RATIONAL POINTS ON
CUBIC HYPERSURFACES OVER F,(t)

T.D. BROWNING AND P. VISHE

ABSTRACT. The Hasse principle and weak approximation is established for
non-singular cubic hypersurfaces X over the function field Fy(t), provided
that char(F,) > 3 and X has dimension at least 6.
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Let K be a global field and let X C P% ' be a cubic hypersurface defined
over K. A “folklore” conjecture predicts that the set X (K) of K-rational
points on X is non-empty as soon as n > 10. When K = F,(C) is the
function field of a smooth and projective curve C' over the finite field F, this
conjecture follows from the Lang-Tsen theorem (see [12, Thm. 3.6]), since K
has transcendence degree 1 over a C}-field. Alternatively, when K is a number
field, it follows from recent work of the authors [2] provided that X is assumed

to be non-singular. We record this observation as follows.

Theorem 1.1. Let K be a global field and let X C Pi" be a non-singular

cubic hypersurface defined over K. If n > 10 then X(K) # ().
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The main goal of this paper is to improve this result in the special case
K =TF,(t). Compared to the situation over number fields, there are relatively
few results in the literature which deal with the Hasse principle and weak
approximation for cubic hypersurfaces defined over K. One notable exception
is found in work of Colliot-Thélene [4, §3], which establishes the Hasse principle
for the diagonal threefolds

a1$?+"'+a5x§:07 (al,...,a5€K*)7

provided that ¢ is odd and ¢ = 2 mod 3. Furthermore, subject to a collection of
explicit constraints on the coefficients, he is able to draw the same conclusion
for diagonal cubic surfaces in P3.. These results are established by adapting to
K work of Swinnerton-Dyer [35] on this problem over number fields. It is worth
highlighting that Swinnerton-Dyer’s approach relies on a delicate analysis of
certain Selmer groups and this leads to a final result which is conditional on
the conjecture that the Tate—Shafarevich group of an elliptic curve is finite.
The advantage of working over the function field K is that the analagous
statements can be made unconditional — a feature that will resurface in the
present investigation.

Turning to weak approximation, in the setting n = 4 of non-singular cubic
surfaces it follows from work of Hu [21I, Thm. 5] that X satisfies weak ap-
proximation at the places of good reduction, provided that char(F,) > 3 and
q > 47. For larger values of n a suitable variant of the Hardy-Littlewood
circle method can be brought to bear on this problem. Let X C P! be a
non-singular cubic hypersurface defined over K. Assuming that char(F,) > 3
it follows from work of Lee (see [27] and his 2013 PhD thesis [28]) that weak
approximation holds for X over K provided that n > 14. Note that the Hasse
principle is trivial for n in this range by Theorem [I.1]

By developing an alternative version of the circle method, we shall establish
the following improvement.

Theorem 1.2. Let K = F,(t) with char(F,) > 3. Let X C P be a non-
singular cubic hypersurface defined over K, with n > 8. Then X satisfies the
Hasse principle and weak approximation over K.

The restriction on the characteristic of F, in this result is unfortunate but
intrinsic to the method. The same restriction appears in Lee’s work [27, 28],
where it stems from the use of Weyl differencing in the analysis of certain
cubic exponential sums, which produces factors of 3! within the argument of
the resulting sums. In our case, the restriction on the characteristic comes
from the need to find an auxiliary point on the hypersurface X at which the
associated Hessian does not vanish. For diagonal forms over F,(¢), Liu and
Wooley [29] have shown how to handle arbitrary characteristic. Their approach
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uses the large sieve to act as a substitute for Weyl differencing and it would be
interesting to see whether this innovation could be adapted to general forms.

It is natural to compare Theorem[I.2] with the situation of non-singular cubic
hypersurfaces over function fields K = k(C') of a curve C' over an algebraically
closed field k of characteristic 0. In this setting Lang—Tsen theory confirms
that X(K) # 0 for n > 4. On the other hand, Hassett and Tschinkel [14]
Thm. 1] have shown that X satisfies weak approximation over K provided
that n > 7.

Theorem [1.2]is the F,(¢)-analogue of recent work by Hooley [19] about non-
singular cubic hypersurfaces X C ]P’%’1 over the rational numbers. Hooley’s
main result establishes the Hasse principle for X, provided that n > 8, condi-
tionally under a certain unproved “Hypothesis HW” about the analytic prop-
erties of Hasse-Weil L-functions associated to a family of 5-dimensional cubic
hypersurfaces. Over the last century the theory of the Hardy—Littlewood cir-
cle method has become heavily industrialised in its application to cubic forms
over Q, reaching a zenith in Hooley’s work on octonary cubic forms. The
igniting spark in his work is the smooth d-function technology that was intro-
duced by Duke, Friedlander and Iwaniec [8]. This paves the way to getting
non-trivial averaging over the approximating fractions a/q that appear in the
associated cubic exponential sums. Note that Hooley requires non-trivial av-
eraging over both numerators and denominators to handle cubic forms in 8
variables. This is usually termed a “double Kloosterman refinement”, with
the usual “Kloosterman refinement” connoting non-trivial averaging over the
numerators only. The ordinary Kloosterman refinement is only capable of
handling cubic forms in n > 9 variables (see pioneering work of Heath-Brown
[15] and Hooley [17]), but when it works it produces completely unconditional
results. The use of a double Kloosterman refinement over Q leads to the
analysis of global L-functions associated to cubic hypersurfaces of dimension
5. Since our knowledge about such L-functions is extremely scarce in dimen-
sion > 1, any progress is dependent on Hypothesis HW, which describes the
meromorphic continuation and location of zeros of these L-functions. The sig-
nificance of Theorem is that working over K = F(t) affords a completely
unconditional result.

The proof of Theorem is long and complicated and we proceed to outline
some of the key ingredients. Our approach is based on estimating the number
N(d) of suitably weighted vectors (z1,...,z,) € F,[t]", with max; degx; < d,
for which [z1,...,2,] € X(K). The principal result of this paper is The-
orem , which provides an asymptotic formula for N(d) when n = 8, as
d — oo. This will suffice to prove Theorem [1.2) when n = 8. For n > 9 we will
deduce the result via a fibration X — P} in §7.1] Theorem is established
using the circle method.
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As one might expect, parts of the circle method machinery become greatly
simplified when transported to the function field K. The first simplification
comes in the analogue of the smooth J-function that lies at the heart of Hoo-
ley’s work. Indeed, the absolute values of K satisfy the ultrametric inequality.
This allows us to cover the analogue of the unit interval with non-overlapping
arcs using nothing more sophisticated than a version of Dirichlet’s theorem on
Diophantine approximation over K (see Remark . Thus we are immedi-
ately placed in the position of being able to carry out a double Kloosterman
refinement. This appears to be the first attempt to extract non-trivial savings,
a la Kloosterman, over function fields.

The process of non-trivial averaging leads us to consider the global L-
function L(H}*(Y), s) which is affiliated to the middle ¢-adic cohomology group
HMY) = H(Y @k K,Qy) of a non-singular cubic hypersurface Y C P72
of dimension m. In §3| we will relate these L-functions to a very general class
of global L-functions that were associated to arbitrary lisse ¢-adic sheaves by
Grothendieck [I3]. The second major advantage of working over K is that,
thanks to Grothendieck and Deligne [7], [13], we know that these L-functions
are actually rational functions of ¢® that satisfy the Riemann hypothesis.
Thus for k£ € {0,1,2} there are polynomials P, = Py, € Z[T], with inverse
roots having absolute value ¢**")/2 such that

_ P(e™)
Po(q=*)Pa(q~*)

In §8| for even n > 8, this information will allow us to execute an unconditional
double Kloosterman refinement by getting savings in the treatment of the
relevant cubic exponential sums with square-free modulus. This is the most
novel part of our investigation.

In order to make use of the analytic properties of L(H;*(Y),s), we shall
also need to contend with an issue that represents a much greater challenge
in the function field setting than in the classical one. Over Q, partial summa-
tion is widely used as a means of transforming the summation of products of
sequences into easier summations, but this device is not readily available over
K. The underlying obstacle comes from the fact that there are only two ratio-
nal integers with a given absolute value, but ¢**! elements of F,[t] with given
degree d (and all of these will have equal absolute value). We will circumvent
this difficulty by introducing Dirichlet characters on (F,[t~']/t~/F,[t7'])*, for
a positive integer J, and then showing that the analytic properties enjoyed by
L(H}*(Y),s) continue to hold when H;*(Y") is twisted by the Galois represen-
tation induced by these characters.

There remains the not insignificant task of handling cubic exponential sums
with square-full modulus. Unfortunately, the passage to function fields doesn’t

L(HF"(Y), s)
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offer any simplification of this task and the necessary arguments are mostly
direct analogues of the corresponding treatment over Q found in [I5] and [19].
Given the length of the paper we will capitalise on the inherent similarities by
not providing a complete treatment of all the estimates that are recorded in
and Instead we shall content ourselves with proving the function field
analogues of the key ideas that underpin the arguments over QQ. One ingredient
that we require is a non-trivial bound for the number of K-rational points on
a geometrically irreducible hypersurface V' C P% ! which is not a hyperplane.
Let H : ]P’?{l(K ) — R be the standard exponential height function. Then, as
a special case of Lemma [2.10] it follows that

#{r e V(K): H(x) < ¢%) = O.y (P ¥219)

for any B > 1 and any € > 0. There are very few results of this sort in the
literature over function fields and it would be interesting to see whether the
rapid recent advances involving the “determinant method” over number fields
could be adapted to improve this upper bound.

Finally, suppose that X C qu’l is a non-singular cubic hypersurface defined
over a finite field F,, with char(F,) > 3. There is a correspondence between the
counting function N (d) for IF,(¢)-points on X of bounded height and the cardi-
nality of IF,-points on the moduli space Mord(IP)%Fq, X)), which parameterises the
rational maps of degree d on X. Following an idea of Ellenberg and Venkatesh
it is possible to exploit the Lang—Weil estimate to make deductions about the
basic geometry of this moduli space via an asymptotic formula for N(d), pro-
vided that sufficient uniformity is achieved in the g-aspect. Using the present
investigation as a base, we have produced a short companion paper [3] which
carries out this plan.

Acknowledgements. While working on this paper the first author was sup-
ported by ERC grant 306457 and the second author by EPSRC programme
grant EP/J018260/1. This work has benefitted from useful conversations with
Alexei Entin, Bruno Kahn, Emmanuel Kowalski, Daniel Loughran, Philippe
Michel and Trevor Wooley. Their input is gratefully acknowledged. Thanks
are also due to the anonymous referee for several helpful comments that have
particularly helped to clarify the exposition in §3]

2. AUXILIARY FACTS ABOUT FUNCTION FIELDS

2.1. Notation. In this section we collect together some notation and basic
facts concerning the function field K = F,(¢). To begin with, for any real
number R we will always write R= qt.

Let ¢ =T,[t] be the ring of integers of K and let 2 be the set of places of
K. These correspond to either monic irreducible polynomials @ in &', which
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we call the finite primes, or the prime at infinity t—* which we usually denote
by oo. The associated absolute value |- |, is either |- | for some prime w € &
or |- |s, according to whether v is a finite or infinite place, respectively. These
are given by

1 ords(a/b)
0 /bl = ( ) and  |a/blo, — gloEo—deet,

qdeg w

for any a/b € K*. We extend these definitions to K by taking |0], = 0| = 0
We will usually just write |- | = | - |-

For v € Q we let K, denote the completion of K at v with respect to |- |,.
We put 0, = {a € K, : |a|, < 1} for the maximal compact subring and
0r ={a € K, : |a|, = 1} for the unit group. Furthermore, we let F, denote
its residue field. We have F,, = F, and F, = [ jaca(=) for any finite prime w.
The elements of 0., are power series expansions in ¢~

We may identify K., with the set

,((1/1)) {Zal : for a; € Fy and someNEZ}

i<N

and put

’]I‘:{aEKOO:]a\<1}:{Zaiti:foraielﬁ‘q}.

i<—1
Let § € T. Then T/dT is the set of cosets a + dT, of which there are |d].
We can extend the absolute value at the infinite place to K., to get a non-

archimedean absolute value |- | : K, — R given by |a| = ¢°*4¢, where ord «
is the largest ¢ € Z such that a; # 0 in the representation o = ZKN a;t'. In
this context we adopt the convention ord 0 = —oo and |0 = 0. We extend this

to vectors by setting |x| = max;<;<, |2;], for any x € KZ.

Since T is a locally compact additive subgroup of K, it possesses a unique
Haar measure da, which is normalised so that fT da = 1. We can extend da
to a (unique) translation-invariant measure on K, in such a way that

/ da = ]/\7,
{0€Koo:la|<N}

for any N € Z~,. These measures also extend to T" and K, for any n € Z-.
For given x,b € 0™ and M € & we will sometimes write x = b mod M to
mean that x = b+ My for some y € 0™.

2.2. Characters. There is a non-trivial additive character e, : F, — C* de-
fined for each a € F, by taking e,(a) = exp(27i Tr(a)/p), where Tr : F, — F,
denotes the trace map. This character induces a non-trivial (unitary) additive
character 1) : Koo — C* by defining 1(a) = eg(a_y) for any a = 3, at’



CUBIC HYPERSURFACES OVER F,(#) 7

in K. In particular it is clear that 1|, is trivial. More generally, given any
v € Ko, the map a — () is an additive character on K. We have the
basic orthogonality property

o
Zmb):{N’ il A

herwise.
beo. 0, otherwise
[b|<N

for any v € K, and any integer N > 0 (see Lemma 7 of [20]).

