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Riemannian Geometry IV

Solutions, set 8.

Exercise 19. (a) Note that T (X, Y ) = −T (Y, X), so we only have to prove
linearity in the first argument. Moreover, we obviously have T (X1+X2, Y ) =
T (X1, Y ) + T (X2, Y ). We are left with showing that

T (fX, Y ) = fT (X, Y ).

The calculation for this goes as follows:

T (fX, Y ) = [fX, Y ] − (∇fXY −∇Y fX)

= f [X, Y ] − (Y f)X − (f∇XY − (Y f)X − f∇Y X)

= f([X, Y ] − (∇XY −∇Y X)) − (Y f)X + (Y f)X = fT (X, Y ).

(b) It is, again, straightforward to check that

∇A(X1, . . . , Xi + X̃i, . . . , Xr, Xr+1)

= ∇A(X1, . . . , Xi, . . . , Xr, Xr+1) + ∇A(X1, . . . , X̃i, . . . , Xr, Xr+1),

for i = 1, 2, . . . , r + 1. So it remains to show that

∇A(X1, . . . , fXi, . . . , Xr, Xr+1) = f∇A(X1, . . . , Xi, . . . , Xr, Xr+1),

for i = 1, 2, . . . , r + 1. Let i = 1, 2, . . . , r. Then

∇A(X1, . . . , fXi, . . . , Xr, Y )

= Y (fA(X1, . . . , Xr))−f

n
∑

j=1

A(X1, . . . ,∇Y Xj, . . . , Xr)−(Y f)A(X1, . . . , Xr)

= fY (A1(X1, . . . , Xr)) − f

n
∑

j=1

A(X1, . . . ,∇Y Xj , . . . , Xr)

= f∇A(X1, . . . , Xr, Y ).
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Finally, we obtain

∇A(X1, . . . , Xr, fY )

= fY (A(X1, . . . , X2)) −
∑

A(X1, . . . , f∇Y Xj, . . . , Xr)

= f∇A(X1, . . . , Xr, Y ).

(c) Using (b), we obtain

∇G(X, Y, Z) = Z(〈X, Y 〉) − 〈∇ZX, Y 〉 − 〈X,∇ZY 〉.

Then ∇G ≡ 0 means precisely that the affine connection ∇ has the ”Rie-
mannian property”.

Exercise 20. (a) We have

∂

∂x1

∣

∣

ϕ−1(x1,x2)
= (f ′(x1) cos x2, f

′(x1) sin x2, g
′(x1)),

∂

∂x2

∣

∣

ϕ−1(x1,x2)
= (−f(x1) sin x2, f(x1) cos x2, 0).

This implies that

(gij) =

(

(f ′(x1))
2 + (g′(x1))

2 0
0 f 2(x1)

)

and
(

gij
)

=

(

1
(f ′(x1))2+(g′(x1))2

0

0 1
f2(x1)

)

.

Consequently, the Christoffel symbols are calculated as

Γ1
11 =

1

2
g11 (g11,1 + g11,1 − g11,1) =

f ′(x1)f
′′(x1) + g′(x1)g

′′(x1)

(f ′(x1))2 + (g′(x1))2
,

Γ2
11 =

1

2
g22(g12,1 + g12,1 − g11,2) = 0,

Γ1
12 =

1

2
g11(g11,2 + g12,1 − g12,1) = 0 = Γ1

21,

Γ2
12 =

1

2
g22(g12,2 + g22,1 − g12,2) =

f ′(x1)

f(x1)
= Γ2

21,

Γ1
22 =

1

2
g11(g12,2 + g12,2 − g22,1) =

−f(x1)f
′(x1)

(f ′(x1))2 + (g′(x1))2
,

Γ2
22 =

1

2
g22(g22,2 + g22,2 − g22,2) = 0.
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This implies that

∇ ∂

∂x1

∂

∂x1

=
f ′(x1)f

′′(x1) + g′(x1)g
′′(x1)

(f ′(x1))2 + (g′(x1))2

∂

∂x1

,

∇ ∂

∂x1

∂

∂x2
=

f ′(x1)

f(x1)

∂

∂x2
,

∇ ∂

∂x2

∂

∂x1
=

f ′(x1)

f(x1)

∂

∂x2
,

∇ ∂

∂x2

∂

∂x2
=

−f(x1)f
′(x1)

(f ′(x1))2 + (g′(x1))2

∂

∂x1

(b) Note that we have

γ′

1(t) =
∂

∂x1

|γ1(t).

This implies that

(

D

dt
γ′

1

)

(t) = ∇γ′

1
(t)

∂

∂x1

=

(

∇ ∂

∂x1

∂

∂x1

)

(γ1(t))

=
f ′(x1 + t)f ′′(x1 + t) + g′(x1 + t)g′′(x1 + t)

(f ′(x1 + t))2 + (g′(x1 + t))2

∂

∂x1

|γ1(t) ∈ Tγ1(t)M.

The condition D
dt

γ′

1 ≡ 0 is equivalent to f ′(t)f ′′(t) + g′(t)g′′(t) = 0 for all
t ∈ (a, b). This is equivalent to (f ′(t))2 + (g′(t))2 = constant. Since

‖c′(t)‖2 = (f ′(t))2 + (g′(t))2,

we conclude that D
dt

γ′

1 vanishes identically if and only if c is parametrized
propertional to arc-length. Since c and γ1 are obtained from each other by an
isometry of R

3, namely a rotation by the angle x2 around the vertical Z-axis,
c is parametrized proportional to arc-length if and only if γ1 is parametrized
proportional to arc-length. As explained in Example 25, the property D

dt
γ′

1 ≡
0 is equivalent to the fact that γ1 is a geodesic.

(c) We have

γ′

2(t) =
∂

∂x2
|γ2(t).
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This implies that

(

D

dt
γ′

2

)

(t) = ∇γ′

2
(t)

∂

∂x2
=

(

∇ ∂

∂x2

∂

∂x2

)

(γ2(t))

=
−f(x1)f

′(x1)

(f ′(x1))2 + (g′(x1))2

∂

∂x1
|γ2(t) ∈ Tγ2(t)M.

Since f > 0, the condition D
dt

γ′

2 ≡ 0 is equivalent to f ′(x1) = 0. Since γ2 is
a parallel of the surface of revolution M and f1(x1) its radius, the condition
D
dt

γ′

2 ≡ 0 is satisfied, e.g., if f assumes a local maximum or minimum at x1.
Again, as explained in Example 25, the property D

dt
γ′

2 ≡ 0 is equivalent to
the fact that γ2 is a geodesic.

(d) Since c is assumed to be arc-length parametrized, we have

(f ′(x1))
2 + (g′(x1))

2 = 1 for all x1 ∈ (a, b).

This implies that

(gij) =

(

1 0
0 f 2(x1)

)

,

and therefore,
√

det(gij) = f > 0. Since ϕ is an almost global coordinate
chart, we conclude that

vol(M) =

∫ 2π

0

∫ b

a

f(x1) dx1 dx2 = 2π

∫ b

a

f(x1) dx1.
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