the
planes Z = r and Z = −r. Note that T 2 lies between these two planes and
touches each plane in a circle of radius R. Obviously, one of the principal
curvatures at these points is equal to zero while the other is equal to r > 0,
so the Gaussian curvature vanishes. x1 = π describes the points at the inner
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circle of the torus, i.e., the horizontal circle in the (X, Y )-plane with radius
R − r > 0. These points are obvioulsy saddle points and the two principal
curvatures have different signs. So the Gaussian curvature is negative at
these points.

Next, we calculate

∫

T 2

K dvol =

∫ 2π

0

∫ 2π

0

cos x1

r(R + r cos x1)
r(R + r cos x1)dx1dx2

=

∫ 2π

0

∫ 2π

0

cos x1 dx1dx2 = 0.

The Gauss-Bonnet Theorem tells us for any closed, oriented surface S ⊂ R
3

we have
1

2π

∫

S

K dvol = χ(S),

where χ(S) is the Euler characteristic of the surface S and given by χ(S) =
2 − 2g, where g is the genus of the surface. Since the genus of the torus is
equal to one, we conclude that χ(T 2) = 0, justifying the above calculated
result.

Exercise 15. (a) We have c′(t) = i for all t ∈ [a, b]. The function l : [a, b] →
[0, L(c)] is given by

l(t) =

∫ t

a

‖c′(s)‖c(s) ds = ln
t

a
.

So l : [a, b] → [0, ln(b/a)] is bijective, strictly monotone increasing and dif-
ferentiable. We calculate its inverse:

s = l(t) ⇔ s = ln
t

a
⇔ es =

t

a
⇔ t = aes.

So l−1(s) = aes and an arc length reparametrization of c is given by γ =
c ◦ l−1 : [0, ln(b/a)] → H

2,

γ(s) = c(l−1(s)) = c(aes) = aesi.

(b) We have

c(t) =
(ai cos t + sin t)(ai sin t + cos t)

cos2 t + a2 sin2 t
=

sin t cos t(1 − a2) + ia

cos2 t + a2 sin2 t
,
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so
Im(c(t)) =

a

cos2 t + a2 sin2 t
.

On the other hand, we have

c′(t) =
(−ai sin t + cos t)2 + (ai cos t + sin t)2

(−ai sin t + cos t)2
=

1 − a2

(−ai sin t + cos t)2
.

This implies that

|c′(t)| =
a2 − 1

cos2 t + a2 sin2 t
,

and

‖c′(t)‖c(t) =
a2 − 1

cos2 t + a2 sin2 t

cos2 t + a2 sin2 t

a
=

a2 − 1

a
= a − 1

a
.

So we obtain

L(c) =

∫ π

0

‖c′(t)‖c(t) dt = π

(

a − 1

a

)

.

Exercise 16. c(t) = (cos3(t), sin3(t)) implies that

c′(t) = 3 sin t cos t(− cos(t), sin(t)).

So we obtain

‖c′(t)‖ = 3| sin t cos t| =
3

2
| sin(2t)|,

and the length is given by

L(c) =

∫ 2π

0

‖c′(t)‖dt

=
3

2

(

∫ π/2

0

sin(2t)dt −
∫ π

π/2

sin(2t)dt +

∫ 3π

2

π

sin(2t)dt −
∫ 2π

3π

2

sin(2t)dt

)

=
3

2
· 4 ·

∫ π/2

0

sin(2t)dt = 6.
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Exercise 17.

(a) If z1 = z2 there is nothing to check. Let z1 = ai and z2 = bi. In this
case we have

dH(z1, z2) = | ln b/a|,
which implies that

sinh(
1

2
d(z1, z2)) =

1

2

∣

∣

∣
exp(

ln(b/a)

2
) − exp(− ln(b/a)

2
)
∣

∣

∣
=

1

2

∣

∣

∣

√

a

b
−
√

b

a

∣

∣

∣
.

On the other hand we obtain

|z1 − z2|
2
√

Im(z1)Im(z2)
=

|a − b|
2
√

ab
=

1

2

∣

∣

∣

a√
ab

− b√
ab

∣

∣

∣
,

which shows the validity of the formula in this particular case.
(b) Since fA is an isometry (see Exercise 11), we have d(fA(z1), fA(z2)) =

d(z1, z2). This immediately implies invariance of the left hand side under fA.
As for the right-hand side note first that

|fA(z1) − fA(z2)| =
|(az1 + b)(cz2 + d) − (az2 + b)(cz1 + d)|

|cz1 + d| |cz2 + d|

=
|z1 − z2|

|cz1 + d| |cz2 + d| .

Using the identity

Im(fA(z)) =
Im(z)

|cz + d|2 ,

we obtain

|fA(z1) − fA(z2)|
2
√

Im(fA(z1))Im(fA(z2))
=

|z1 − z2|
|cz1 + d| |cz2 + d| ·

|cz1 + d| |cz2 + d|
2
√

Im(z1)Im(z2)

=
|z1 − z2|

2
√

Im(z1)Im(z2)
.

(c) The map f(z) = z−x coincides with the map fA for A =

(

1 −x
0 1

)

∈
SL(2, R). So we can apply (b). Note that the points w1 = f(z1), w2 = f(z2)
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satisfy the requirements in (a). We conclude that

sinh(
1

2
d(z1, z2)) = sinh(

1

2
d(w1, w2)) by (b)

=
|w1 − w2|

2
√

Im(w1)Im(w2)
by (a)

=
|z1 − z2|

2
√

Im(z1)Im(z2)
by (b).

(d) Using c(t) = x + Reit we calculate

f(c(t)) =
R(eit − 1)

R(eit + 1)
= i

sin(t/2)

cos(t/2)
= i tan(t/2).

As t runs from 0 to π, i tan(t/2) runs from the origin along the positive
imaginary axis to infinity.

Note that f(z) coincides with the map fA for

A =

(

1√
2R

− x+r√
2R

1√
2R

−x−R√
2R

)

∈ SL(2, R).

So we can apply (b). Note that the points w1 = f(z1), w2 = f(z2) satisfy the
requirements in (a). We conclude that

sinh(
1

2
d(z1, z2)) = sinh(

1

2
d(w1, w2)) by (b)

=
|w1 − w2|

2
√

Im(w1)Im(w2)
by (a)

=
|z1 − z2|

2
√

Im(z1)Im(z2)
by (b).
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