We will also need standard characters at the finite places (we follow Ex. 7.5
of [30] for their construction). Let K, be the completion of K at the place
corresponding to finite prime w € & of degree d > 1, with corresponding
ring of integers O. According to [30, Ex. 7.5(c)], any element z € K, can
be written as x = y/@” + z for some integer N > 0 and z € 0, where
y = artN Tt aatN"2 4o+ agy, with all coefficients a; € F,. With this
representation one defines the non-trivial additive character v : K, — C* to
be given by

(1) = eq(ar).

Letting A i denote the adeles over K, we may now define the standard adelic

character Vi : A — C* to be

V() = ¥(rs) HT/)w(wa);

for any x = (z,) € Ak. It follows from [30, Ex. 7.6] that 1k is a non-trivial
additive character of A which is trivial on K.

2.3. Fourier analysis on non-archimedean local fields. The material we
summarise here is found in [30], §7], but has its genesis in work of Schmid and
Teichmiiller [31]. (The authors are grateful to Ivan Fesenko for this reference.)
We first fix a non-trivial additive character ¢ : F' — C* on a non-archimedean
local field F'. A function f : ' — C is said to be smooth if it is locally constant
(that is, f(z) = f(zo) for all x sufficiently close to zy). A Schwartz-Bruhat
function is a smooth function f : F' — C with compact support. We denote
by S(F) the set of all such functions. Then for any f € S(F) we may define
the Fourier transform of f by

Fly) = / F(@)p(ay)dz,

where dz is Haar measure. This function also belongs to S(F).
Let K =T,(t). We define S(Ak) to be the space of functions given by

f@) =11 fola),
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for x = (z,) € Ag. Here, f, € S(K,) for every place v and fo|s, = 1 for
almost all primes w. The adelic Fourier transform of any f € S(Af) is given
by

fly) = (2)¢x (zy)de,

Ak
where 1k is the standard adelic character on Ax and dx is Haar measure on
Ak (normalised to be the self-dual measure for 15 ). With this notation the
Poisson summation formula (see [30, Thm. 7.7], for example) states that

Yo f@) =) fl@),

for any f € S(Af). This extends to a summation over x € K™ in the obvious
way.

We will need to introduce some weight functions on K™. For a prime w
define w,, : K, — {0, 1} via

1, if |z]o < 1,
%wz{lm

0, otherwise.

This gives an indicator function for the ring of integers &,. It is easy to check
that W, = wy. Next let wy, @ Koo — {0,1} be the indicator function for T,

defined via
1, if 1
waelz) = 4 b A<
0, otherwise.
We proceed to define weight functions wy, w : K™ — {0, 1} via
wr(x) = [] [Jw=(z:), wx)= ] wela:) (2.1)
1<i<n @ 1<i<n

Let z € K™. Then |z| < P if and only if w(z/tF) =1 and z € O if and only if
wf(z) =1.

We will use the n-dimensional Poisson summation formula to prove the
following result.

Lemma 2.1. Let f € Ky[z1,...,2,] be a polynomial and let v € S(KL).
Then we have

> o) = 3 [ ewi(fw +cupde
zeo™ ceon VK
Proof. Recalling the definitions of the weight functions wy and w, we may

write
S w(f@)u(z) = Y g(a),

zeOo" ze K™
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where ¢(z) = ¢(f(z))ws(z)v(z). It is clear that g € S(A%) and so we are free
to apply the n-dimensional version of Poisson summation to conclude that

> wli@E = 3 @rle) [ () + cujdu

n

zco" ceK" s

Since ws(c) = wy(c), the lemma follows. O

2.4. Some integral formulae. In this section we collect some basic facts
and estimates concerning multi-dimensional integrals over K. Recall the
definition of the additive character ¢ : Ko, — C* from We begin by
recording the following fact (see Lemma 1(f) of [26]).

Lemma 2.2. LetY € Z and v € K. Then

{?, if | <Y,

d p—
; vlar)da 0, otherwise.

la|<Y

Taking Y = 0, it follows from this result that

1, ifz=0,
/1I¢<O‘x)da - {0, it € 0\ {0} (22)

We also have the following change of variables formula, which readily follows
from Igusa [22, Lemma 7.4.2].

Lemma 2.3. Let T C K™ be a box defined by the inequalities |x;| < R;, for
some real numbers Ry,..., R,. Let f : T'— C be a continuous function. Then
for any M € GL,(K) we have

/F flejde=|detnt] [ g

It will be convenient to reserve some notation for the height of a polynomial
[ € Kylz1,...,2,]. Assuming that f(x) = Y, aix’, for coefficients a; € K.,
we define

Hy = max |a;].
We proceed to establish the following result.

Lemma 2.4. Let f € Ky [x1,...,2,] be a polynomial and let w € K? . As-
sume that [w| > 1 and |w| > Hy. Then

¥ (f(x) +w.x)dx = 0.

Tn
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Proof. Suppose without loss of generality that |w| = |w;| = N for some integer
N > 0. We concentrate on the one-dimensional integral

[:/g[}(f(a:,xg,...,xn)+w1x)dx,
T

for fixed xo,..., 2, € T. Write g(z) = f(x,x2,...,2,). We may suppose that
g(z) = cox? + - -+ cq_12 for appropriate coefficients ¢; = ¢;(z2, ..., 7,) € K.
Our hypothesis implies that

H, < H; < N. (2.3)

It is clear that ¢ (g(z) +wyz) = 1if |z| < ¢~V . But then, using the definition
of integration over T, we find that

I=1lim g™ 3 O (hant™+ - +aat™))
G_m,...,a_1€EF,

=q V! Z (0 (h(a—N—lt_N_l +---+ a—lt_l)) ;
a_N—1,-,0-1€EFg

where h(x) = g(x)+w;z. The coefficient of =1 in wyx is a_y_; Moreover,
implies that |g(a_n_1t V"t +y) — g(y)| < |t7!| for any y € T. This implies
that the coefficient of ¢~ in g(z) is a polynomial in a_y,...,a_; alone, from
which it follows that I = 0, since

Z eqla_n_1) =0.

a_nN—1€F,

This completes the proof of the lemma. O
As an easy consequence of Lemma we get the following result.

Lemma 2.5. Let [ € K |x1,...,x,] be a polynomial. Suppose that there
exists u € T™ and X > 1 such that [Vf(u)| = X and |0Pf(u)] < A, for all
|B| = 2. Then

$(f(x))dx = 0.

Tn

Proof. Make the change of variables x = u 4+ y and note that
Fx) = f() +y V() + 3y VA (u)y +....
The conclusion is now a direct consequence of Lemma2.4with w = V f(u). O

Given a non-zero polynomial F' € K[z, ..., x,], integrals of the form

Jr(v;w) = [ Y (vF(x)+w.x)dx (2.4)

’]I"IL
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will feature prominently in our work, for given v € K, and w € K. On
noting that H,r = |y|Hp, the following result is a trivial consequence of
Lemma 2.4

Lemma 2.6. We have Jp(v;w) = 0 if |w| > max{1, |y|HFr}.
The following result will be useful when |w| is not too large.

Lemma 2.7. We have
Teliw) = [ 4 (F )+ wix) dx.
Q

where O = {x € T" : |[yVF(x) + w| < Hp max{1, [['/*}} .

Proof. Let Qo = T™\ 2. We break the integral over € into a sum of integrals
over smaller regions. Let § € K., be such that |§| = min{1, |y|~*/2}. Intro-
ducing a dummy sum over y € (T/dT)" and then using Lemma to make
the change of variables x =y + dz, we obtain

Y (vF(x)+w.x)dx = |0] ™" Z Y (vF(x) + w.x)dx

" ye(T/sT)n 7 $%0
= > / 4 (f(2)) da,
ye(T/sT)n ¥ {2€T"y+92€80}

where f(z) = 7F(y+0z)+w.(y+0z). We want to show that the inner integral
vanishes, to which end we claim that y + dz € ) if and only if y satisfies

WVF(y) + w| > Hpmax{1,[y["*}. (2.5)

Using Taylor expansion and observing that |§v| = min{1,|y|"/2}, we deduce
that there is a vector u depending on z, with |[u| < Hpmin{1,|vy|'/2}, such
that YVF(y +6z) + w = yVF(y) + w + u. Put A = Hpmax{1, |y|*/?}. If
y + 0z € Qg then

A <max{[7VF(y) + w|, [u|} <max{|7VF(y) + w|, A},
which implies that holds. Conversely, if holds then
A<|7WVF(y)+w+u| <|7VF(y +dz) + w|.
This therefore establishes the claim. Hence we have

Y (VF(x) +wx)dx = Z v (f(z)) dz.

ye(T/6T)" B
[vVF(y)+w|>Hp max{1,|y|'/?}

Qo

Now all the partial derivatives of f(z) of order k > 2 are strictly less than
Hr|y||6|F < Hpmin{1,|y|}. Moreover, our preceding argument shows that
|\Vf(z)] > Hp max{l,|y|} for every z € T". An application of Lemma
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therefore shows that the inner integral vanishes, as required to complete the
proof. 0

2.5. Density of integer points on affine hypersurfaces. Let V' C A be
an affine variety defined over & of degree d > 1 and dimension m > 1. Using
a version of the large sieve inequality over function fields due to Hsu [20], our
main goal in this section is to establish a pair of estimates for the number of
O-points on V with bounded absolute value.

Lemma 2.8. We have #{x € V(0) : |x| < N} = Oun(¢™ ™), where the
implied constant only depends on d and n.

This result is optimal whenever V' contains a linear component of dimension
m. Alternatively, we will obtain the following improvement.

Lemma 2.9. Assume that V' is absolutely irreducible and d > 2. Then we
have
#{x € V(0): x| < N} = Ogn(¢™*" P Nlog ),

where the implied constant only depends on d and n.

Now let G € O[X;,...,X,] be a homogeneous polynomial, which is ab-
solutely irreducible over K and has degree d > 2. The following result is
now a trivial consequence of Lemma [2.9| applied to the absolutely irreducible
hypersurface g = 0, where g(X) = G(a + kX).

Lemma 2.10. Let k € O and let a € O". Then for any any € > 0 we have

~ ~\ n—3/2+¢
<N, G(x) =0, N
# {x con. ™ (x) } Lae (1 + —|k|> .

x = amod k

The implied constant in this estimate depends at most on n, the degree of
G and on the choice of e. Lemma is an extension of [15, Lemma 15] to
function fields.

We proceed with the proof of Lemmas[2.8|and [2.9] which are based on Serre’s
proof of the analogous result for number fields (see Serre [33] Chapter 13]). We
select coordinates on A’ such that the projection 7 : V' — A7 onto the first
m coordinates induces a finite morphism. Let Z = m(V') be the corresponding
(thin) subset of AT and let Z(N) = #{x € ZN 6™ : |x| < N}. Since the
fibre of each point under 7 has at most d points, it will be enough to prove
the bound

o Od,n(q(N+1)(m_1/2)NlOg q), if V is abs. irred. and d > 2,
Z(N) = (NADm ‘
Oun(q ), otherwise.

Our key tool in proving these bounds will be the following large sieve inequality
over K due to Hsu [20, Theorem 3.2].

(2.6)
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Lemma 2.11. Let M, N,m € Z~q and let X be a subset of O™. For each
prime w suppose that there exists a real number a € (0, 1] such that

#Xo < ag|w|™,
where X, denotes the canonical image of X in (O /wO)™. Then
#{X cX - |X| < j\\[} < qm(maX{N’QM_1}+l)/L(M),

LMy=1+ Y H(l;jw)

bel monic wlb
[b|l<M

where

Taking o, = 1 for every @ and L(M) > 1 we easily arrive at the second
part of by taking M = (N + 1)/2. For the first part, for any prime
w € O, we let Z(N), denote the canonical image of Z in (0/w®)™. The
following result is proved in exactly the same way as the number field version
[33, Thm. 5 in Chapter 13].

Lemma 2.12. Assume that V' is absolutely irreducible and has degree d > 2.
There is a finite Galois extension K,/K of degree at most d! and a number
cr € (0,1 —1/d!] such that if w splits completely in K, then

#Z(N)w < cxl@]™ + Ogn(lw|™1/?).

We may now use this result to deduce the first part of . Let K, be
as in Lemma [2.12] Then if a prime w splits completely in K it follows that
Z(N)w < cplw|"! for some constant 0 < ¢, < 1 —1/d!. We now apply
Lemma with M = (N + 1)/2, invoking the prime number theorem to
deduce that

1 V!
L(M 2 - w 2 T ————— O M2
) Z (1=ea) A[K, KM+ (a7,
w0 monic and irreducible
|w|<M

w splits completely in K

This completes the proof of (2.6, and so the proof of Lemma

3. GLOBAL L-FUNCTIONS AND /-ADIC SHEAVES

In §3.1] we review some facts about f-adic sheaves on affine curves and in
we recall the construction of their associated L-functions. In §3.3| we
record the statement of the Weil conjectures as established by Deligne. Next,
in §3.4] we recall the construction of the Hasse-Weil L-function of a smooth
and projective variety over a global field of positive characteristic and state
some of its fundamental properties. Finally, in §3.5 we discuss the analagous
properties of a global L-function obtained through twisting by a character of
finite order.
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3.1. Review of /-adic sheaves and /-adic cohomology. The main refer-
ences for this section are Deligne [7] and Katz (see [24, Chapter 2] and [25]).
Let us assume that j : U < C' is a non-empty affine open subset of a smooth
proper geometrically connected curve C' over the finite field F,. For any prime
¢t q, suppose that we are given a lisse Q-sheaf .# on U and let V be the
Qg-vector space associated to .# by the monodromy action. For any integer
1 > 0 we have both ordinary and compact cohomology groups

H'(U,%#) and H{U,%).

