
RATIONAL CURVES ON SMOOTH
HYPERSURFACES OF LOW DEGREE

T.D. BROWNING AND P. VISHE

Abstract. We study the family of rational curves on arbitrary smooth
hypersurfaces of low degree using tools from analytic number theory.
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1. Introduction

The geometry of a variety is intimately linked to the geometry of the space
of rational curves on it. Given a projective variety X defined over C, a natural
object to study is the moduli space of rational curves on X. There are many
results in the literature establishing the irreducibility of such mapping spaces,
but most statements are only proved for generic X. Following a strategy of
Ellenberg and Venkatesh, we shall use tools from analytic number theory to
prove such a result for all smooth hypersurfaces of sufficiently low degree.

Let X ⊂ Pn be a smooth Fano hypersurface of degree d defined over C, with
n > 3. For each positive integer e, the Kontsevich moduli space M 0,0(X, e)
is a compactification of the space M0,0(X, e) of morphisms of degree e from
P1 to X, up to isomorphism. According to Kollár [10, Thm. II.1.2/3], any
irreducible component of M 0,0(X, e) has dimension at least

µ = (n+ 1− d)e+ n− 4. (1.1)
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Work of Harris, Roth and Starr [7] shows that M 0,0(X, e) is an irreducible,
local complete intersection scheme of dimension µ, provided that X is general
and d < 1

2
(n+1). The restriction on d has since been weakened to d < 2

3
(n+1)

by Beheshti and Kumar [4] (assuming that n > 23), and then to d 6 n− 2 by
Riedl and Yang [12].

In the setting d = 3 of cubic hypersurfaces it is possible to obtain results
for all smooth hypersurfaces in the family. Thus Coskun and Starr [5] have
shown that M 0,0(X, e) is irreducible and of dimension µ for any smooth cubic

hypersurface X ⊂ Pn over C, provided that n > 4. (If n = 4 then M 0,0(X, e)
has two irreducible components of the expected dimension µ = 2e.)

At the expense of a much stronger condition on the degree, our main result
establishes the irreducibility and dimension of the space M0,0(X, e), for an
arbitrary smooth hypersurface X ⊂ Pn over C. Let

n0(d) = 2d−1(5d− 4). (1.2)

We shall prove the following statement.

Theorem 1.1. Let X ⊂ Pn be a smooth hypersurface of degree d > 3 defined
over C, with n > n0(d). Then for each e > 1 the space M0,0(X, e) is irreducible
and of the expected dimension.

The example of Fermat hypersurfaces, discussed in [5, §1], shows that the
analogous result for M 0,0(X, e) is false when d > 3 and e is large enough.

When e = 1 we have M 0,0(X, 1) = M0,0(X, 1) = F1(X), where F1(X) is the
Fano scheme of lines on X. It has been conjectured, independently by Debarre
and de Jong, that dimF1(X) = 2n− d− 3 for any smooth Fano hypersurface
X ⊂ Pn of degree d. Beheshti [3] has confirmed this for d 6 8. Taking e = 1
in Theorem 1.1, we conclude that dimF1(X) = 2n − d − 3 for any d > 3,
provided that n > n0(d).

Our proof of Theorem 1.1 ultimately relies on techniques from analytic num-
ber theory. The first step is “spreading out”, in the sense of Grothendieck [6,
§10.4.11] (cf. Serre [13]), which will take us to the analogous problem for
smooth hypersurfaces defined over the algebraic closure of a finite field. Pass-
ing to a finite field Fq of sufficiently large cardinality, for a smooth degree d hy-
persurface X ⊂ PnFq defined over Fq, the cardinality of Fq-points on M0,0(X, e)

can be related to the number of Fq(t)-points on X of degree e. We shall access
the latter quantity through a function field version of the Hardy–Littlewood
circle method. A comparison with the Lang–Weil estimate [8] then allows us
to make deductions about the irreducibility and dimension of M0,0(X, e).

The idea of using the circle method to study the moduli space of rational
curves on varieties is due to Ellenberg and Venkatesh. The traditional setting
for the circle method is a fixed finite field Fq, with the goal being to understand
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the Fq(t)-points on X of degree e, as e→∞. This is the point of view taken in
work of Lee [9] on a Fq(t)-version of Birch’s work on systems of forms in many
variables. In contrast to this, we will be required to handle any fixed e > 1,
as q → ∞. Pugin developed an “algebraic circle method” in his 2011 Ph.D.
thesis [11] to study the spaces M0,0(X, e), when X ⊂ PnFq is the diagonal cubic
hypersurface

a0x
3
0 + · · ·+ anx

3
n = 0, (for a0, . . . , an ∈ F∗q).

Assuming that n > 12 and char(Fq) > 3, he succeeds in showing that the
space M0,0(X, e) is irreducible and of the expected dimension. Our work
extends Pugin’s result to arbitrary smooth hypersurfaces of sufficiently low
degree, which are defined over the complex numbers.

Acknowledgements. The authors are grateful to Hamid Ahmadinezhad,
Lior Bary Soroker, Roya Beheshti and Emmanuel Peyre for useful comments.
While working on this paper the first author was supported by ERC grant
306457.

