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Riemannian Geometry IV

Solutions, set 6.

Exercise 14. The normal vector is given by

N(zq,29) = % (cos 1 cos T, COS Ty Sin To, sinxq).
du1 ~ Bza
This implies that
ON . : .
e 1(:51,1’2) = (—sinmz coszy, — sinx sin s, cos x1),
g—i\;(xl,@) = (= cosxy sin x5, oS 1 COS Tg, ),
and
L= (@) g o) = 1
M= (S0 g ) = O
N = <g]\;($1,1'2) %\w1($1,$2)>:(R+rcosx1)cosx1.

Using £ = gu(p '(v1,72)) = 1%, F = giao(¢p '(1,22)) = 0 and G =
Goz2 (0 Y1, 22)) = (R + rcosxy)?, we conclude that

LN —M? r(R+rcoszy)coszy COS X1

K —1 — = .
(QD (xbe)) EG — F? TQ(R—FTCOle)z ’]"(R—i—’l"COle)

x1 = w/2 or ¥y = 3mw/2 describe points of the torus intersected with the
planes Z = r and Z = —r. Note that T2 lies between these two planes and
touches each plane in a circle of radius R. Obviously, one of the principal
curvatures at these points is equal to zero while the other is equal to r > 0,
so the Gaussian curvature vanishes. x; = 7 describes the points at the inner
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circle of the torus, i.e., the horizontal circle in the (X, Y')-plane with radius
R —r > 0. These points are obvioulsy saddle points and the two principal
curvatures have different signs. So the Gaussian curvature is negative at
these points.

Next, we calculate

27 27
coS I
K dvol = R dxd
. VO /o /0 r(R+rcosx1)T( + 7 cos z1 )drydry
27 27
:/ / cos x1 dridxy = 0.
o Jo

The Gauss-Bonnet Theorem tells us for any closed, oriented surface S C R?
we have

1
— [ Kdvol =
- [ 1 dvol = x(5).

where x(.5) is the Euler characteristic of the surface S and given by x(S) =
2 — 2g, where g is the genus of the surface. Since the genus of the torus is
equal to one, we conclude that x(T?) = 0, justifying the above calculated
result.

Exercise 15. (a) We have ¢/(t) = ¢ for all t € [a,b]. The function [ : [a, b] —
0, L(c)] is given by

t
t
(1) = / 1¢/(5) ey s = n -

So [ : [a,b] — [0,In(b/a)] is bijective, strictly monotone increasing and dif-
ferentiable. We calculate its inverse:

t t
s=lt)es=h-ee’=-t=ac.
a a

So [7!(s) = ae® and an arc length reparametrization of ¢ is given by 7 =
col™':]0,In(b/a)] — H?,

v(s) = c(I7(s)) = c(ae®) = ae®i.
(b) We have

(aicost+sint)(aisint + cost)  sintcost(l —a?) +ia

c(t) = =

cos?2t + a?sin’t cos?t + a?sin’t




SO
a

cos?t + a?sin’t’

Im(c(t))

On the other hand, we have

() (—aisint + cost)? + (aicost + sint)? 1—a?
C - —

(—aisint + cost)? (—aisint + cost)?’

This implies that

a? —1
dt)] = ,
(@)l cos?t + a2sin®t

and

a®>—1 cos?t +a’sin’t a2 —1 1
/
cos?t + a?sin“t a a a

20 = [ W@yt = (a—1).

Exercise 16. c(t) = (cos®(t),sin®(¢)) implies that

So we obtain

d(t) = 3sintcost(— cos(t),sin(t)).

So we obtain 3
¢ (t)]] = 3|sintcost| = 5\ sin(2t)],

and the length is given by
2
1@ = [ 1l

w/2 ™ Bus 2m
:g ( / sin(26)dt — / sin(26)dt + / " sin(2t)dt — / sin(2t)dt>
0 w/2 T s
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3 w/2
=—-4- / sin(2t)dt = 6.
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Exercise 17.
(a) If 2y = 2, there is nothing to check. Let z; = ai and z; = bi. In this

case we have
du(z1,22) = |Inb/al,

which implies that
1‘6}@(@) —exp(— b/a 2’\/7 \/7’

On the other hand we obtain

1
sinh(id(zl, 29)) =

|21 — 22| _ \a—b\
24/Im(z1)Im(z,) Vab

which shows the validity of the formula in this particular case.

(b) Since f4 is an isometry (see Exercise 11), we have d(fa(z1), fa(22)) =
d(z1, z2). This immediately implies invariance of the left hand side under f,.
As for the right-hand side note first that

|(az1 + b)(cza + d) — (aze + b)(czy + d)|

| fa(z1) = fa(ze)| = lcz1 +d| |czo + d

_ 21 — 2|
lcz1 + d| |czo + d|

Using the identity

~ Im(z)
m(fa(z)) = Tzt dP’
we obtain
[falz) = falz)l ;-2  le;+d]|ez +d|
2v/Tm(fa(z1))Im(fa(z2))  lez1 +dlleza +d|  2,/Tm(z)Im(zo)

21 — 2|
2+/Im(z1)Im(z5)

1 —x
0 1
SL(2,R). So we can apply (b). Note that the points wy = f(z1), w2 = f(22)

(¢) The map f(z) = z—x coincides with the map f4 for A =



satisfy the requirements in (a). We conclude that

sinh(%d(zl,@)) = sinh(%d(wl,wg)) by (b)

_ w1 — wy| a
2+/Im (w ) Im(w,) v (@)
& — 7 by (b).

24/Im(2z1)Im(z3)
(d) Using ¢(t) = x + Re™ we calculate

Fle(t)) = ggz; - 3 _ Z(S;r;((%)) — itan(t/2).

As t runs from 0 to 7, itan(¢/2) runs from the origin along the positive
imaginary axis to infinity.
Note that f(z) coincides with the map f4 for

V2R V2R

_1 ozt
A= <“_R “7%) € SL(2,R).

So we can apply (b). Note that the points wy = f(21), ws = f(22) satisfy the
requirements in (a). We conclude that

1 1
sinh(id(zl, 2)) = sinh(id(wl,wg)) by (b)
w1 — wy

2+/Im (w; ) Im(wy)
21 — 2|
24/Im(21)Im(z3)