These are finite dimensional Q,-vector spaces on which Gal(F,/F,) acts con-
tinuously and which vanish for 7 > 2. There is a natural “forget supports”
map H{(U, #) — H'(U,.Z), which need not be an isomorphism (since U is
not proper). We have
HY(U,#)=H*U,%)=0.
Let n = Spec(FF,(U)) be the generic point and 77 = Spec(IFq(—U)) the geometric
point above it. We denote by 75°°™ = (U, 7) the “geometric” fundamental
group. Then
HYU,Z)=Vv™"

geom

is the subspace of invariants of ;""" acting on V', and

(T, F) = V(~1) g

is the space of coinvariants of 75" acting on the Tate twist V(—1) of V.
We will require information about the dimensions of these cohomology
groups. The Euler characteristic of U is

x(U)=2-2g— Z deg(z), (3.1)
z€|C\U|

where ¢ is the genus of C' and the sum is taken over the closed points x € C\U,
with deg(z) being the degree of its residue field over F,. Next, the Swan
conductor of .# takes the shape

swan(.# Z deg(x) swan, (F).
z€|C\U|

It measures the wild ramification of the sheaf. With this notation to hand,
the Euler—Poincaré formula (see [24], §2.3.1]) states that

2

Z(—l)i dim H(U,.#) = rank(Z)x(U) — swan(.%),

dim HNU,.%) = dim H*(U,.%) — rank(.%)x(U) + swan(.%).
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We may also form a constructible Q-sheaf j,.# on C, where we recall that
j + U — C is the inclusion map. Its cohomology groups are related to the
above groups via the identities

H(U, %), if i = 0,
HY(C,j.7) = Im(H\U,F) - H\(U, 7)), ifi=1,
o:Uu,7), if i = 2.

Fix an embedding ¢ : Q, — C and suppose that .% is t-pure of weight w. Then,
by the fundamental work of Deligne [7, Thm. 3.2.3], it follows that H*(C, j,.% )
is t-pure of weight w + 7 for each integer 0 < i < 2.

It follows from the facts above that

dim H'(C, j,.#) < rank(.%#) for i = 0,2 (3.2)
and
dim H*(C, j,.Z) < rank(Z)(1 — x(U)) + swan(.%). (3.3)

Now suppose that .#; and %, are lisse Qp-sheaves on U, with r; = rank(.%;)
for i = 1,2. Arguing as in the work of Fouvry, Kowalski and Michel (see the
proof of [9, Prop. 8.2(2)]), one finds that

swan(#; ® %) < rire (swan(F#) + swan(F)) .
It therefore follows from (3.3)) that

dim H'(C, j(F1 ® F)) < rire {1 — x(U) + swan(F) + swan(%) } . (3.4)

3.2. Global L-functions. Let % be a t-pure lisse Qy-sheaf of weight w on
an open subset j : U < C. In the 1960s, Grothendieck [I3] associated a
global L-function L(C, j,.%,T) to the constructible Q-sheaf j,.%. It follows
from the correspondence of 30/09/64 in [5] (see also [32, Conj. Cy]), that this
L-function is a rational function, with

L(C,j.#,T) = %, (3.5)
where Py, Py, P, € Z[T] are polynomials given by
P(T) =det (1 -T¥r, | H(C,j.F))
for 0 <7 < 2. Here Fr, is the Frobenius endomorphism acting on H (O, j.F).

It follows from Deligne [7] that the inverse roots of P; have modulus ¢“+9/2.
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3.3. The Weil conjectures. Let V' be a smooth and projective variety of
dimension m which is defined over a finite field F,. Then V' is also defined
over any extension - of F; and we may define the zeta function

2v.1) o (3 2T,

According to Deligne [6] and his resolution of the Weil conjectures, the zeta
function can be expressed as a rational function
P(V,T)P3(V,T)...Pop, 1(V,T)

VD) = R W BV T) . Pan(V,T)

(3.6)

where
P(V,T) =det (1 - TFr, | Hy,(V,Qp)), (3.7)
for i € {0,...,2m} and any prime ¢ { ¢. Here Fr, is the Frobenius endomor-
phism acting on H (V,Q;) induced by the Frobenius map on V. Note that if
one takes .# = Qy to be the trivial sheaf in §3.2then Z(C,T) = L(C, j..Z,T).
There is a factorisation
bie

PZ(V, T) = H(l - Wi,jT)v (38)

J=1

where b;, = dimg, H. (V,Qy). Deligne shows that each w;; is an algebraic
integer with the property that |w; ;| = ¢"/2, for 1 < j < b;y and 0 < i < 2m.
A formal consequence of (3.6) and (3.8]) is the identity

2m bi,é
HV(Fpr) =D (-1 wi, (3.9)
i=0 j=1

to which we will return in due course.

3.4. Global L-functions once again. Let X be a smooth and projective
variety of dimension m defined over K = F,(C) and let X = X ® K. We will
need to work with models for X over the ring of integers & of K. Let S C Q
denote the finite set of places outside of which X has good reduction. The
smooth projective morphism X — Spec(K) extends to a smooth projective
morphism p : 2 — U, for a suitable open subset U of C. (This corresponds
to choosing a specific equation over ¢ which has good reduction at the primes
outside of S.) For any v € Q\ S, we let 2, be the special fibre at v of 2
over O,. Then %, is a smooth and projective &,-scheme such that Z, ®g, K,
can be identified with X @ K,. We denote by X, = Z, ®¢, I, the reduction
at v. This is a smooth and projective variety defined over the finite field FF,,.



CUBIC HYPERSURFACES OVER F,(#) 17

For any prime £ { g it will be convenient to put H;(X) = H} (X, Q) for the
geometric f-adic cohomology group.

In this section, following Serre [32], we define some global L-functions as-
sociated to X and discuss their analytic properties. Let i € {0,...,2m}. For
v € §Q, Serre defines the local factor

Ly(H{(X),s) = det (1 — #F;* Fr, | H}(X)") ™",
where I, is the inertia group of v and Fr, is the geometric Frobenius endo-
morphism at v. Let P,,(T) = det (1 — T Fr, | Hj(X)™). When v ¢ S this
coincides with the polynomial P;(X,,T) that we met in (3.7). For arbitrary
v € Q, it follows from Terasoma [36] that P, ,(7") is independent of the choice
of ¢ and from Deligne [7, Thm. 1.8.4] that its inverse roots have absolute value
at most ¢/2. When v ¢ S we then have

Z(X,, #F;* HL (Hi(X),s)V".

For any i € {0,...,2m}, Serre [32] deﬁnes the global L-function
s) =[] Lo(Hi(xX
veE)

This L-function satisfies a functional equation. Associated to X is a smooth
model p : & — U, for a suitable open subset U of C. If jy : U — C is the
corresponding immersion then we obtain a lisse Q;-sheaf

3o Hy(X) = (ju)«R'p.Qy,

where j : Spec(K) — C' is the inclusion of the generic point. According to
Grothendieck [5] (see also [23, §5.5]) we then have

L(Hy(X),s) = L(C', . H;(X),q ™),
in the notation of Hence it follows from ((3.5]) that
Pri(g)

L(H}(X),s) = : 3.10
( é( ) ) PO,i(q_S)PQ,i(q_s) ( )

where for k € {0, 1,2} one has
Py;(T) = det (1 — TFr, | H*(C, j.H{(X))) € Z[T), (3.11)

with inverse roots having absolute value ¢%)/2. In particular, any poles or
zeros of L(H}(X),s) must have R(s) = (i + k)/2 for k € {0,1,2}.

We now specialise the previous discussion to the case of a smooth hypersur-
face X C IP’?H of degree d. As before, let S be the finite set of places outside
of which X has good reduction and choose a smooth model p : 2" — U,
for a suitable open subset U in C', which we consider fixed once and for all.
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We define the discriminant Ax of X to be the classical discriminant of the
degree d form F € Olxy,...,x,) that defines 2. (See Example 4.15 of [10),
Chap. 1] for its construction.) Thus Ax is a (non-zero) polynomial of degree
(m+1)3™ in the coefficients of F. In particular Ax € ¢ and its prime divisors
correspond to the finite places in S.

Let X, be the reduction of X at any v € 2\ S. The middle cohomology
group H}*(X) is the only one of interest to us, since

Q¢(—i/2), ifiis even and i # m,
0, if 7 is odd and i # m,

for any v € Q\ S and i € {0,...,2m} (see Ghorpade and Lachaud |11} §3],
for example). It then follows from (3.9)) that

Hét<7v7 Qﬂ) = {

bm
#HX,(Fy) = #F) + #F7 4 14 (1) wy, (3.12)

j=1
where b,, = dimg, H;*(X) is a positive integer that depends only on d and
m (it does not depend on the choice of ¢), and wy, ; are the eigenvalues of
the Frobenius endomorphism at v on H;*(X), satisfying |wp, ;| = #va/ % for

1< j < b

Taking ¢ = m we will need to control the degrees of the polynomials Py ,,,(T)

appearing in (3.11)). The closed points = € |C'\ U| correspond to the prime

divisors w of the discriminant Ay that was defined above. Hence (3.1]) yields
—X(U) =29 — 2+ Oy (log |Ax]),

where ¢ is the genus of C. Moreover, as is implicit in work of Hooley [16],

§6], we have swan(H;*(X)) = Ogm(log|Ax|), since swan,(H;*(X)) can be

bounded uniformly in terms of d and m for any closed point z € |C \ U|.

Combining (3.2)) and (3.3]), we deduce that
deg Pﬂ,m < bma deg Pl,m = Od,m,g (1 + log ‘AXD ) deg PQ,m g bm

3.5. Twisting by a character. For the sake of simplicity, in this section we
shall restrict attention to the case K = F,(¢) (so that C = P! and g = 0).
We continue to assume that X C P77 is a smooth hypersurface of degree d
with associated set S C  of places outside of which X has bad reduction. We
let p: & — U be a smooth model, which is fixed once and for all, and we
let Ax € € denote the corresponding discriminant. We need to consider the
effect of twisting the middle cohomology group H;"*(X) by a fixed character of
finite order.
Let N € Z~( and let

XDir - (ﬁoo/t_Nﬁoo)* — C*
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be a Dirichlet character. Putting x = ¢! and A = F,[z], we note that
(Ot VO )" = (A/2N A)*. This lifts to a character xpi, : % — C*. Given
any idele y = (y») € Ik, we may suppose that y, = uyw for u, € 0 and
ew € Z such that e, = 0 for almost all w. Putting a = [[_w *= € K*, we
then have a unique representation y = au where u = (u5) € [[_ 0% for every
prime . We may now define a Hecke character xpece : Ix — C* via

XHecke (au) = XDir (uoo) .

It is constant on K* and gives a character on the idele class group I /K*.
There are two relevant multiplicative characters in our investigation. The
first is n : & — C*, given by

n(r) = Xou(r/t*")

for any r € ¢. Note that r/ti" € 0% for any r € €. The second is a
Dirichlet character ' : (€/MO)* — C* modulo M, for given M € & which
in our application will have bounded absolute value. By class field theory one
can view 1 and 7’ as lisse Qp-sheafs on U of rank 1, both of which are (-pure
of weight 0. The character 7 is ramified only at infinity and 7’ is ramified only
at the primes dividing M. One has swan(n) = O(N) and swan(n') = O (1).

We may now define the global L-function L(n ® 0’ ® H}*(X), s), with local
factors

Ly(n®n @ HP'(X),s) = det (1 — #F,* Fr, | n@ 1y  H(X)") ",
for v € Q2. As before, we have
Lin®n' @ H'(X),s) = L(P', j.(n®n' ® H"(X)),q),
where if j : Spec(K) — P! is the inclusion of the generic point then
Jxn@ ' ® H (X)) = (ju)(n @ n' @ R'p.Q).
Moreover, the analogue of (3.10)) holds true. Thus

_ Pl,m(q_s)
Pom(q*) Pom(q)’
where Py, € Z[T| for k € {0,1,2}, with inverse roots having absolute value

q™*R/2 Finally, using (3.4) and noting that rank(n ®@ 7' @ Hy*(X)) < by, we
have

Lin@n' @ H*(X),s)

(3.13)

deg Pom < by, deg Py = Ogmnr) log |Ax| 4+ N), deg Py < by (3.14)

In our work it is the reciprocal of L(n ® n ® H}*(X), s) that features and so
the location of its poles is dictated by the zeros of P ,,(¢™*) in (3.13)).
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4. ACTIVATION OF THE CIRCLE METHOD OVER FUNCTION FIELDS

We suppose that we are given a form F € Olxy,...,x,]| of degree d > 2
together with a vector b € 0™ and an element M € & such that M | F(b).
Let w € S(KZ) be a weight function. Then, for P € & we consider the
counting function

N(P)= > w(x/P).
xeo™

F(x)=0
x=b mod M

We are interested in the behaviour of this as |P| — oo, for fixed M and b.
According to (2.2)) we may write

where

Sa)= Y dlaFx)w(x/P).

XEO™
x=b mod M

We would like to dissect T into a disjoint union of intervals in order to try and
use non-trivial averaging in our estimation of S(«). The starting point for this
is the following analogue of Dirichlet’s approximation theorem (as proved in
[26], Lemma 3] or [27, Lemma 5.1|, for example).

Lemma 4.1. Let o € K, and let QQ > 1. Then there exists coprime a,r € O,
with r monic, such that |a| < |r| < Q and

Ira—al < Q.