2. Spreading out

Let X ⊂ Pn be a smooth hypersurface of degree d, defined by a homogeneous
polynomial

F (x0, . . . , xn) =
∑

i∈Zn+1
>0

i0+···+in=d

cix
i0
0 . . . x

in
n ,

with coefficients ci ∈ C. Rather than working with M0,0(X, 1), it will suffice
to study the naive space More(P1, X) of actual maps P1 → X of degree e. The
expected dimension of More(P1, X) is µ = µ + 3, where µ is given by (1.1),
since P1 has automorphism group of dimension 3. We proceed to recall the
construction of More(P1, X).

Let Ge be the set of all homogeneous polynomials in u, v of degree e > 1,
with coefficients in C. A rational curve of degree e on X is a non-constant
morphism f : P1

C → X of degree e. It is given by

f = (f0(u, v), . . . , fn(u, v)),

with f0, . . . , fn ∈ Ge, with no non-constant common factor in C[u, v], such
that F (f0(u, v), . . . , fn(u, v)) vanishes identically. We may regard f as a point

in P(n+1)(e+1)−1
C and the morphisms of degree e on X are parameterised by

More(P1
C, X), which is an open subvariety of P(n+1)(e+1)−1

C cut out by a system
of de+ 1 equations of degree d. In this way we obtain the expected dimension

(n+ 1)(e+ 1)− 1− (de+ 1) = (n+ 1− d)e+ n− 1 = µ,
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of More(P1
C, X). It follows from Kollár [10, Thm. II.1.2] that all irreducible

components of More(P1
C, X) have dimension at least µ. In order to establish

Theorem 1.1 it will therefore suffice to show that More(P1
C, X) is irreducible,

with dim More(P1
C, X) 6 µ, provided that n > n0(d).

The complement to More(P1
C, X) in its closure is the set of (f0, . . . , fn) with a

common zero. We can obtain explicit equations for More(P1
C, X) by noting that

f0, . . . , fn have a common zero if and only if the resultant Res(
∑

i λifi,
∑

j µjfj)
is identically zero as a polynomial in λi, µj. It is clear that both X and
More(P1

C, X) are defined by equations with coefficients belonging to the finitely
generated Z-algebra Λ = Z[ci], obtained by adjoining the coefficients of F to
Z. In this way we may view X and More(P1

C, X) as schemes over Λ, with
structure morphisms X → Spec Λ and

More(P1
C, X)→ Spec Λ.

By Chevalley’s upper semicontinuity theorem (see [6, Thm. 13.1.3]), there
exists a non-empty open set U of Spec Λ such that

dim More(P1
C, X) 6 dim More(P1

C, X)m

for any closed point m ∈ U . Here More(P1
C, X)m denotes the fibre above m,

which is obtained via the base change Spec Λ/m → Spec Λ. Likewise, since
integrality is an open condition, the space More(P1

C, X) will be irreducible if
More(P1

C, X)m is.
Choose a maximal ideal m in U . The quotient Λ/m is a finite field by arith-

metic weak Nullstellensatz. By enlarging Λ, we may assume that it contains
1/d!. In particular, it follows that char(Λ/m) = p, say, with p > d, since any
prime less than or equal to d is invertible in Λ. The quasi-projective varieties
Xm and More(P1

C, X)m are defined over Fp, being given explicitly by reducing
modulo m the coefficients of the original system of defining equations. By
further enlarging Λ, if necessary, we may assume that Xm is smooth. There
exists a finite field Fq0 such that Xm and More(P1, XC)m are both defined over
Fq0 . In view of the Lang–Weil estimate, Theorem 1.1 is a direct consequence
of the following result.

Theorem 2.1. Let n > n0(d) and let X ⊂ PnFq be a smooth hypersurface of

degree d > 3 defined over a finite field Fq, with char(Fq) > d. Then for each
e > 1 we have

lim
`→∞

q−`µ# More(P1
Fq , X)(Fq`) 6 1.

3. The Hardy–Littlewood circle method

We now initiate the proof of Theorem 2.1. We henceforth redefine q` to be
q and we replace n by n−1 in the statement of the theorem. In particular the
expected dimension is now µ = (n− d)e+ n− 2. Our proof of Theorem 2.1 is
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based on a version of the Hardy–Littlewood circle method for the function field
K = Fq(t), always under the assumption that char(Fq) > d. The main input
for this comes from work of Lee [9], combined with our own recent contribution
to the subject, in the setting of cubic forms [2].

We begin by laying down some basic notation and terminology. To begin

with, for any real number R we set R̂ = qR. Let O = Fq[t] be the ring of
integers of K and let Ω be the set of places of K. These correspond to either
monic irreducible polynomials $ in O, which we call the finite primes, or the
prime at infinity t−1 which we usually denote by ∞. The associated absolute
value | · |v is either | · |$ for some prime $ ∈ O or | · |, according to whether v
is a finite or infinite place, respectively. These are given by

|a/b|$ =

(
1

qdeg$

)ord$(a/b)

and |a/b| = qdeg a−deg b,

for any a/b ∈ K∗. We extend these definitions to K by taking |0|$ = |0| = 0.
For v ∈ Ω we let Kv denote the completion of K at v with respect to | · |v.

We may identify K∞ with the set

Fq((1/t)) =

{∑
i6N

ait
i : for ai ∈ Fq and some N ∈ Z

}
.

