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Riemannian Geometry 1V

Solutions, set 9.

Exercise 21. (a) We have with the notation of Exercise 20: f(z1) = cosxy,
g(z1) = sinzy, so (f'(z1))? + (¢'(z1))? = 1. This implies that
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Iy = %922(912,1 + 9121 — g11,2) = 0,

I, = %911(911,2 + 9121 — g121) = 0 =T},

ri, = 3922(912,2 + go2.1 — g122) = J;/((xxj; = —tanmz, =I5,

T3y = %911(912,2 + G122 — g21) = (f,(;ﬂ()fllf(,;iil)y = sinxy CoS T,
I3, = %922(922,2 + g222 — g222) = 0.

(b) We are interested in the parallel vector field X along the equator,
parametrized by ¢ : (—m,7) — S?, ¢(t) = ¢ (0, 7 +t) with initial condition
X(0) = 52 |c(0). This implies that

pocy(t)=:(c11(t), c1a(t)) = (0, + 1),

hence
(c11(t), c12(t)) = (0,1).

The solution reduces to the ordinary differential equation
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Note that for x; = 0 we have
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So the differential equations are simply @} = 0 = a!, which, together with
a1(0) = 1,a9(0) = 0 implies that
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So we end up with X (t) = aixl‘C(t)'
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we conclude that
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(d) We have pocy(t) = (n/4, m+1t) = (ca1(t), c2(t)) and Y (0) = 8%1\02(0).
This translates into the ordinary differential equation
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So the parallel vector field Y along ¢, is given by
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Note that 8%1]02(,5) and \/ia%?‘cz(t) form an orthonormal basis of T, S?, so
Y (t) is a rotating vector field along the parallel ¢y, similarly to the calcula-
tions for the hyperbolic plane (see Example 27).

Y (t) = cos(

Exercise 22. Assume first that there are global vector fields XY : M-
TM with X(c(t)) = X(t) and Y (c(t)) = Y (¢) for all t € [a,b]. Since the

Levi-Civita connection is Riemannian, we conclude that
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= vy = 2| (X )ec) = ((X.1))
= (Vo X V() + {X(0), VeV = (2 X, (0) + (X (), 37 (1) =0,

since the vector fields X, Y are parallel along c¢. But this implies that ¢ —
(X(t),Y(t)) is a constant function, i.e. the parallel transport P, : To(o)M —
TewyM is an isometry, since

(PeX(a), P.Y (a)) = (X(b),Y'(b)) = (X(a),Y(a)).

Now assume that X,Y don’t have global extensions. Assume that there
is a coordinate chart ¢ : (xq,...,2,) : U — V with ¢([a,b]) C U. Then we
can write
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X(t) = Zaxt)a%

and we have
d d g 0
—(X,Y) = — b | (=—, =— .
dt< ) > dt (]Zk a] k <<ax]7 axk> OC))
As previously, the Riemannian property of the Levi-Civita connection yields
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This implies that
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Finally, if we need k coordinate charts Uy, ..., Uy to cover ¢([a, b)), i.e., if we
have

¢([a, b)) C U U,

with a partitiona < t; < ty--+ < ty_1 < bsuch that c¢(a), c(t1) € Uy, c(t1), c(ts) €
Us,...c(tk—1),c(b) € Ug, so we conclude with the previous argument that
4(X,Y) is constant on the segments [a,t], [t1,%2], ..., [tx—1,b], and there-
fore, constant on all of [a, b].