For any ) > 1 this result allows one to partition T into a union of intervals
centred at rationals a/r. The non-archimedean nature of K ensures that the
intervals are actually non-overlapping, as follows.

Lemma 4.2. For any Q > 1 we have a disjoint union

T = |_| |_| {ae’]l‘:|7’a—a|<@’1}.

red_ a€l
<0 lal<Ir]
r monic (a,r):l

Proof. Suppose that there exists a € T belonging to two distinct intervals
associated to a/r # a’/r’, say. Then by the ultrametric inequality we have

‘a a

7/./

a a
)

/
1
émax{‘——a —I—a’}<A .
r Qmin{|r|, ['|}

r



CUBIC HYPERSURFACES OVER F,(#) 21

On the other hand, since ar’ — a/r is a non-zero element of &', we have

a d < 1 < 1
e 7 T Qmind e, )}
This is a contradiction, which thereby establishes the lemma. 0

It follows from Lemma [4.2] that

N(P) = / 24 9) a9, (4.1)
ol<lrl Q" 7“

reﬁ la|<|r|
r<@

T monic

where we henceforth put

=Y
la|<|r] a€l
lal<|r|
(a,r)=1
Remark 4.3. The reader will note that there is no division into major and
minor arcs in our expression for N(P). In the classical setting over Q this
would correspond to the opening steps of a Kloosterman refinement, a device
which is rendered essentially trivial over function fields.

We may write
s(Ge)- 3 e(*
yeom™

lyl<|ra|
y=b mod M

y)) S G(OF(y + ryz))w (L;MZ) ,

ze0™

where 7y = M /(r, M) is the least common multiple of r and M. We evaluate
the inner sum over z using Poisson summation. Thus Lemma implies that

S w0ty + e (5)

: -y o (YR 6oy + ) + cujdu

ceo™

Making the change of variables x = (y + ryu)P, it follows from Lemma
(together with the fact that the measure on K is translation invariant) that
the right hand side is

P HZZb(_c'y)/&W(XW <9PdF(x)—|-PC'X) .

ceom™ "M "M

M

Putting everything together in (4.1]), we may now establish the following result.
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Lemma 4.4. We have

NPY = [P" S / S Searnl(C) Ty (0; ),

v 01<Ir[~1Q1 Jepn
Ir|<@Q

T monic

where ryy = rM/(r, M) and

Same =X X (W) e (322,

r
jal<|r|  yeom M
lyI<|rasl
y=b mod M

Lose) = [ o (ePdF<x> ¥ PZX) ax.

The exponential integrals can be estimated using the results in provided
that the weight function w is chosen suitably. The exponential sums S, yrp(c)
satisfy the following basic multiplicativity property.

Lemma 4.5. Let r = riry for coprime ri,79 € 0. Let M = MyMsM; for
My, My, M3 € O such that My | r$°, My | % and (Ms,r) = 1. Then there
exists by, by, by € (O/MO)", depending on b, M and the residue of 11,79
modulo M, such that

—c.b
SﬁM,b(c) = ST1,M1,b1 (C)Srz,Mz,bz (CW < M. 3) .
3

Proof. Let us put s; = r;M;/(r;, M;) for i = 1,2. Then s1, s5, M3 are pairwise
coprime and we have a factorisation ry; = 5152M3. As y; ranges over vectors
modulo sy, y2 ranges modulo sy, and y3 ranges modulo M3, so the vector

y = soM3y, + s1M3ys + s152y3

ranges over a complete set of residues modulo ry,. Likewise, as a; (resp. as)
ranges over elements of & modulo 7y (resp. modulo 75), which are coprime to
r1 (resp. 2), S0 a = rya; + rias ranges over a complete set of residues modulo
r, which are coprime to r. It is now clear that

w(aF(y)) :w(GISQMi%F( ))NGZSIMSF( )>

r T1 D)

—c.y —C.y —c.y —c.y
) e () ) ()
M S1 52 M;
Choose t1,t9,t3 € O such that t;Mszsy = 1 mod My, toM3zs; = 1 mod My and

t3s159 = 1 mod M;5. Then it is clear that the statement of the lemma holds
with b; = t;b mod M, for 1 <7 < 3. L]

and
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The importance of Lemmal4.5]is that it allows us to factorise the exponential
sum in which we are interested, so that it suffices to examine the sum at the
prime power moduli. When piecing these together it will be important to bear
in mind the following convention that will henceforth be adopted.

Definition 4.6. Associated to any r € ¢ and i € Z~( are the elements

bi:Hwi, ki:Hw, Ti:Hwe,

=i =i @||r
e=1

in 0. In particular, for any j € Z>0 we have the factorisation
=T H bi =1 H k!, (with (j + 1)-full 7j,,).

5. CUBIC EXPONENTIAL SUMS: BASIC ESTIMATES

We now specialise to the case of non-singular cubic forms F' € Oz, ..., x,]
under the hypothesis that char(F,) > 3. We define the associated Hessian
matrix 52

F
H(x) = ( ) . (5.1)
axﬁxj 1<i,j<n

Our assumption on the characteristic of I, ensures that this matrix doesn’t
vanish identically. Of special importance to us will be the dual form

F*Gﬁ[wl,...,xn],

whose zero locus parameterises the set of hyperplanes whose intersection with
the cubic hypersurface F' = 0 produce a singular variety. It is well-known that
F* is absolutely irreducible and has degree 3 - 272,

This section is devoted to a suite of estimates for the complete cubic expo-

nential sum
Same =¥ X v (W) (522,

r
jal<Ir]  yeom M
|Y|<|7"M|
y=b mod M

both pointwise and on average over c. We recall that r, M € ¢ and b,c € O™,
with M | F(b) and ryy = rM/(r, M).
We begin by focusing our attention on the exponential sum Sge prp(c) for
a prime w and an integer o > 1. We will typically do so for large primes. In
particular we will have w { M for all of the primes considered in this section,
so that
Swa,M’b<C) = Swa71,0(C) = Swa (C),

say.
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The cases a € {1,2}. Suppose that w{ M and « € {1,2}. Then

-2 2 ()

|a|<|e=*| ly|<|w

When o = 1 it follows from Heath-Brown [I5, Lemma 12] and Hooley [18]
Lemma 60] that there is a constant A(n,|Ar|) > 0 depending only on n and
|Ag| such that

S=(c) < A(n, |Ap|)|w|™ 72| (@, VE*(e) |2, (5:2)

These estimates are founded on the work of Deligne [6].
Suppose next that a = 2. We write a = a1 + way and y = y; + wys, for
a;,y; running modulo w. Then

- Y Y e

la1|<|w] |az|<|=| [y1]<|=]

y Z ( (a1 VF(y1) —c).ys + azF(yl))

w

ly2|<[=|

The inner sum over ys vanishes unless a;VF(y;) = ¢ mod w. Likewise, the
sum over as vanishes unless w | F'(y;). It follows that

S arp(€)] < [N

where N is the number of a;,y; mod w such that a; VF(y;) = ¢ mod w and
(a1, w) =1 and w | F(y;). But this is now a problem about point counting
over finite fields and the argument used by Hooley [18, Lemma 11] yields N =0
if w1t F*(c) and N = O(|w|) otherwise. This therefore shows that there is a
constant A(n, |Ar|) > 0 such that

Swz2(c) < A(n, |Ap|)|@|" (@, F7(c))|- (5:3)

Recalling the notation in Definition 4.6, we may now combine Lemma
with (5.2]) and (5.3) to deduce the following result.

Lemma 5.1. There is a constant A = A(n,|Afg|) > 0 such that
[Styta, 01 (€)| < A by D2 (by, T F (€))[2 (e, F ()],

uniformly in' b € O".
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The case a > 2. Suppose that @ { M and that « > 2 is an integer. Evaluat-
ing the sum over a, we begin by noting that

Sealc) = 3w (_;y) > v (%ﬁy)) - > (“;i(“?)

yeon |ax|<|eo|* |az|<|w|*~!
|y |<|e=|
cy cy
— « a—1
—l= Y e () -I= > e(2)
w
yeon yeo"
yI<[=|* ly|<[e|*
F(y)=0 mod w® F(y)=0 mod w*~!

= |@|*Si(@”, €) — |w|* Sz (@, ©),
say. Substituting y = y1 + @w® lys, we get

seo- S o(2) % ()

y1€0™ y2€0™
ly1l<|w|*~t ly2|<|=|

This term clearly vanishes if @ { c. Therefore
Swal(c) = |w|*S1(w®, c), ifa>1and wftc.
For a > 1 and @ 1 ¢, the argument in [19, §6] goes through to give

Soalc) = ||

el -1

{l@l*n(@®,¢) — |@|* Tra(@®, 0)}
where v4(w®, c) denotes the number of incongruent solutions modulo @w® of
the conditions
F(y) =0mod w®, cy=0modw® y#0moduw,
whereas v5(w®, ¢) is the number of solutions modulo w® of
F(y)=0mod @®, cy=0modw®* "', y#0modw.
We may now conclude as follows.

Lemma 5.2. We have Sga(c) =0 if a« > 1 and w t MF*(c).

The following result is the function field analogue of the union of Lem-
mas 12-15 in [I9] . The desired estimates are established in exactly the same
manner and the necessary arguments will not be repeated here.

Lemma 5.3. Let @w t ¢ be a prime such that |w| > 1 and w | F*(c). Let r
denote the minimal value of the rank modulo w of the Hessian H(y), where y
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runs over the vectors which contribute to vi(w?,c). Then we have

‘w’2n+3—r/2 ZfOé — 3,
Soa(c) < { |t ir o>

|w|a 1)n+6— 2r ZfOZ>6,
with r > 2. If w | ¢, then for o = 3 or 4 we have
Swa(c) < |w|(a71)n+3.

The estimates in this result are true for a given value of r > 2 which depends
on the value of c. According to Hooley (see [19, Eq. (56)]), associated to each
prime @ is an affine algebraic variety V; C Ag_, with dimension

D(w)g{r_l’ ifr=n-—1orn, (5.4)

T, if2<r<n—2,

such that the estimates in Lemma are true for a given value of » > 2 when
the reduction of ¢ modulo @ is constrained to lie in V.

6. CUBIC EXPONENTIAL SUMS: AVERAGES

Recall Definition and the attendant notation b;, k;, r; associated to an
element r € ¢. Throughout this section M € & will denote a generic fixed
integer and b mod M such that M | F(b) will also be regarded as fixed. In
particular, the implied constant in any estimate is allowed to depend on |b|
and |[M|. The purpose of this section is to estimate |S,, ;s p(c)| on average
over c. We shall follow the strategy in [I5] and [19], although several of our
arguments are closer in spirit to those found in [1, §5].

We begin by recording the trio of estimates that we shall require, before
moving onto a discussion of their proofs. The first result we need is the ana-
logue of [19, Lemma 16]

Lemma 6.1. For any C > 1 and any € > 0 we have
Z ‘Srg,Mb | < ‘7, |n/2+1+€ (‘7, |n/3 _|_Cm>

ceo”
le|<C

and
Z |Sb3,Mb ‘ < ’b ’n/2+2/3+6 <’b |n/3 +Cn>
ceo”
le|<C
Our remaining results concern averages of |S,, pp(cC)| over sparser sets of
c. The following result is a slight sharpening of the analogous results in [15,
Lemma 16] and [I7, Lemma 12].
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’ V4,1 ‘ Vj.2 ‘ Conditions on j
2n 4 12 3n + 4 j=4
in+1 6n j=6

i+ -5 14@n+1)-5+3 j odd
In+3)—1] L@n+1)—1 | j¢{4,6} even

TABLE 1. Value of the exponents ;; in (6.1

Lemma 6.2. For any C' > 1 and any € > 0 we have

Z |Srs b (C)] < ]7“3\565 (‘b3|5n/6+2/3‘r4’n+1/2 4 6n73/2’r3‘n/2+4/3> .

ced™\{0}
|c|<6
F*(c)=0

The final bound involves a summation over an even sparser set of vectors c.
In order to proceed we recall the definition of the functions G;(r) and Gy(r)
that appear in Hooley’s work. For any r € & and © = 1,2, let

Gi(r) = [] =7, (6.1)

where the values of 7;; are given in Table |I| and are extracted from [19, Egs.
(83), (84)]. We are now ready to record the following result, which is the
analogue of [19, Lemma 21].

Lemma 6.3. Let n =8. For any C' > 1 and any € > 0 we have

> Sean(©] < [rslC (|G1 ()| ™2 +|Galra)])
ced™\0

le|<C
VF*(c)=0

With reference to Table [T}, when n = 8 we easily deduce that

|G1(r3)] o 1
|3 [7242 S (s [172]ba [378[bs | 275 b6 | /12 by [/ g |1/

and

|Ga(r3)]
[ra[ 7242 < 1Bl [ballbs |2 6 b7 [ bs /% g [*/2. (6.3)
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In particular, it follows from these bounds and Lemma [6.3] that

| Sy, 016(C)] [ Cn5/2
2 |7“1|"/24r2 <lIral"C? |b3| /2 + 3|l ) (6.4)
ced™\0
\c|<6
VF*(c)=0

when n = 8.

We will provide reasonably detailed proofs of Lemma and Lemma (6.2}
but the proof of Lemma will not be given here. The latter is closely
based on ideas already present in the proofs of the preceding lemmas, with the
added information about the behaviour at small prime powers that is provided
by Lemma The changes required for the function field analogue of [19]
Lemma 21] are tedious, routine and do not merit repetition here.