We can extend the absolute value at the infinite place to K∞ to get a non-
archimedean absolute value | · | : K∞ → R>0 given by |α| = qordα, where ordα
is the largest i ∈ Z such that ai 6= 0 in the representation α =

∑
i6N ait

i. In
this context we adopt the convention ord 0 = −∞ and |0| = 0. We extend this
to vectors by setting |x| = max16i6n |xi|, for any x ∈ Kn

∞.
Next, we put

T = {α ∈ K∞ : |α| < 1} =

{∑
i6−1

ait
i : for ai ∈ Fq

}
.

Since T is a locally compact additive subgroup of K∞ it possesses a unique
Haar measure dα, which is normalised so that

∫
T dα = 1. We can extend dα

to a (unique) translation-invariant measure on K∞ in such a way that∫
{α∈K∞:|α|<N̂}

dα = N̂ ,

for any N ∈ Z>0. These measures also extend to Tn and Kn
∞, for any n ∈ Z>0.

There is a non-trivial additive character eq : Fq → C∗ defined for each a ∈ Fq
by taking eq(a) = exp(2πiTr(a)/p), where Tr : Fq → Fp denotes the trace map.
This character induces a non-trivial (unitary) additive character ψ : K∞ → C∗
by defining ψ(α) = eq(a−1) for any α =

∑
i6N ait

i in K∞.
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Let F ∈ Fq[x] be a non-singular form of degree d > 3, with x = (x1, . . . , xn).
We may express this polynomial as

F (x) =
n∑

i1,...,id=1

ci1,...,idxi1 . . . xid ,

with coefficients ci1,...,id ∈ Fq. In particular the height HF and discriminant
∆F of F satisfy HF = maxi |ci| = 1 and |∆F | = 1. We will make frequent use
of these facts in what follows. Associated to F are the multilinear forms

Ψi(x
(1), . . . ,x(d−1)) =

n∑
i1,...,id−1=1

ci1,...,id−1,ix
(1)
i1
. . . x

(d−1)
id−1

, (3.1)

for 1 6 i 6 n.
To establish Theorem 2.1 we work with the naive space

Me = {x = (x1, . . . , xn) ∈ Ge(Fq)n \ {0} : F (x) = 0} ,

where Ge(Fq) is the set of binary forms of degree e with coefficients in Fq.
Thus Me corresponds to the Fq-points on the affine cone of More(P1

Fq , X). Let
us set

µ̂ = µ+ 1 = (n− d)e+ n− 1 = (e+ 1)n− de− 1. (3.2)

It will clearly suffice to show that

lim
q→∞

q−µ̂#Me 6 1, (3.3)

for n > n0(d), where n0(d) is given by (1.2). We proceed by relating the
counting function #Me to the counting function that lies at the heart of our
earlier investigation [2].

Let w : Kn
∞ → {0, 1} be given by w(x) =

∏
16i6nw∞(xi), where

w∞(x) =

{
1, if |x| < 1,

0, otherwise.

Putting P = te+1, we then have #Me 6 N(P ), where

N(P ) =
∑
x∈On

F (x)=0

w(x/P ).

It follows from [2, Eq. (4.1)] that for any Q > 1 we have

N(P ) =
∑
r∈O
|r|6Q̂
r monic

∑∗

|a|<|r|

∫
|θ|<|r|−1Q̂−1

S
(a
r

+ θ
)

dθ, (3.4)
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where
∑∗ means that the sum is taken over residue classes |a| < |r| for which

gcd(a, r) = 1, and where

S(α) =
∑
x∈On

ψ(αF (x))w(x/P ), (3.5)

for any α ∈ T. We will work with the choice Q = d(e+1)/2, so that Q̂ = |P |d/2.
The major arcs for our problem are given by r = 1 and |θ| < |P |−dqd−1. We

let the minor arcs be everything else: i.e. those α = a/r+ θ appearing in (3.4)
for which either |r| > q, or else r = 1 and |θ| > |P |−dqd−1. The contribution
Nmajor(P ) from the major arcs is easy to deal with. Indeed, for |θ| < |P |−dqd−1
and |x| < |P | we have |θF (x)| < |P |−dqd−1qde = q−1, whence ψ(θF (x)) = 1.
Thus S(α) = |P |n, for α = θ belonging to the major arcs, and so

Nmajor(P ) = |P |n
∫
|θ|<|P |−dqd−1

dθ = |P |n−dqd−1 = qµ̂.

In order to prove (3.3), it therefore remains to show that

lim
q→∞

q−µ̂Nminor(P ) = 0, (3.6)

for n > n0(d), where Nminor(P ) is the overall contribution to (3.4) from the
minor arcs. This will complete the proof of Theorem 2.1.

4. The geometry of numbers

The purpose of this section is to record a technical result about lattice point
counting over K∞. A lattice in KN

∞ is a set of points of the form x = Λu,
where Λ is a N × N matrix over K∞ and u runs over elements of ON . By
an abuse of notation we will also denote the set of such points by Λ. Given a
lattice M , the adjoint lattice Λ is defined to satisfy ΛTM = IN , where IN is
the N ×N identity matrix.

