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Riemannian Geometry 1V

Solutions, set 8.

Exercise 19. (a) Note that T'(X,Y) = —T(Y, X), so we only have to prove
linearity in the first argument. Moreover, we obviously have T'(X;+ X5, Y) =
T(X1,Y)+T(X2,Y). We are left with showing that

T(fX,Y) = fT(X,Y).
The calculation for this goes as follows:

T(fX.Y) = [[X.Y] - (VixY - Vy fX)
— JIX.Y) = (V)X = (fVxY = (V)X - fVyX)
— F(IX,Y] = (VxY = VyX)) = (V)X + (V)X = fT(X.Y).

(b) It is, again, straightforward to check that

VAXy, .. Xi+ X5 X, Xog1)
= VAKX, .. Xy, X, X)) + VAXY, L X X X)),

fort=1,2,...,r+ 1. So it remains to show that
VAXy, o f X X, X)) = fVAXY, . X X X)),

fori=1,2,....,7r+1. Let : =1,2,...,r. Then
VAXy, ..., fXi..., X, Y)

=Y (fAXy,.. X)) f > AXy, . Vy Xy, X)) (YA, LX)
j=1

= [Y(A((Xy, . X)) = [ AKX, VXL X
j=1

= fVAX,, ..., X,.Y).



Finally, we obtain
VAXy, ..., X, fY)
= fY(A(X1,.., X2)) = Y A(Xy,. ., [V X, X,)
= fVA(Xy,...,X,,Y).
(c) Using (b), we obtain

VG(X,Y,Z)=Z(X,Y)) —(VzX,Y) — (X,VzY).
Then VG = 0 means precisely that the affine connection V has the ”Rie-
mannian property”.
Exercise 20. (a) We have

0

o1, ‘w’l(ﬂﬂlm)
0

Oxs ’90‘1(117962)

This implies that

= (f'(x1)cosxy, f'(x1)sinzy, g'(x1)),

= (—f(x1)sinzy, f(x1) cosx,0).

0 f? (1)
and
L 0
(Qij): (f"(x1))2+(g' (21))?
0 |
f2(z1)

Consequently, the Christoffel symbols are calculated as
1 f'(@0) (1) + ' (21)g" (1)

rlo— L1 n B _
11 29 (911,1 g111 911,1) (f/(xl))Q n (g/(x1))2
1
Iy = 5922(912,1 + g121 — g112) =0,
1
I, = 5911(911,2 + g121 — g121) = 0= Iy,
1 f'(x1)
12 5 (9122 + 9221 — 912,2) ) 51
1 —f(z1) f' (1)
I = 9" (q122+ G122 — g221) = ,
22 5 (122 + G122 — 922,1) @) + (g o) 2
1
I3, = 5922(922,2 + 9222 — g222) = 0.



This implies that

v, 2 _ f(@0) [ (21) + ¢'(21)g" (1) O
o271 014 (f'(21))2+ (¢'(21))?  Oxzy
o, 0 Pl o
Fe1 Oxy f(xy) Oz’
N R (O
025 Oy f(z1) Oy’
v, 2 _ —fl@)f'(x) 0

903 Oy (f'(21))? + (g'(21))? Oz
(b) Note that we have

This implies that

(%%) (t) = W(t)a%l = (Vazl 3?61) (n(t))

[l +0)f (1 +t) + g (1 +t)g"(x1 + 1) O
= o ) € Doy M.

(f'(z1r +1))* + (g' (21 +1))?

The condition £+] = 0 is equivalent to f'(t)f"(t) + ¢'(t)g"(t) = 0 for all
€ (a,b). This is equivalent to (f'(t))* + (¢'(t))* = constant. Since

I@I* = (f'())* + (g'(t)*,

we conclude that %7{ vanishes identically if and only if ¢ is parametrized
propertional to arc-length. Since c and ~; are obtained from each other by an
isometry of R3, namely a rotation by the angle x5 around the vertical Z-axis,
¢ is parametrized proportional to arc-length if and only if v, is parametrized
proportional to arc-length. As explained in Example 25, the property (]i)t”yi =

0 is equivalent to the fact that ~; is a geodesic.

(c) We have

, 0
VQ(t) = a—xQ|w(t)'



This implies that

(%vé) (t) = W(w@%? = (Vaa ai) (72(9)
—f

(@) f' (@) 0
~ ()t (@ ))anl‘W(t)ETw(t)M.

Since f > 0, the condition %vé = 0 is equivalent to f’(z1) = 0. Since 7, is
a parallel of the surface of revolution M and f;(z;) its radius, the condition
%”yé = 0 is satisfied, e.g., if f assumes a local maximum or minimum at ;.

Again, as explained in Example 25, the property %75 = 0 is equivalent to
the fact that ~, is a geodesic.

(d) Since c is assumed to be arc-length parametrized, we have

(f'(21))? + (¢'(z1))* =1 for all 1 € (a,b).

@)= (5 o)

and therefore, y/det(g;;) = f > 0. Since ¢ is an almost global coordinate
chart, we conclude that

2T b b
vol(M) :/0 / f (1) dzy dxs :27T/ f(zy) dxy.

This implies that