6.1. Proof of Lemma [6.1 We begin by establishing the second part of the
lemma. It follows from multiplicativity and Lemmas [5.2] and [5.3] that

|Sb3,M,b(c)| < |b3|€ H |w|277,—1—3—r(w,c)/2-l—R(w,c)7 (65)

w|bs

where R(w,c) = 0 if r(w,c) > 1 and R(w,c) = 1/2 if r(w,c) = 1. Here we
stress that the value of r(w,c) depends only on the value of ¢ modulo w?
Recall from Definition (4.6 E 6| the notation b3 = k3 and note that there are at

most (C/|ks| + 1) ch01ces of ¢ € O™ for which |¢| < C and ¢ = a mod ks.
But then, on invoking ([5.4) and the remark after Lemma [5.3} we easily deduce
that

5 n
Z ‘Sbg,M,b<C)| < |bsf° (m + 1> Z H ’w‘2n+37r(w,a)/2+R(w,a)

ceo” amod k3 w|bs
le|<C

& [k 23| by * (W“) > I wP® 72

2<r<n w|bs

a n
< ‘k3‘5n/2+2|53’5 (m + 1)

This completes the proof of the second part of Lemma [6.1]

We now turn to the first part of the lemma. In fact, future work will deem
it convenient to establish the following more general version, in which the
implied constant is made more explicit.
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Lemma 6.4. Letr € K7, let C > 1 and let € > 0. Then there exists a
constant c, . > 0, depending only on n and €, such that

S ISarn(€)] < el MM AR P HE 2 (s[04 ).
ceom”
|c—r|<6

The statement of Lemma [6.1] easily follows on taking r = 0 in this result.
During the proof of Lemma we will reserve ¢, (resp. ¢,.) for a generic
positive constant that depends only on n (resp. n and ¢). Recall the definition
(5.1) of the Hessian matrix H(x) associated to the cubic form F. For any
m € O and any k € 0" let

Np(k) = #{y mod m : H(k)y = 0 mod m}. (6.6)
We will need the following result, which is an analogue of [1I, Lemma 13].

Lemma 6.5. For any m € 0 and R > 1 there exists a constant ¢, > 0 such

that
N Nu(6)2 < e H Pl (14 )
keon kd
|k|<§

Proof. Let D denote the degree of m. Given K > 1, let
Sk ={yeo": lyl<D—K} and Si={t"Ky:|y|<K}

For any y € 0" such that |y| < |m|, we write y = y; + y2, where y; € Sk
and y, € Sk. Thus

Nn(k) = Z Z 1 < K"#{y € Sk : H(k)y = 0 mod m},

Y1€SK

y2€S5]
K H(k)(y1+y2)=0 mod m

since if y; + y2 and y} + y2 are both counted by the inner sum then we have
y3=y1 — Yy € Sk and H(k)ys = 0 mod m.
Choosing K such that K = Hp R, we find that

HpR
< HeBlm| _

[H(k)y| m|

for any y € Sk. Thus, for y € Sk we have H(k)y = 0 mod m if and only if
H(k)y = 0. It follows that

R R n—o(k)
Nk € K™ty € S By = 0} — (R ()
F
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where o(k) = rank H(k). Hence

o (n—r)/2 ~
S N2 < HYPRP Y (%) 4{Ik < R+ o(k) = ).

k|<R r=0

According to [I, Lemma 2], the condition o(k) < r forces k to lie in an affine
variety T, C A% of dimension at most r and degree O,(1). Hence Lemma
implies that there is a positive constant ¢, > 0 such that

#{k| < R:ok) =r} < #{k e T.(0) : [k| < R} < e, R".
It follows that

25 5= ((Im\"T 5
> Nu(®)'? < e Hy PR <T) R

. R
[k|<R r=0

m|

The statement of the lemma is now clear. O

<+ Ve H m"? 1+ — | .

It will be convenient to relate S, pp(c) to the exponential sum

T(a,5:0)= 3 ¥ (M;CZ)

zc O™
|z|<[s|

for appropriate g € O[xq,...,2,], a,s € O with (a,s) =1 and ¢ € ™. These
sums satisfy the following multiplicativity property.

Lemma 6.6. Suppose that s1, 82 € O are coprime and let 51,59 € O be chosen
so that 151 + s959 = 1. Then T'(a, $152;¢) = T(a3s, s1;52¢)T' (a5, S2; 1€).

Proof. As z, ranges over vectors in &™ modulo s; and z, ranges over vectors
modulo sg, SO Z = $95221 + 515122 ranges over a complete set of residues modulo
s189. Moreover, we clearly have

ag(z) — c.z = s952 {ag(z1) — c.z1} + $151 {ag(z2) — c.z2} mod s; s,

since (8;5;)7 = s;5; mod sysy for i € {1,2} and all j > 1. The desired result
now follows easily. 0

Making the change of variables y = b + Mz we obtain

Sryrp(€) = (W) S (a, (r;:?}W) : c) . (6.T)

la|<|rs|
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with underlying polynomial

1
9(z) = (s, 31

F(Mz +b). (6.8)

This is a cubic polynomial with coefficients in & since M | F(b). Moreover
it has non-singular homogeneous cubic part go(z) = (r3, M) *M3F(z). We
now factorise r3/(r3, M) into a cube-free part and a cube-full part. Since r3
is cube-full it follows that the cube-free part has absolute value at most |M].
Applying Lemma and estimating the contribution from the cube-free part
trivially it follows from that

[Sraaan(©)] < [M[™ Y [T(ba, 53 bc)]

la| <|r3]

for some cube-full s € & with s | r3, together with some element b € & with
|b| < |M]| and (b, s) = 1. To prove Lemma , it will therefore suffice to show
that there is a constant ¢, . > 0 depending only on n and € such that

S [T(a )] < cocl AP HE 2 (O 1 57 (69)

ceom
le—r|<C

for any cube-full s € &', any a € ¢ which is coprime to s and any C' > 1.
We henceforth write s = ¢*d, where d | ¢ and

d= ][] = (6.10)

w®||s
e=3, 2fe

Following the opening argument in [I, Lemma 11] more or less verbatim, we
easily conclude that

[ T(a, s7¢)] < |c*d|™? > Ma(u)'?,

luf<[c|
aVg(u)—c=0 mod ¢

where
M,,(u) = #{y mod m : V*g(u)y = 0 mod m}. (6.11)

Let us denote the left hand side of by .#(C). Then our work so far
shows that

M(C) < |Pd"? Y > My(u)'2.

lc—r|<C [ul<|c|
aVg(u)—c=0 mod ¢
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Let € > 0. Then it follows from [I, Lemma 14] that there is a constant ¢, . > 0
depending only on n and ¢ such that
Z My(u) = #{u,y mod d : V*g(u)y = 0 mod d}
lul<|d] (6.12)
g Cn,a|AF|2n|d|n+a-

Our argument now differs according to whether |c| < C or le| > C. Begin-
ning with the former case, we have

M(C) < |c2d|"? Z My(w)?4#{|c —r| < C: aVg(u) — ¢ =0 mod ¢}

[ul<|c]
|02d|n/2< > Z M 1/2
[ul<[e]
o (C\ (lel)"
< |cAd| /2<|C|> (E) Z My(u).
[ul<|d|

This is at most cn7€|AF|2"|02d|”/2+56”, by (6.12)).
Next, suppose that |¢| > C. Starting as above we note that

#{|c —1| < C:aVg(u) — ¢ =0mod ¢} = Z w (an(u)t; r— ch) |

heon

where w is given by . Now it follows from Lemma [2.1] m that

Zw<an( )t—r—ch) Z/ (an gr—cx)@b(k'x)dx.

heon keon

But this is equal to

<‘A|> kzﬁ:n¢<ang(c) k) /nw(tq:.y) W

whence an application of Lemma [2.2] yields

|C2d|n/20n
‘%<C) C|n Z Ok,
keo™
[k|<el/C

where

o= My)? Y ¢(ak-Vg<E>—r.k).

lyl<ld| [ul<]c|
u=y mod d
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We proceed with an application of Cauchy’s inequality and ([6.12]), to obtain
2

k.V
‘O’k‘Q CnE|AF’2n’d|n+E Z Z w <%‘g(u>>

lyl<ld | [ul<|c|
u=y mod d

< Cpe| Ap*|d|™Fe Z y (ak.(Vg(m) - Vg(u2))) .

C
[u1],Juz|<|e]
ui=us mod d

Writing u; = us + dz and recalling , we see that
Vg(uy) — Vg(uy) = d(rs, M) *M*H(z)u,

plus a term which in independent of uy. Hence there exists m € &, with
Im| < |c¢/d|, such that |ok|* < cne|Ap[*|d]""]c|" N,y (k), in the notation of
. It now follows from Lemma that

1/2 n ’Czd’nﬂan n/2+e| |n/2 1/2
M (C) < ¢/ |Ap| B > 1P N (K)
keom
k|<|e|/C
2 J|n/2n| J|n/2+€| .|n/2 3\ /2
g2 |G2d]2Cnd |2 |C|
RIS o ml+ =5

2
< cncll 2| Ap[P Y2 cPd| = Cm (1 + 'CC‘”)

In view of our earlier work this bound is also valid when |¢| < C.
Let D = deg(c*d). We therefore arrive at the desired bound on noting
that . (C) < .4 (max{C, 3D}).

6.2. Proof of Lemma [6.2] In addition to taking into account the sparsity
of vectors ¢ for which F*(c) = 0, in the proof of Lemma |6.2| we will also need
to sum non-trivially over a in the definition of S, r/p(c).

To begin with we factorise r3 = bsry and use Lemmal[4.5|to factorise the sum
Sre.mb(€). The sum corresponding to bs we estimate using . For the sum
involving r4 we return to and relate the exponential sum to T'(a, s; c) for
a quartic-full s € &. Abusing notation slightly, this leads to the preliminary
estimate

Z |Sr3,M,b(c>| < |T3’€Z H |w|2n+3—r(w,c)/2+R(w,c) Z* T(a7 e C) '

lc|<C lc|<C =lbs lal<|ral
F* (C):[) F* (C):O
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The term involving b3 only depends on ¢ modulo k3. Thus, arguing as in the
proof of the second part of Lemma|6.1}, we break the c-sum into residue classes
modulo k3 and deduce that

Z 1S, b (€)] < |k3|2n+3|7’3|5 Z E(a)H ’w|fr(w,a)/2+R(w,a)’

le|<C amod k3 w|b3
F*(c)=0

where

Y(a) = E E T(a,ry;c)l.
lc|<C la]<|ra]
F*(c)=0
c=a mod k3

We will show that
|n/2+4/3+€é\n73/2+8

|b3|n/3—1/2

|74

S(a) < [ry|" TV 4 (6.13)
Recollecting ((5.4)), we can insert this into the above estimate in order to con-
clude the proof of Lemma [6.2]

In order to prove (6.13), we write r4 = ¢?d as before, with d given by (6.10)).

The argument in [I5, §7] now goes through more or less verbatim, leading to

the bound
> Tlarie) < e d* YT Y Maw),

laf<|ra| la1|<|c| luf<[e|
a1Vg(u)—c=0 mod ¢
g(u)=0 mod ¢

in the notation of (6.11). Making the change of variables h = Mu + b, we
deduce that there are elements ¢/, d’ with d’ | ¢ and || (resp. |d'|) of order |c|
(resp. |d|), such that

Yoo My(w)'? = > Ne(w)'2

[uf<[e| [hj<|c|
a1Vg(u)—c=0 mod c a1 VF(h)—c=0 mod ¢
g(u)=0 mod ¢ F(h)=0 mod ¢

Summing trivially over a;, we now find that

> Z*T(a,m;c) < e"2ld"* oy YT Ny(h)'?, (6.14)

/<G | lal<Irdl Ih/<]¢|
F*(c)=0 F(h)=0 mod ¢’
c=a mod k3

where

A = max #{ceﬁ":]c\<é, F*(c) =0, czrmodk:gc’}.

|r|<[ksc!|



CUBIC HYPERSURFACES OVER F,(#) 35

The equation F*(c) = 0 cuts out an absolutely irreducible hypersurface in A™
of dimension n — 1. Hence it follows from Lemma that

C’\ n—3/2
N < | —+1 . 6.15
<|k3c| ) (6-15)

It remains to analyse the sum

Se,d)= Y, N2
h|<le]
F(h)=0mod ¢

for given ¢,d € € such that d is square-free and d | c. We will show that
S(e,d) < |e|"He|d|2,

Once combined with @D in , this gives the desired bound on not-
ing that |d| < |c2d|*/? = |r4|*/?. The sum in question satisfies S(cic, dids) =
S(c1,dy)S(cq,dy) for any ¢;, d; € O such that (¢idy, cody) = 1 and d; | ¢;. Hence
it will suffice to show that

Sl = S(we’ ]_) << |w|e(n—1) and SQ — S(we’w) << |w|6(n_1)+1/2’

for any e € Z-o and any prime w. This is achieved by closely following the
argument of Heath-Brown [15], page 245]. The estimation of S; uses exponen-
tial sums and an application of Lemma [6.1| with C' = 1. The main ingredient
in the estimation of S5 is . Given that the arguments of [15, page 245]
carry over verbatim to the function field setting, they will not be repeated
here.

7. RETURN TO THE MAIN COUNTING FUNCTION

Recall our standing assumption that char(F,) > 3, together with the defi-
nition (5.1)) of the Hessian matrix associated to our non-singular cubic form
F € O[xy,...,x,]. The proof of [I7, Lemma 1] shows that there exists a point
xo € K7 satisfying

F(Xo) =0, det H(Xo) §£ 0, ’X()’ < 1/HF (71)

An inspection of the proof reveals that the result is false in characteristic 2 or
3 when F'is cubic. Such a point will automatically satisfy VF(xq) # 0, since
F' is non-singular.