Let γ = (γij) be a symmetric n × n matrix with entries in K∞. Given any
positive integer m, we define the special lattice

Mm =

(
t−mIn 0

tmγ tmIn

)
,

with corresponding adjoint lattice

Λm =

(
tmIn −tmγ

0 t−mIn

)
.

Let {R̂1, ..., R̂2n} denote the successive minima of the lattice corresponding to
Mm. For any vector x ∈ K2n

∞ let x1 = (x1, . . . , xn) and x2 = (xn+1, . . . , x2n).
We claim that Mm and Λm can be identified with one another. Now Mm is
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the set of points x = Mmu where u = (u1,u2) runs over elements of O2n.
Likewise, Λm is the set of points y = Λmv where v = (u1,v2) runs over
elements of O2n. We can therefore identify Mm with Λm through the process
of changing the sign of v2, then the sign of y2, then switching v1 with v2, and
finally interchanging y1 and y2. It now follows from [9, Lemma B.6] that

Rν +R2n−ν+1 = 0, (4.1)

for 1 6 ν 6 n. Note that an important step in the proof of [9, Lemma B.6] is
a non-archimedean version of Gram–Schmidt orthogonalisation, which is used
without reference in the proof of [9, Lemma B.3]. This deficit is remedied by
appealing to recent work of Usher and Zhang [14, Theorem 2.16].

For any Z ∈ R and any lattice Γ we define the counting function

Γ(Z) = #{x ∈ Γ : |x| < Ẑ}.

Note that Γ(Z) = Γ(dZe) for any Z ∈ R. We proceed to establish the following
inequality.

Lemma 4.1. Let m,Z1, Z2 ∈ Z such that Z1 6 Z2 6 0. Then we have

Mm(Z1)

Mm(Z2)
>

(
Ẑ1

Ẑ2

)n

.

Proof. Let 1 6 µ, ν 6 2n be such that Rµ < Z1 6 Rµ+1 and Rν < Z2 6 Rν+1.
Since Rj is a non-decreasing sequence which satisfies Rj + R2n−j+1 = 0, by
(4.1), we must have 0 6 Rn+1, whence in fact µ 6 ν 6 n. It follows from [9,
Lemma B.5] that

Mm(Z1)

Mm(Z2)
=


1 if Z1, Z2 < R1,(∏ν

j=1 R̂j/Ẑ1

)
(Ẑ1/Ẑ2)

ν if Z1 < R1 6 Z2,(∏ν
j=µ+1 R̂j/Ẑ1

)
(Ẑ1/Ẑ2)

ν if R1 6 Z1 6 Z2,

The statement of the lemma is now obvious. �

As above, let γ = (γij) be a symmetric n × n matrix with entries in K∞.
For 1 6 i 6 n we introduce the linear forms

Li(u1, . . . , un) =
n∑
j=1

γijuj.

Next, for given real numbers a, Z, we let N(a, Z) denote the number of vectors
(u1, . . . , u2n) ∈ O2n such that

|uj| < âẐ and |Lj(u1, . . . , un) + uj+n| <
Ẑ

â
for 1 6 j 6 n.
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If we put m = bac, then it is clear that

Mm(Z − {a}) 6 N(a, Z) 6Mm(Z + {a}),
where {a} denotes the fractional part of a. The following result is a direct
consequence of Lemma 4.1.

Lemma 4.2. Let a, Z1, Z2 ∈ R with Z1 6 Z2 6 0. Then we have

N(a, Z1)

N(a, Z2)
> K̂n,

where K = dZ1 − {a}e − dZ2 + {a}e.

5. Weyl differencing

In everything that follows we shall assume that char(Fq) > d and we will
allow all our implied constants to depend on d and n. Any dependence on
q will be made completely explicit. This section is concerned with a care-
ful analysis of the exponential sum (3.5), using the function field version of
Weyl differencing that was worked out by Lee [9]. Our task is to make the
dependence on q completely explicit and it turns out that gaining satisfactory
control requires considerable care. Since we are concerned with hypersurfaces
one needs to take R = 1 in [9, §3].

For any β =
∑

i6N bit
i ∈ K∞, we let ‖β‖ = |

∑
i6−1 bit

i|. Recalling the
definition (3.1) of the multilinear forms associated to F , we let

N(α) = #

{
u ∈ O(d−1)n :

|u1|, . . . , |ud−1| < |P |
‖αΨi(u)‖ < |P |−1 (∀i 6 n)

}
,

where u = (u1, . . . ,ud−1). We begin with an application of [9, Cor. 3.3], which
leads to the inequality

|S(α)|2d−1

6 |P |(2d−1−d+1)nN(α), (5.1)

for any α ∈ T.
The next stage in the analysis of S(α) is a multiple application of the

function field analogue of Davenport’s “shrinking lemma”, as proved in [9,
Lemma 3.4], ultimately leading to [9, Lemma 3.5]. Unfortunately the implied
constant in these estimates is allowed to depend on q and so we must work
harder to control it. Let

Nη(α) = #

{
u ∈ O(d−1)n :

|u1|, . . . , |ud−1| < |P |η

‖αΨi(u)‖ < |P |−d+(d−1)η (∀i 6 n)

}
,

for any parameter η ∈ [0, 1]. Recalling that P = te+1, we shall prove the
following uniform version of [9, Lemma 3.5].
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Lemma 5.1. Let α ∈ T and suppose that η ∈ [0, 1) is chosen so that

(e+ 1)(η + 1)

2
∈ Z. (5.2)

Then we have

|S(α)|2d−1

6
|P |2d−1n

|P |η(d−1)n
Nη(α).