Next, let L > 1 be an integer. We define the weight function w : K7 — Ry
via

w(x) =w (t*(x — x0)) , (7.2)
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where w is given by (2.1). Ultimately, L will be taken to be a large but fixed
integer. For L large enough, it is clear that

|x| <1/Hrp and |detH(x)| = |det H(xo)], (7.3)

for any x € K2 such that w(x) # 0.
Let b € 0™ and let M € € such that M | F(b). It is clear that w € S(KZ)

and we are interested in the asymptotic behaviour of the counting function

NP = Y wx/P), (7.4)
xeom
F(x)=0
x=b mod M
as |P| — oo. The quantities xq, b, M, L are to be considered fixed once and
for all. Consequently, all our implied constants are allowed to depend on these
quantities as well as on the height Hr of F.

Our main result concerning the behaviour of N(P) is as follows.

Theorem 7.1. Suppose that n = 8. Then there exists constants ¢ > 0 and
0 > 0 such that

N(P) = c|P|"* + O(|P|"*7).
The constant ¢ is a Hardy—Littlewood product of local densities, with ¢ > 0

if for every finite prime w there exists x € O such that F(x) = 0 and
X —b|s < |M|s.

In §7.1] we show how this result implies the statement of Theorem [I.2] Next,
in §7.2 we initiate our analysis of N(P) along the lines of §4 The outcome of
this first phase of the argument is recorded in Lemma The main contri-
bution to N(P) comes from the trivial characters, which is what we analyse
in §7.3] It is here that the explicit value of the leading constant c is recorded.
Finally, is devoted to a preliminary analysis of the contribution from the
non-trivial characters.

7.1. Deduction of Theorem [1.2l This section shows how Theorem [Z.1] im-
plies Theorem . Let X C P! be a non-singular cubic hypersurface defined
by a cubic form F over K with n > 8 variables. Assume that X (K,) # () for
every place v € ). In order to establish the Hasse principle and weak approx-
imation, we need to show that X (K) # () and X (K) is dense in X (A ) under
the product topology.

Using a familiar fibration argument, we use induction on the number of
variables n > 8, supposing for the moment that it is has been verified when
n = 8. Thus let n > 9 and let Hy, H, be generic hyperplanes in IF’?(_I defined
over K. We consider the fibration 7 : X — P}, with fibres Xopu=XNH,y,,
where H) , = AH; + 1H,. By the Lefschetz hyperplane theorem Pic(X) is a
free abelian group of rank 1 generated by the class of a hyperplane section Y.
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All fibres of 7 are therefore geometrically integral. Indeed if a fibre X , were
reducible, say X, , = Y1 + Y5, then Y7,Y5 would give independent elements
of the Picard group of X which are not multiples of Y, which is impossible.
Moreover P} satisfies the Hasse principle and weak approximation, as do the
smooth fibres by the inductive hypothesis. A standard argument (see Sko-
robogatov [34], for example) therefore yields the desired conclusion subject to
a satisfactory treatment of the case n = 8.

Henceforth suppose that n = 8. Let S be a finite set of primes of K.
Suppose that we are given points z., € X(K) and z, € X(K) for each
w € S. We wish to prove that there exists a rational point € X (K) which is
simultaneously close to these local points in their respective topologies. Since
the Hessian does not vanish identically on X, there is no loss of generality in
assuming that x,, doesn’t lie on the Hessian variety.

Let N, N be positive integers. We choose representative coordinates so
that o = [Xoo] for xo € T™ such that |x.| < 1/Hp and z, = [x,] for
X € O, for each w € S. We need to show that there exists a non-zero
vector z € K" such that F(z) = 0, with
N forallw e S. (7.5)

|z — Xoo| < ]/\\f;)l and |z — Xg|e < |w|,

Combining weak approximation for ™ with the Chinese remainder theorem,
we can find a vector b € 0™ such that b = x, mod @w?” for every @w € S. Let
M =T]_.s@" and let B run through elements of & for which B =1 mod M.
For |B| suitably large we will show that there is a vector x € ™ such that
F(x) =0, with

Ix — Bxoo| < NJ'B|  and  x=bmod M.

We claim that the vector z = x/B € K™ will satisfy the conditions required
to draw the desired conclusion. Now it is clear that F'(z) = 0 and that the
restriction at the infinite place in ([7.5)) is satisfied. Moreover, for any w € S
we will have |z — X,|, < |@|ZY if and only if |x — Xu|w < |@|ZY, since
B =1mod w. But this follows from the fact that

X — Xp|w < max {|x — b|y, |b — x|} < |w|;N.

It will therefore suffice to study the counting function N(P) in (7.4}, with
X) = Xo and L = N. Indeed, our arguments so far show that the Hasse
principle and weak approximation hold when n = 8, if we are able to show
that

N(P) >0,

for P € € such that |P| — oco. But this follows directly from the statement
of Theorem [7.1]
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7.2. Preliminary analysis of N(P). Our starting point is Lemma 4.4} which
gives

=P Y IrM|‘"/ S Spain(€)lny (B:c)d,  (7.6)

r€C 01<Ir71Q ! cegn
Ir<Q

r monic

where ry; = rM/(r, M) and S, pp(c), I, (0;c) are as in the statement of
lemma. We proceed to use the results of §2.4]to study I,.(6; c) for given r € 0.
In view of (7.2) and Lemma 2.3 we have

I,(6;c) = / R EEE (0P3F<x> + Pf;") dx
— _¢ (Pc XO) /w w (y) (9P3F(x0 +t " y) + Pt_—LC‘y> dy
_ _w (PC XO) Jg (9P3; PtrLC) , (7.7)

in the notation of (2.4)), where G(y) = F(xo + t *y). It is clear that G is a
polynomial with coefficients in K, and height Hy < Hp.
According to Lemma [2.6| we have Jg(0P3; Pt—tc/r) =0 if

| Pllc]
7]

Hence we may truncate the sum over c in ([7.6)) to arrive at the following result.

> Lmax{1,|PP’|0|Hr}.

Lemma 7.2. We have

=|PI" > |rul "/ > San(e),, (0;c)dd,

reC. jo1<Ir|~1Q~ 1ceﬁ"
Ir|<@Q le|<C
T mOnZC

where C = LHp|ry||P|™* max{1, |6]|P|}.

We will need a good upper bound for I, (6;c), for 7,60, c appearing in the
expression for N(P) in this lemma. This need is met by the following result.

Lemma 7.3. We have
|1,,,(0;¢c)] < Hpmax{1, |<9HP\3}*"/2.

Proof. When |c| < C we put v = 6P and w = Pt~Lc/ry,, for convenience.
In particular we have

Iw| < Hp max{1, |7}
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It then follows from Lemma 2.7 that

1
11, (05 ¢)] < = | Ja(v; w)

< % meas {y € T" : [yVG(y) + w| < Homax{1, ||"/*}}
< meas(Z),
where
KX = {X eT": |x —xo| < L7, WVF(x) + w| < Hp max{1, |7|1/2}} '

We would like to estimate the measure of this region. Recall that x, satisfies
(7.1). The parameter L > 0 is chosen large enough that holds for all
x € K7 such that |x — x¢| < L.

To begin with, if |y| < 1 then we take the trivial bound meas(#) < 1. Let
us suppose instead that |y| > 1. If x and x + %" are both in # then

VF(x+ %) — VF(x)| < He|y| V2

But
[VF(x+x) — VF(x) — H(x)x'| < Hp|[x'|*.

Using the inverse of H(x), whose entries each have absolute value O(1), we
find that

x| < Hpmax {|y|7"/2,[x/|*} .
This implies that |x'| < Hp|y|™"/2, since |x'| < 1/Hp. We have therefore
shown that

meas(%Z) < Hpmin{1, |y|7"/?}, (7.8)

which concludes the proof of the lemma. O

7.3. The main term. In this section we investigate the contribution to N(P)
in Lemma coming from ¢ = 0. Let us denote this term by M (P). We
will always assume that n > 8. Recalling the definition of I,,,(6;0) from
Lemma [1.4] we find that

M(P)=[P" > |rul " Srarn(0) Ky,
red_
Ir|<Q

where
K, = / w(x)y (0P°F(x)) dx dé.
lo|<lr|-1Q~' J Kz,
It follows from Lemma [7.3[that K, = O(|P|~?) for any r. Moreover, we recall
from (7.2) that w(x) = w(t(x — xp)) in K,, where w is given by (2.1)), L is a
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large fixed integer and x, satisfies ((7.1]). In particular VF(xq) # 0 and we let
& € Z be such that

£=|VF(xo)l.
In particular || < 1.
We begin with the following basic result.

Lemma 7.4. For anyY > 1 and any € > 0, we have
Z P 7Sy (0)| < Y/ 4/6%2

r€0.
onic
Proof. We factorise any r in the summation as r = bybybsr, and use the multi-
plicativity property Lemma [4.5| that is enjoyed by S, y/1(0). For the modulus
bi1bs we apply Lemma . For the modulus b3 (resp. r4) we use the second
(resp. first) part of Lemma with C' = 1. This leads to the conclusion that

St (0) < [[*byby| ™2 [bg [P/ 6F2/3 |y [P0/ 6T
< |7,‘n/2+1+5|b3|n/371/3|7,4’n/3.

Hence
~ 1
D Il IS (0)] < YO N T g Y YN
|:‘€_% |bara|<Y |brbo|=Y /|bsra] v

r monic

The inner sum is absolutely convergent and there are O(El/ 7) elements r; € O

such that |r;| < R. Summing first over r, we see that the resulting sum
over bs is absolutely convergent, which therefore completes the proof of the
lemma. 0]

Let us put C' = L/—\f Since K, = O(|P|™®) and 5/4 — n/6 < 0 for n > 8,
Lemma [7.4] implies that there exists o > 0 such that the overall contribution
to M(P) from r satisfying C~1Q < |r| < Q is O(|P|"~37?). On the remaining
range for r we will actually show that K, is independent of r. Let

Jy = /Kn w(x)y (0P°F(x)) dx.

¢S]

We then have

K, = Jp 46 + / Jp d6.
ol<C|P|= CIPI=3<|6|<[r| Q!

The first integral is independent of r and the second integral is over a non-
empty interval if and only if |r| < C7!Q7 ! P]? = C~1Q.
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Recalling ([7.2)), we obtain

Jy = /n w (t"(x — x0)) ¢ (0P*F(x)) dx

1
= = w <9P3F<X0 + t*Ly)) dy
L Jrn
Let f(y) = OP3F(xo +tLy). Then, provided L is sufficiently large, we will
have

011 PP€

IVf(y)| = 0Pt "V F(xo+ 1t "y)| = —

say, for all y € T". Likewise, we have |0Pf(y)| < A, for all |3| > 2 and all
y € T". Hence Lemma implies that Jy = 0 if A\ > 1. It therefore follows
that

K, = / w(x)y (0P°F(x)) dxdé,
lo|<C|P|-3 J Kz,

when || < C~'Q, which is now independent of r.
Making the change of variables ¢ = §P3, we conclude that

M(P) = |P|"6(Q)3 + O(|P|"77),

Z a5 ar6(0)

rel_
Ir|<Q

T monic

2= fa oy 00 P .

The latter quantity is (essentially) the “singular integral” for the problem and
can be evaluated explicitly as follows.

for n > 8, where

and

Lemma 7.5. We have
1

|V E(x)| L

[

> 1.

Proof. Opening up w and making a change of variables as before, we see that

1
== F “Ly)) dyd
/¢<f_\§/n¢(s& (x0+ 1t "y)) dydyp

T }

5meas{ye']l"":|F(xo—i-t Ly) <

Ol

Ln
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by Lemma . Put f(y) = F(x¢ +t'y). Then Taylor’s theorem yields
fy) =t"y.VF(xo) + 5t "y V2 F(xo)y + " F(y),

since F'(xg) = 0 by (7.1)). Now the second and third terms here have absolute

value O(|y|2/L?), whereas the first term has absolute value at most |y|§ /L.

Assuming that L is large enough it therefore follows from the ultrametric

inequality that |f(y)| < & / L for any y € T". Hence the region in which we
are interested has measure 1, which finally leads to the desired conclusion. [J

In view of Lemma we can extend the summation over r in &(Q) to
infinity with acceptable error. Thus, for n > 8, there exists § > 0 such that

M(P) = |P|"*&3 + O(|P|"7"),
where J is given by Lemma [7.5 and

S = Z e " Sr s (0)

reo.
T 1monic

is the (absolutely convergent) “singular series”. The analysis of & is standard
and will not be repeated here. It runs exactly as in Lee [27, 28], with the
outcome that & > 0 if for every finite prime w there exists x € 7 such that
F(x) =0 and [x — b|gy < |M|w.

7.4. Preparations for the error term. It remains to show that overall
contribution to N(P) in Lemmal7.2from ¢ # 0 is O(|P|"~3~%) for some § > 0
if n = 8. The purpose of this section is to lay some groundwork furthering this
aim. Now it is clear from that there is a satisfactory overall contribution
to N(P) from values of # such that |6 < Q=°. This allows us to henceforth
focus on the contribution from |8] > Q5.

Let Y, © € Z be such that

0<Y<Q, —-5Q<O<—(Y+Q). (7.9)

The last inequality is equivalent to Q O < (?C/Q\)_l and one sees that there
are at most 4¢QQ = O(log |P|) choices for Y, ©. We will content ourselves with
focusing on the overall contribution to N(P) from ¢ # 0 and r,# such that
Ir| = Y and 0] = ©. Let us denote this contribution by E(P)= E(P;Y,0).
Suppose that we are able to prove the existence of a positive constant n > 0
such that

<O
<

E(P)=O(|P|"*™) (7.10)
for any Y, © € Z satisfying (7.9). Then this will lead to an asymptotic formula

for N(P), as |P| — oo, for the range of n that ([7.10) is valid for.
In what follows it will be convenient to introduce the notation

J(©) = max{1,0|P}. (7.11)
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The constraint on ¢ imposed in Lemma [7.2| now becomes |c| < Y|P|"1J(©),
for a suitable implied constant. In particular, since ¢ # 0, we must have

> P
Y o> 7@y (7.12)

Switching the order of summation we obtain

E(P) = |P|" Z Z rar|” n/ Semp(),, (0;c)dd,  (7.13)
ceon red. |0|=0
_c#0 Ir|=Y
lc|<Y|P|~1J(©) r monic

where I,,,(0;¢c) < J(©)™™2. Let S be a set of finite primes to be decided
upon in due course, but which contains all prime divisors of M. Any r € 0
can be written r = b)b;ry where b} is square-free such that w | b} = w € §
and by is square-free and coprime to S. According to Lemma there is
a factorisation M = M;MyMs for My, My, M3y € O such that M; | (b))
M, | r$° and (M3, r) = 1, together with by, by, bs € (6/MO)" such that

—c.b
Srarb(€) = Sby,1,0(€) Sty 11,11 (€) Sy, 11 b, (€)1 ( Y 3) : (7.14)
3

The vectors by, by and bz depend only on the value of by mod M. In we
will consider the effect of S, 10(c) on E(P). Later, in §9, we will consider the

contribution from S, s, b, (C)-

8. CONTRIBUTION FROM SQUARE-FREE MODULI

It will be convenient to define
0* = {b € 0 :bis monic and square-free} .

Recalling the expression ([7.13) and the subsequent factorisation ([7.14]) of the
exponential sum involved, it follows that there exists by, by € (0/M )™ and
by € (O/MO)* such that

Pl
B(P) € 5=, > >

ceo™ blleﬁﬁ

c#0 w|b =
|c|<<?\Pr1J<@> fimes (8.1)
| Sy 1101 (€) Sy M 1, (€)]
X Z ’b/,r, ’ (n+1)/2 |E(Yv 9>|d9a

ro€0 ‘9‘:@

|bh 2| <Y
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where © (0:
Sbl,l,O C ]bl(bgm)M t;c
S(Y.0) = Y TNIGETE . (8.2)
bleﬁﬁ
(b1,9)=1
b} b1ro|=Y
b1Eb0 mod M

Here we have observed that (bibi72)y = b1(bire)as since (b1, M) = 1. Our
main job in this section is to estimate (Y, ) whenever c is suitably generic.

In what follows we will put b = by and redefine b{ry to be d, for simplicity.
Putting Sy(c) = Sp1,0(c), we have

S0~ 3 Y u(Fe),

la|<]b] yeo™
lyl<lb|
Let Ap € O denote the non-zero discriminant of F'. Assuming that F*(c) # 0
we shall take S to be the set of primes dividing ApM F*(c). Alternatively,
if F*(c) = 0 but VF*(c) # 0, then we will take S to be the set of primes
dividing ApMVF*(c). Lemma shows that the sum Sy(c) is a multi-
plicative function of . When b = w for a prime w, the sum is a com-
plete exponential sum over the finite field F,. It then follows from ([5.2))
that S (c) < |@|"V/2|(ww, VF*(c))|*/2. Hence

Sy(c Se «
> < X 0.V

b ot beot
(v,9)=1 (b,9)=1
|bd|=Y [bd|=Y

b=bg mod M

in (8:2). According to our definition of S this is O(|d|'Y'*%) if VF*(c) # 0
and O(|d|=%/2Y3/2+¢) if VF*(c) = 0. Recalling the bound in Lemma [7.3| for
Iya,, (0; c) and the definition ([7.11)) of J(©), this leads to the following “easy”
estimate for (Y, 0).

Lemma 8.1. Let ¢ > 0. If VF*(c) # 0 and S is the set of primes dividing
ArMV F*(c), then

}’}1-{-5
|d|J(©)>
If VF*(c) =0 and S is the set of primes dividing Ap M, then

}73/2+s
|d[>/2](O)/2"

The implied constants in these estimates are allowed to depend on the choice
of ¢, a convention that we shall henceforth adhere to. Lemma does not

S(Y,0) <

(Y, 0) <«
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take advantage of any cancellation in the sum over b € &* coming from sign
changes in the exponential sum S,(c). The following “hard” estimate does so
under suitable hypotheses. Its proof will occupy the rest of this section.

Lemma 8.2. Assume that n is even and that F*(c) # 0. Let S be the set
of primes dividing ApMF*(c). Assume, furthermore, that Y > \/q|d||P||c|.
Then for any € > 0 we have

(Je|Y): Y72
|d|1/2 J(@)n/Q—l/?'

At this stage it might be useful to compare Lemmas and for ’Eygical
values of Y, O, ¢ satisfying , by which we mean that Y ~ Q, © ~ (YQ)™!
and |c| ~ |P|/2. But then J(©) ~ 1 and the bound in Lemma 8.2|is roughly
of order (Q/|d|)"/2, while that in Lemma8.1]is of order Q/|d].

We begin the proof of Lemma [8.2] by writing

(Y, 0) <«

(Y. 0) = / o (#x— %)) ¥ (0P F(x)) BV %)

oo

where

Sp(c) Pc.x/dy
= ¥ e (C5)

be ot
(b,5)=1

[bI=Y/ld]
b=bp mod M
Here we recall that x| < 1 for x € K7 such that w(t*(x—xg)) # 0. We detect
the condition b = by mod M by summing over Dirichlet characters n; mod M.
Letting Dy = (O /M O)*, this gives

1 — T]l(b)Sb(C) PC.X/dM
N(Y5x) = 7D, > mlb) DIGRE Y b :
n1 mod M (l?%)ﬁ_ﬁl
|bl=Y /|d]

Next, we let J € Z be such that

~ P
J:q‘]:max{l,w}.
Y

In particular J > 0. Typically we expect J to be rather small. For any b
arising in 3(Y;x) let us put K = deg(b), so that

| =<

R\':qK:

SN
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Lemma is stated under the assumption that ¥ > +/q|d|[P][c|, which is
equivalent to J < K. Let us put ¢ = ¢! for the prime at infinity and

A =F,[z] C O. Then, since b is monic, there exist ci,...,cx € F, such that
b=t"+ et e T et e
:?Qa :thJb'

where a € (A/z’A)* and O/ € A. Thus b = t¥(a + 27V') with [b'| < 1 and
la| = 1. But then it follows that

(F0) <o (552 - ) (P
o (Zexli),

tha
since
Pc.x 1 1 |P||c]| !V N
dy (tE(a+27V)  tKa [tKad | a
_ Pl
JK|d|
<q

The conclusion of this is that the character ¢ in 3(Y’;x) only depends on the
value of b/t mod z7.
Putting Dy = (A/z7 A)*, it follows that

. 1 — Pc.x/dy n1(b)Sp(c)
S =g 3w Y (T X et
L) mod M a€Ds %

(b,5)=1
b=V /|d
t_K|b|Earro‘lrJ

Introducing Dirichlet characters x : Dy — C* to detect the congruence condi-
tion in the inner sum, we deduce that

1
R e P PP

11 mod M x mod z/

< 3w () @ satn. ),

acDo
where = BN DS
e M (b)x (7" b)Sy(c
ZO(T/DXa Y) - ‘b’(n+1)/2 .
beot
(b,5)=1

b|=Y/|d|
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In conclusion, we have therefore established the identity

1 [
N(Y,0) = AD#D, Zde(bo) > ) Eo(n, x;Y)
"7 mo x mod x (83)

X E ]tKadM ;C).
acDo

Our first concern is an estimate for the inner sum over a. It is easy to see
that

1
D

since the size constraint on c¢ in gives J = max{1, |P||c|/3A/} < J(O).
It turns out that this bound does not suffice for when n = 8 and it is
necessary to produce a bound which takes advantage of non-trivial averaging
over a. This is achieved in the following result.

Lemma 8.3. We have

1
D, 2

x mod z/

> X(@) Lk gay, (0:0)| < TT(O) ™2 < J(O)' 2, (3.4)

a€Do

Z X(@) L1k gq,, (0 €)| < J(O©)Y/27/2,

a€Do

Proof. Let x mod x/ be a Dirichlet character. Opening up Iix,q,, (6;c), we
deduce from ([7.7]) that

1 Pc.x0> ( 5 Pt_Lc)
a)lix,q. (0;c) = =— a Jo | 0P, ,
a§2X( a5 = a;QX( . (tKadM ¢ tFady
in the notation of (2.4)), where G(x) = F(xo+ ¢t *x). Lemma/2.7 implies that

ptt Pt Lecx
op3 —— | = opP3 — | d
Ja ( 7 tKadM) /Qa 1/J ( G(X) * tKady ) X7

~L¢
tEadyy
It follows from (7.8]) that meas(Q,) < J(©)™/2.
Let € > 0 and choose Jy € Z such that Jy has order of magnitude J(©)'/?*=.
If Jy > J then Lemma follows from (8.4]). Alternatively, we may proceed
under the assumption that J/2 < Jy < J. Recall that = ¢~ and suppose
that @ = o’ mod =0, for a,a’ € Dy. Then
pPt~tec Pt lc
tKCLdM tKCL/dM =

where

Oy = {x cT": |0P3VG(x) +

< J(@)W}.

~la—ad

< J < J(©)%=,
Jo

aa’
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Hence the set €2, only depends on the value of a mod z”°.
Let us write @ = ag + 2%a;, where ay € (A/zA)* and a; € A/z'"PA.
Then

Z x(@) ik, (0;€) = Z Z X(ao +z%ay)

a€Dy ap€(A/x70A)* a1€A/xT 70 A
1 Pc.(xo + tIx) )
X = PG (x dx
L Ja,, v (9)v (tK(ao + whoay)dy

For fixed ag € (A/270A)* and x € ,, we proceed to examine the sum

509 Y (e ) x(1+ ot

ag + x'0ay)d
wedmros 0 1)du

where y = x¢ -+t~ x and @y denotes the multiplicative inverse of ay mod z7/~7%.

Let ¢, be the additive character defined on A/x’/~% A via
oy (a) = x(1+ 27a).

This must be a twist of the standard additive character. Thus there exists an
element a, € A/z’~7° A such that

aya
pxla) = (75)
for any a € A/x’=% A. This gives a surjective homomorphism
¢ : Hom ((A/z” A)*,C*) — A/a’ =" A,

defined by ¢(x) = a,, with kernel isomorphic to Hom((A4/z°A)*,C*). We
conclude that

B Pc.y (1 Qg
0 eA/z;Jko (tK(ao + xjoal)dM> v < zl = ) ' (85)

Observe that |Pc.y/(t5dy)| < J. Hence

Pc.y B Pc.y
4 (tK(ao + xJOal)dM) =Y (tKag(l + :cJOala_O)dM)
= 9 (PC-Y(1 - al&_ol“‘lo))

tKCLQdM

_y Pc.y y —Pc.ya,agz”
N tKCL()dM tKCLodM

s —Pc.ya,agr” _ a"a,ag?
tKCL()dM x/—Jo ’

and
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for some a” € A. Applying this reasoning in (8.5)), we are led to the identity

5090 () X oM,

a1€A/xJ_JOA

where a, and a” are independent of the choices of ag and a;.

For fixed ap we deduce that S(x) = 0 unless a, = a” mod 2/~ where

a" = —a"ag mod 27/~ in which case |S(x)| < J/Jo. However, for fixed
a” € AJx’ A we have #{x € ¢ ' (a")} < #{x € ¢ 1(0)} < Jy, since ¢ is

a homomorphism. Thus

ﬁ S S (@) iy, (6

x mod z7/ |a€D2

2. 2

x mod z’ ap€(A/z70 A)*

/Q ¥ (0PG(x)) S(x)dx

a0

< Z meas(§2q,)

ap€(A/xl0 A)*
< JoJ(©)72.

k)l =

X

This completes the proof of the lemma, since Jo has order J (©)1/%+e, U

It is now time to start analysing the sum Y(n,x;Y) for fixed Dirichlet
characters n; : D; — C* and x : Dy — C*. Let us define a further character
: 0 — C*, given by ny(r) = x(r/ td°e") for any r € &. This a multiplicative

character of order at most J. We proceed to bound the sum

Z 7]1 ( )
’b|(n+1)/2

beot
(b,9)=1
bl<Z

for any Z > 1, where S is the set of primes dividing ApM F*(c).

Let X C P! denote the smooth and projective hypersurface F' = 0 defined
over K and let X, C IP”}(_2 denote the projective hypersurface cut out from
X by the hyperplane ¢.x = 0. Since F*(c) # 0 it follows that X, is smooth.
Moreover, we have dim(X) = n — 2 and dim(X.) = n — 3. We begin our
analysis of S (c) with an application of Hooley [19, Lemma 7 and Eq. (86)].
This shows that

Sw(c) = |w|{|w|# Xew(Fs) — #Xz(Fs) + 1}, (8.6)
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for any prime w. It now follows from (3.12)) that

bn—3

Sa(c) = (=1)" Pl Y wnmgy + O(l@[™?),

Jj=1

for any finite prime @ ¢ S, where for any prime ¢ { ¢ the number b, 3 is
the dimension of the middle cohomology group H; *(X.) = Hy *(X., Q)
(as a vector space over Q) and w,_3; are the eigenvalues of the Frobenius
endomorphism acting on it. The dimension b,,_3 is independent of the choice
of £ and is bounded in terms of n. Moreover, |w, 3 ;| = |@|"3/2 for each
index 1 <j <b,_3.