Proof. In view of (5.1), in order to establish the result we need to prove that

Nη(α) > (|P |−n+ηn)d−1N(α),

for any η ∈ [0, 1) satisfying the hypothesis (5.2). For each v ∈ {0, . . . , d− 1},
define N (v)(α) to be the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv| < |P |η, |uv+1|, . . . , |ud−1| < |P | (5.3)

and ‖αΨi(u)‖ < |P |−v−1+vη, for 1 6 i 6 n. Thus we have N (0)(α) = N(α)
and N (d−1)(α) = Nη(α). It will suffice to show that

N (v)(α) > |P |−n+ηnN (v−1)(α),

for each v ∈ {1, . . . , d− 1}.
Fix a choice of v, together with u1, . . . ,uv−1,uv+1, . . . ,ud−1 ∈ On such that

(5.3) holds. For each 1 6 i 6 n we consider the linear form

Li(u) = αΨi(u1, . . . ,uv−1,u,uv+1, . . . ,ud−1) =
n∑
j=1

γijuj,

say, for a suitable symmetric n×n matrix γ = (γij), with entries in K∞. Given
real numbers a and Z, define N(a, Z) to be the number of vectors (u1, . . . , u2n)
in O2n satisfying

|uj| < Ẑ + a and |Lj(u1, . . . , un)− uj+n| < Ẑ − a, for 1 6 j 6 n.

We are interested in estimating the number of u ∈ On such that |u| < |P |η
and ‖Li(u)‖ < |P |−v−1+vη, for 1 6 i 6 n, in terms of the number of u ∈ On

such that |u| < |P | and ‖Li(u)‖ < |P |−v+(v−1)η, for 1 6 i 6 n. That is, we
wish to compare N(a, Z1) with N(a, Z2), where

â = |P |(v+1−(v−1)η)/2, Ẑ1 = |P |(v+1)(η−1)/2, Ẑ2 = |P |(v−1)(η−1)/2.

Note that âẐ1 = |P |η and âẐ2 = |P |. Moreover, our hypothesis (5.2) implies
that

a =
(e+ 1)(v + 1)

2
− (v − 1)(e+ 1)η

2
= v(e+ 1)− (v − 1)(e+ 1)(η + 1)

2
∈ Z.
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Similarly, (5.2) implies that Z1, Z2 ∈ Z. It now follows from Lemma 4.2 that

N(a, Z1)

N(a, Z2)
>
(
Ẑ1 − Z2

)n
= |P |−n+ηn,

which thereby completes the proof of the lemma. �

Lemma 5.1 doesn’t suffice to handle the case e = 1 of lines on the hyper-
surface. To circumvent this difficulty we shall invoke a simpler version of the
shrinking lemma, as follows.

Lemma 5.2. Let α ∈ T and let v ∈ {1, . . . , d}. Then we have

|S(α)|2d−1

6 |P |(2d−1−d+1)nqe(v−1)nM (v)(α),

where M (v)(α) is the number of u ∈ O(d−1)n such that

|u1|, . . . , |uv−1| < q, |uv|, . . . , |ud−1| < |P |.
and ‖αΨi(u)‖ < |P |−1 for 1 6 i 6 n.

Proof. Noting that N(α) = M (1)(α), it follows from (5.1) that it will be enough
to prove that M (v−1)(α) 6 qenM (v)(α) for 2 6 v 6 d. The proof follows that
of Lemma 5.1 and so we shall be brief. Let u1, . . . ,uv−1,uv+1, . . . ,ud−1 ∈ On

be vectors satisfying

|u1|, . . . , |uv−1| < q, |uv+1|, . . . , |ud−1| < |P |.
Let γ and N(a, Z) be as in the proof of Lemma 5.1, corresponding to this
choice. Lemma 4.2 clearly implies that

N(e+ 1,−e)
N(e+ 1, 0)

> q−en.

However, N(e + 1,−e) denotes the number of u ∈ On such that |u| < q
and ‖Li(u)‖ < q−2e−1, for 1 6 i 6 n. The lemma follows on noting that
q−2e−1 < q−e−1 = |P |−1. �

The next step is an application of the function field analogue of Heath-
Brown’s Diophantine approximation lemma, as worked out in [9, Lemma 3.6].
Let α = a/r+ θ, where a/r ∈ K and θ ∈ T. Note that the maximum absolute
value of the coefficients of each multilinear form Ψj is 1. We shall apply [9,

Lemma 3.6] with M̂ = |P |(d−1)η and Ŷ = |P |d−(d−1)η. We desire a maximal
choice of η > 0 such that

|P |(d−1)η < min

{
|P |d−1, 1

|rθ|
,
|P |d

|r|

}
and

|P |(d−1)η 6 |r|max
{

1, |P dθ|
}
.
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This leads to the constraint (e+ 1)η 6 Γ, where

Γ =
1

d− 1
ord

(
min

{
|P |d−1

q
,

1

q|rθ|
,
|P |d

q|r|
, |r|max

{
1, |P dθ|

}})
, (5.4)

in which we abuse notation and denote by ord the integer exponent of q that
appears. For i ∈ {0, 1}, we let [Γ]i denote the largest non-negative integer not
exceeding Γ, which is congruent to i modulo 2. We then choose our parameter
η via

(e+ 1)η =

{
[Γ]0 if 2 - e,
[Γ]1 if 2 | e.

(5.5)

One notes that (e+ 1)η 6 Γ and, furthermore, that (5.2) is satisfied.
It now follows from [9, Lemma 3.6] that Nη(α) 6 Uη, where Uη denotes the

number of u ∈ O(d−1)n such that |u1|, . . . , |ud−1| < |P |η and

Ψi(u) = 0, for 1 6 i 6 n.

The calculation in [9, §3] shows that the latter system of equations defines an
affine variety of dimension at most (d − 2)n. We now apply [2, Lemma 2.8].
Since |P |η = q(e+1)η, with (e + 1)η ∈ Z, this directly yields the existence
of a positive constant cd,n, independent of q, such that Uη 6 cd,n|P |η(d−2)n.
Inserting this into Lemma 5.1, we therefore arrive at the following conclusion.

Lemma 5.3. Let L = 2−d+1n, let a/r ∈ K and let θ ∈ T. Then there exists a
constant cd,n > 0, independent of q, such that

|S(a/r + θ)| 6 cd,n|P |n−Lη,

where η is given by (5.5).

It turns out that this estimate is inefficient when |r| is small. Let

κ =

{
1 if 2 - e,
0 if 2 | e.

(5.6)

It will also be advantageous to consider the effect of taking (e + 1)η = 1 + κ,
instead of (5.5). Since

(e+ 1)(η + 1)

2
= 1 +

e+ κ

2
∈ Z,

it follows from Lemma 5.1 that

|S(α)| 6 |P |
nN 2−d+1

q(1+κ)(d−1)L
, (5.7)
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where

N = #

{
u ∈ O(d−1)n :

|u1|, . . . , |ud−1| 6 qκ

‖αΨi(u)‖ < qκ(d−1)−de−1 (∀i 6 n)

}
, (5.8)

Supposing that α = a/r + θ for a/r ∈ K and θ ∈ T, our argument now
bifurcates according to the size of |r|.

Lemma 5.4. Let L = 2−d+1n, let a/r ∈ K and let θ ∈ T. Assume that

(i) e > 1, q 6 |r| < qde+1−κ(d−1) and |rθ| < q−κ(d−1); or
(ii) e = 1, q2 6 |r| 6 qd and |rθ| 6 q−d.

Then there exists a constant c′d,n > 0, independent of q, such that

|S(a/r + θ)| 6 c′d,n|P |nq−L.

Proof. To deal with case (i) we apply [9, Lemma 3.6] with Y = de+1−κ(d−1)

and M = κ(d− 1) + 1
2
. Our hypotheses ensure that |r| < Ŷ and |rθ| < M̂−1.

Thus it follows that Ψi(u) ≡ 0 mod r in (5.8), for all i 6 n. In particular we
have N = 0 unless κ = 1, which we now assume.

Pick a prime $ | r with |$| > q. If |$| 6 q2 we may break into residue
classes modulo $, finding that

N 6
∑

v1,...,vd−1

# {|u1|, . . . , |ud−1| 6 q : ui ≡ vi mod $, for 1 6 i 6 d− 1} ,

where the sum is over all v = (v1, . . . ,vd−1) ∈ F(d−1)n
$ such that Ψi(v) = 0, for

all i 6 n, over F$. The inner cardinality is O((q2/|$|)(d−1)n), with an implied
constant that is independent of q. We may use the Lang–Weil estimate to
deduce that the outer sum is O(|$|(d−2)n), again with an implied constant
that depends at most on d and n. Hence we get the overall contribution

N � q2(d−1)n

|$|n
6 q2(d−1)n−n.

Alternatively, if |$| > q2, we may assume that the system of equations Ψi = 0,
for i 6 n, has dimension (d− 2)n over F$. We now appeal to an argument of
Browning and Heath-Brown [1, Lemma 4]. Using induction on the dimension,
as in the proof of [1, Eq. (3.7)], we easily conclude that

N � (q2)(d−2)n 6 q2(d−1)n−2n,

for an implied constant that only depends on d and n. Recalling that κ = 1,
the first part of the lemma now follows on substituting these bounds into (5.7).

We now consider case (ii), in which e = 1, q2 6 |r| 6 qd and |rθ| 6 q−d. Let
|a/r| = q−α for 1 6 α 6 d. Let v ∈ {1, . . . , d} be such that d − v − α = −1.
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Then an application of Lemma 5.2 yields

|S(α)|2d−1

6 |P |(2d−1−d+1)nq(v−1)nM (v)(α)

= |P |2d−1n · q(−2d+1+v)nM (v)(α).

Let u ∈ On(d−1) be counted by M (v)(α). Since |θ| 6 q−d−2, it follows that
|θΨi(u)| 6 q−d−2 · qd−v = q−2−v 6 q−3, for 1 6 i 6 n. Similarly, for 1 6 i 6 n,
we have |a

r
Ψi(u)| 6 q−α · qd−v = q−1. If we write uj = u′j + tu′′j , for v 6 j 6 d,

where u′j,u
′′
j ∈ Fnq , then the coefficient of t−1 in the t-expansion of a

r
Ψi(u)

is equal to Ψi(u1, . . . ,uv−1,u
′′
v, . . . ,u

′′
d−1). The condition ‖αΨi(u)‖ < |P |−1 in

M (v)(α) implies that this coefficient must necessarily vanish, whence M (v)(α)
is at most the number of u1, . . .uv−1,u

′
v, . . . ,u

′
d−1,u

′′
v, . . . ,u

′′
d−1 ∈ Fnq for which

Ψi(u1, . . . ,uv−1,u
′′
v, . . . ,u

′′
d−1) = 0, for 1 6 i 6 n. Thus

M (v)(α)� q(d−v)n · q(d−2)n = q(2d−v−2)n,

by the Lang–Weil estimate, which implies the statement of the lemma. �

Lemma 5.5. Let L = 2−d+1n and let θ ∈ T. Assume that

q−de−1 6 |θ| 6 q−1−κ(d−1).

Then there exists a constant c′′d,n > 0, independent of q, such that

|S(θ)| 6 c′′d,n|P |nq−L.

Proof. The upper bound assumed of |θ| implies that |θΨi(u)| 6 q−1 in (5.8),
for 1 6 i 6 n. Hence ‖θΨi(u)‖ = |θΨi(u)| for 1 6 i 6 n. Since α = θ and
|θ| > q−de−1, it follows that the condition ‖αΨi(u)‖ < qκ(d−1)−de−1 is equivalent
to |Ψi(u)| < qκ(d−1). If κ = 0 then it follows from (5.8) that

N = #
{
u ∈ F(d−1)n

q : Ψi(u) = 0 (∀i 6 n)
}
� q(d−2)n,

by the Lang–Weil estimate. If, on the other hand, κ = 1 then we write
u = u′ + tu′′ in N , under which transformation |Ψi(u)| < qd−1 is equivalent
to Ψi(u

′′) = 0, for i 6 n. Applying the Lang–Weil estimate to this system of
equations, we therefore deduce that N = O(q(1+κ)(d−1)n−n) for κ ∈ {0, 1}. An
application of (5.7) now completes the proof of the lemma. �

6. The contribution from the minor arcs

We assume that d > 3 throughout this section. Our goal is to prove (3.6)
for all e > 1, provided that n > n0(d), where n0(d) is given by (1.2). The
overall contribution to (3.4) from |θ| < q−3de is easily seen to be negligible.
Hence we may redefine the minor arcs to incorporate the condition |θ| > q−3de.
For α, β ∈ Z>0, let E(α, β) denote the overall contribution to Nminor(P ), from
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values of a, r, θ for which |r| = qα and |θ| = q−β. The contribution is empty
unless

0 6 α 6
d(e+ 1)

2
and α +

d(e+ 1)

2
6 β 6 3de, (6.1)

with β 6 de+ 1 if α = 0. Since there are only finitely many choices of α, β, in
order to prove (3.6), it will suffice to show that

lim
q→∞

q−µ̂E(α, β) = 0,

for each pair (α, β) under consideration, assuming that n > n0(d). To begin
with, summing trivially over a, we have

E(α, β) 6 q2α−β+1 max
a,r,θ

|a|<|r|=qα
|θ|=q−β

|S(a/r + θ)|. (6.2)

We start by dealing with generic values of α and β. Lemma 5.3 implies that

E(α, β) 6 cd,nq
2α−β+1+(e+1)n−L(e+1)η,

where L = 2−d+1n. Recalling the definition (3.2) of µ̂, the exponent of q is
µ̂− ν̂, with

ν̂ = {(n− d)e+ n− 1} − {2α− β + 1 + (e+ 1)n− L(e+ 1)η}
= L(e+ 1)η + β − de− 2α− 2.

(6.3)

For the choice of η in (5.5), and n > n0(d), we want to determine when ν̂ > 0.
Returning to (5.4), we now see that

Γ =
1

d− 1
min {(e+ 1)(d− 1)− 1, β − α− 1, (e+ 1)d− α− 1, α +M} ,

where M = max{0, (e + 1)d − β}. The remainder of the argument is a case
by case analysis. When [Γ] 6 1 we shall return to (6.2), and argue differently
based instead on Lemmas 5.4 and 5.5.

Case 1: α > 2(d− 1) and β > (e+ 1)d+ 1. In this case M = 0. Using (6.1),
one finds that

Γ =
1

d− 1
×

{
α if α < d(e+1)

2
,

α− 1 if α = d(e+1)
2

.

Let ι ∈ {0, 1}. We write α−ι = k(d−1)+`, for k ∈ Z>0 and ` ∈ {0, . . . , d−2}.
Then (5.5) implies that (e+ 1)η = k − δ, where

δ =

{
0 if k 6≡ e mod 2,

1 if k ≡ e mod 2.
(6.4)

We claim that the assumption α > 2(d− 1) implies that k > 2, or else k = 1

and δ = 0. This is obvious when α < d(e+1)
2

. Suppose that k = 1 and
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α = d(e+1)
2

. Then ι = 0 and ` = d − 2, whence α = 2(d − 1) = d(e+1)
2

. Since
d > 3, this equation has no solutions in odd integers e. Thus δ = 0.

Recalling (6.3) and substituting for α, we find that

ν̂ = L(k − δ) + β − de− 2− 2ι− 2k(d− 1)− 2`

= (L− 2(d− 1))k − δL+ β − de− 2− 2ι− 2`

> (L− 2(d− 1))k − δL− d+ 3− 2ι,

since β > (e + 1)d + 1 and ` 6 d − 2. Taking 3 − 2ι > 0, we have therefore
shown that ν̂ > ν̂0, with

ν̂0 = (L− 2(d− 1))k − δL− d.

If k > 2, then we take δ 6 1 to conclude that

ν̂0 > (2− δ)L− 4(d− 1)− d > L− 5d+ 4.

Thus ν̂0 > 0 if n > n0(d). Alternatively, if k = 1 then we must have δ = 0. It
follows that

ν̂0 = L− 2(d− 1)− d = L− 3d+ 2,

whence ν̂0 > 0 if n > n0(d), since n0(d) > 2d−1 · (3d− 2) in (1.2).

Case 2: α+ de− d+ 2 > β and β 6 (e+ 1)d. In this case M = (e+ 1)d−β.
It follows from (6.1) that

Γ =
1

d− 1
×

{
α + (e+ 1)d− β if β > 2α,

α + (e+ 1)d− β − 1 if β 6 2α.

We proceed as before. Thus for ι ∈ {0, 1}, we write

α + (e+ 1)d− β − ι = k(d− 1) + `, (6.5)

with k ∈ Z>0 and ` ∈ {0, . . . , d− 2}. Then (5.5) implies that (e+ 1)η = k− δ,
where δ is given by (6.4). If k > 2 then (6.3) yields

ν̂ = L(k − δ)− β + de− 2− 2ι− 2k(d− 1)− 2`+ 2d

= (L− 2(d− 1))k − δL− β + de− 2− 2ι− 2`+ 2d

> L− 4d+ 4− β + de,

since δ, ι 6 1 and ` 6 d − 2. But β 6 (e + 1)d, and so it follows that
ν̂ > L− 5d+ 4, which is positive if n > n0(d). Suppose that k 6 1. Then, on
taking ι 6 1 and ` 6 d− 2 in (6.5), we must have that

α + de− d+ 2 6 β,

which contradicts the hypothesis.
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Case 3: α 6 2(d− 1) and β > (e+ 1)d+ 1. In this case we return to (6.2),
and we recall the definition (5.6) of κ. Suppose first that α = 0. It follows
from Lemma 5.5 that S(a/r + θ)� |P |nq−L if

1 + κ(d− 1) 6 β 6 de+ 1.

The upper bound β 6 de + 1 follows from the definition of the minor arcs
when α = 0. Moreover, the lower bound holds, since for e > 1 it follows from
(6.1) that β > d > 1 + κ(d− 1). Recalling (3.2), we conclude that

E(α, β)� q−β+1+(e+1)n−L = qµ̂−ν̂ ,

with ν̂ = L+ β − de− 2 > L > 0, which is satisfactory.
Suppose next that α > 1. Then S(a/r + θ) � |P |nq−L, by Lemma 5.4,

provided that

e > 1, 1 6 α < de+ 1− κ(d− 1) and α− β < −κ(d− 1), (6.6)

or

e = 1, 2 6 α 6 d and α− β 6 −d. (6.7)

In view of (6.1), it is easily seen that α−β < −(d−1) 6 −κ(d−1). Next, we
claim that 2d− 2 < de+ 1−κ(d− 1) for any e > 2. This is enough to confirm
(6.6), since α 6 2(d− 1). The claim is obvious when κ = 1 and e > 3. On the
other hand, if κ = 0 then e > 2 and it is clear that 2d− 2 6 2d+ 1 6 de+ 1.
Next, suppose that e = 1, so that κ = 1. If α = 1 then we are plainly in the
situation covered by (6.6). If α > 2, on the other hand, then (6.1) implies that
α 6 d and α− β 6 −d, so that we are in the case covered by (6.7). It follows
that

E(α, β)� q2α−β+1+(e+1)n−L = qµ̂−ν̂ ,

with

ν̂ = L+ β − de− 2− 2α > L+ d− 1− 2α

> L− 3d+ 3,

since α 6 2(d− 1) and β > (e+ 1)d+ 1. This is positive for n > n0(d).

Case 4: α+de−d+2 6 β and β 6 (e+1)d. We begin as in the previous case.
If α = 0, the same argument goes through, leading to E(α, β) � qµ̂−ν̂ , with
ν̂ = L+ β − de− 2 > L− d. This is certainly positive for n > n0(d). Suppose
next that α > 1. Then S(a/r + θ) � |P |nq−L, by Lemma 5.4, provided that
(6.6) or (6.7) hold. Note that

α 6 β − de+ d− 2 6 2d− 2 < de+ 1− κ(d− 1),
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for any e > 2, by the calculation in the previous case. Likewise, the previous
argument shows that we are covered by (6.6) or (6.7) when e = 1. Thus we
find that E(α, β)� qµ̂−ν̂ , with

ν̂ = L+ β − de− 2− 2α > L− d− α
> L− 3d+ 2,

since α 6 2(d− 1). This is also positive for n > n0(d).
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