We proceed to study the Dirichlet series

Pl - 3 MOROS(E [ () nEmelsse)

o ER
e i

which is defined for o0 = R(s) > (n+3)/2. Let w ¢ S and 0 > n/2+ 1. Then,
with §8§3.3] to hand, implies that

1+ m(@)ma(@)55(c) _ (1 + m(w)na(w) (’;1‘):—23 i wn_:w‘)

|]®

« (1+O(‘w’n/270+ ‘w’nJrlan)) (88)
= Lo(n® Hp 7 (Xe),s —2)0"
X (1 + O(\w!"/%U)) ,

where we view 1 = n; ® 12 as a Galois representation by class field theory.

We may now appeal to the contents of where some of the analytic
properties of the global L-function L(n® H} *(X.), s —2) are recorded. When
w € S it follows from our discussion in that

Lo(n® HP 3(Xe),s —2) = 1+ O(|o|"TD/279),

since the inverse roots have modulus at most |z|"~3/2. Hence, on recalling
the definition of the associated global L-function, we finally obtain

F(s)=Ln® H} 3(Xe), s —2) V" B(s), (0 >n/2+1), (8.9)
where

E(s) =[] (t+0(=">) T (1 + O(|z|"D7277)) . (8.10)

wdgS weSs

Note that E(s) is holomorphic and bounded for o > n/2 + 1.
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We will need a decent bound for the absolute value of the function F'(s) well
inside its domain of analytic continuation. This is achieved in the following
result.

Lemma 8.4. Assume that n is even and let ¢ > 0. Then for o > 1/2 + ¢ we
have |F (s + (n+1)/2)| <. |c|°.

Proof. Recalling (8.9)), the fact that n is even implies that F(s+ (n+1)/2) =
G(s)E(s+ (n+1)/2) for o > 1/2, with

G(s) = L (n® H} *(Xo), s+ "52)
where n = n; ® ny. It follows from (3.13)) that
po(q—s—(n—?))/Q)p2(q—s—(n—3)/2)

P, (qfsf(nfS)/Q) ’

with Py = Py,—3 € Z[T] as in for £ € {0,1,2}. Furthermore, if we put
e, = deg Py then it follows that eg, eo = O(1) and

G(s) =

er < 1+1log|F*(c)| < 1+loglc|, (8.11)

by (3.14). Moreover, the inverse roots of P, have absolute value ¢("~3+%)/2,

It is now clear that G(s) is holomorphic in the half-plane ¢ > 1/2 and that
in this region its only zeros come from the zeros of Py(q~*~("=3)/2) which are
located on the line 0 = 1. We have

F (s + "TH) = Pg(q_s_(”_3)/2)H(s),

with
Po(q—s—(n—B)/Q)
Ru(q 07

Now it is obvious that |Py(¢~*~=3)/2)| < (1 4+ ¢t < 1, for 0 > 1/2.
Hence it suffices to establish the bound in the lemma for H(s).

We will produce a good bound when o > 1 together with a weaker bound
which is valid for ¢ > 1/2. In the familiar way (cf. Titchmarsh [37, Chap-
ter XIV]), we will then use the Hadamard three circle theorem to establish
the final bound recorded in the statement of the lemma. Our trivial bound is
based on . Thus it follows from that there is a constant ¢ > 0 such
that

H(s) = E (s + =)

IAREEHIED 3)3) pRES ) iy (e

=1 w oa=1 wa>1

< log Z(0),



52 T.D. BROWNING AND P. VISHE

for o > 1, where Z(s) is the ordinary zeta function of K = F,(t). It easily
follows that

|log H(s)| < log Z(o), (o >1). (8.12)
Next, for o > 1/2, it follows from that E(s+(n+1)/2) < Z(oc+1/2)°
for some absolute constant ¢ > 0. Hence we obtain
|H(s)| < Z (0 + 1) (1—g"/* )
for 0 > 1/2, whence
Rlog H(s) =log|H(s)| <logZ (o +3) + e

in this region. Note that log H(s) is analytic in the half-plane ¢ > 1/2.
We apply the Borel-Carathéodory theorem to log H(s) with circles of centre
3/2 + ity and radii 1 — /2 and 1 — €. This leads to the conclusion that

1
\logH(s)]<<g{logZ(a+%)+el}, (c=1+4e). (8.13)

We now refine this bound by applying the Hadamard three circle theorem
to log H(s). Let 09 = 0¢(e) and let s = o+ it with 1/2+e <o < 1+¢/2. We
take circles with centre og + it and radii 1y = 09 — 1 — /2, 19 = 09 — 0 and
r3 = 09— 1/2 — /2. Combining (8.12)) and (8.13)), we deduce the existence of
constants ¢;(g), c2(¢) > 0 such that

[log H(s)| < c1(e)' 7 (ea(e)en)”

where
| 1 1
ﬁ:ogr_ﬂﬁ:z_zmw(_) <1_5+o(_>.
IOgT’g/T’l (o) (o))

We take o sufficiently large to ensure that 5 < 1 —¢/2 < 1. Recalling the
bound (8.11)) for ey, all of this is now seen to give

[H(s)| < e(e) 70" (02 +2),

for an appropriate constant c(e¢) > 0. The statement of the lemma easily
follows. [

We are now ready to establish the following estimate, which once combined
with (8.3) and Lemma , clearly completes the proof of Lemma

Lemma 8.5. Assume that n is even and F*(c) # 0. Then for any ¢ > 0 we
have

T (b)772(b) Sb(c) Te 71/2+¢€

2. oz < el 2

beot

(b,Ap MF*(c))=1
lbl<Z
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Proof. Tt follows from Perron’s formula that the sum to be estimated is equal

to
1 2400 1 st
Z b = —/ F s+ nt S?
< f(n+1)/2 2mi [ 2 S

K<? —1300

where

ay = > m(b)n2(0)S(c)
beot, |bj=k
(b,Ap MF*(c))=1

and F'(s) is the Dirichlet series (8.7]). The latter is absolutely convergent and
bounded for ¢ > (n + 3)/2. Noting that

1 2+i00 sd 2
1 ERwds (@)
2700 Jorir S T log u|

this may clearly be rewritten as

24T 7s 73
L. F(s+n+1)ZdS+O<Z—>.
21t Jo_ir 2 s T
Let £ > 0. According to (8.9), the function F(s+ (n+1)/2) has an analytic
continuation to the half-plane ¢ > 1/2 + ¢ on which it is holomorphic. We
change the contour of integration so that it consists of the remaining three
sides of the rectangle R with vertices 2 —iT,1/2 +¢ — iT,1/2 + ¢ + T and

2+ 1T. We will use Lemma to estimate the contributions from the various
contours. Thus, to begin with, the horizontal contours are seen to contribute

~

J)E 2 sz\Q
< (7 gy (D2
T 1ye T

The remaining contour makes the overall contribution

N LietiT + R

< |eF 22+ / e e
or 1+

Combining our estimates and taking 7" = Z 3 we therefore arrive at the state-

ment of the lemma. O

Remark 8.6. Let us put m = n — 3 = dim X.. Our discussion so far has
focussed on the case of even n (i.e. m odd). The purpose of this remark is
to highlight the difficulty of dealing with odd n (i.e. m even). Returning to
the proof of Lemma and applying , when m is even we instead have
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F(s+(n+1)/2) = G(s)H(s) for o > 1/2, with H(s) holomorphic and bounded
in this half-plane and where

Py(q /)
Po(q—s—m/2)P2(q—s—m/2) ’

G(s)=L(m@m® H"(X:),s+ %) =

for suitable polynomials Py, Py, P» € Z[T|. (Recall that for odd m it was the
reciprocal of this function that we needed to analyse.) In order to have an
analogue of Lemma for even m we need a holomorphic continuation of
G(s) to the left of the line 0 = 1. However, any inverse root of P, has absolute
value ¢2 ! and it is therefore possible that Pg(q_s_m/ %) has a zero at s = 1
(which would imply that G(s) has a pole there). Since we have been unsuc-
cessful in our attempts to analyse this situation precisely, this prevents us from
establishing a version of Theorem when n = 9 using the methods of this
paper. As pointed out to the authors by the anonymous referee, the location
of the poles of L (1 @ o ® H*(X.), s) is related to the Tate conjectures and
it would be interesting to see what they have to say in this setting.

9. CONTRIBUTION FROM SQUARE-FULL MODULI

In what follows we will adhere to the notation introduced in Definition [4.6]
regarding j-full numbers. Thus any r € & admits a unique factorisation

J J
r=rpa [ o= [T K
i=1 i=1
for any integer j > 1, with r; being j-full. In particular it is easy to prove that

Y 1=0(X") and > || =0(X

Irjl<X Irj|>X

for any X > 1 and ¢ > 1/j. We will make frequent use of these bounds without
further comment.

In this section we complete our estimation of E(P), which was initiated in
, by using the bounds for ¥(Y, #) derived in the preceding section together
with the estimates for averages of complete exponential sums in We begin
by recalling , in which it follows from (5.2 that

Styam,ba (€) < (B TV (5, F ()2,
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Hence there exists by, by € (0/MO)" and by € (0 /M O)* such that

[P )
E(P) < ETE— Z > | Fr(e)]'?
b €0t
C#O /
- w|b) =>wes
|c|<;Y|P| /C >| (9.1)

x [Sra.ata 00 (€)] I3(Y, 6)|d,

r; @R Jls

|b/7"2‘<y

for suitable My | M, where (Y, ) is given by (8.2). Our treatment of this
sum differs according to the value of ¢ in the outer sum. It will be convenient
to differentiate these contributions by writing

e F,(P) for the part coming from c such that F*(c) # 0,
e [ (P) for the part coming from ¢ such that VF*(c) # 0 but F*(c) = 0,
e FE3(P) for the part coming from ¢ # 0 such that VF*(c) = 0.

In our estimation of these quantities we will follow common convention and
take € > 0 to be a positive quantity whose value may change from one appear-
ance to the next. Finally, it will be convenient to set

C=Y|P|"'J(©), (9.2)

to ease notation. In particular we must have C > 1 in (9.1), which recovers

the bound ¥ > |P|/J(©) that we recorded in (7.12). Throughout this section
we will make frequent use of the inequalities ((7.9) satisfied by Y and ©.

9.1. Treatment of F;(P). In this section we will assume that n > 8 is even
and we will take S to be the set of primes dividing AxM F*(c). In particular,
it is worth emphasising that |b}| can potentially be rather large.
Let Y; > 0 be such that
> Y

Y, = .
L IO
Our argument will differ according to the size of |bj72|. Let Ej.(P) be the

(9.3)

contribution to £y (P) from |b]ry| < Y1 and write Ej ,(P) for the corresponding

contribution from |b}ro| > max{1,Y;}. In the first scenario it will be more
efficient to apply Lemma whereas Lemma is sharper in the second
scenario.

The contribution from |Vyrs] < Yi. We may suppose that Y; > 1 since oth-

erwise there is nothing to prove. Note that |[V,rs||P||c| < Y2 for any ¢ con-
tributing to Ej,(P). Since F*(c) # 0, it therefore follows from Lemma



56 T.D. BROWNING AND P. VISHE

that
|P|f y1/2
|b’17“2|1/2 J(@)n/2—1/2’

(Y, 0) <

for any & > 0. There are O(|P|?) choices of V, € " such that @ | b} = w € S.
Employing our bound for ¥(Y,0) in (9.1)) we therefore obtain

P n+syl n/2(_) Sr
El,a(P)<<| ’ Z Z ’ 2:M27b2 ‘

n 2—-1/2 n/2+1
J(@)2y LSe0", el 72| e
F*(€)#0 |ry|<1y
le|<C
Decomposing 1o as byrs it follows from Lemma and ((5.3) that
|sz Mo b2 |(k2’F*(C))|
—2 o PF -_— Pc. 9.4
S Bl e 52 Wl gpr o
bo<Yy ko <Y,H/?

Hence

|P|n+€Y1 n/2@ |S7"3,M3,b3 |
Ero(P) < J(©)n/2-1/2 Z Z |T3|n/2+1 ’
ceﬁ" 3 66’

F*(e)#0 |p4<1)
c|<C

for appropriate M3 | M and bz mod M. The following result is devoted to
estimating the inner sums over ¢ and r;.

Lemma 9.1. Let R > 1. There exists a constant 0 > 0 depending only on n
such that

Z Z | 73:M3,b3 |<< |P| Rn/2+4/3 4 <Rn/3+cn>

ceom™ rgeﬁA
le|<C |r3|=R

Proof. To estimate this we write r3 = bsry and we will need to argue differently
according to the size of |ry|. For a parameter 0 < Z < R, to be defined in due

course, the contribution to the inner sum from r, such that |ry| = Z is at most

Yoo SO P Y s <|T3|"/3+(7n>

r3= b37”4€ﬁ CEﬁ" T3=b37“4§ﬁ
Irs|=R |e|<C Irs|=R
ra|=Z Ira|=Z (9.5)
P Rn/2+4/3 R R
71/12
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by Lemma [6.1] Alternatively, for appropriate Mj, bj, the second part of this
same result gives

S D Ssann @I < > ™D 1Sy (0)]

7"3:b37‘4§ﬁ CEﬁT/L\ T3:b37‘4§ﬁ CEﬁ’/L\
|7‘3|=R ‘C‘<<C |7‘3|=R |C‘<<C
ral=2 ral=2
< ‘P‘azn-l—l Z ’b3|n/2+2/3 (|b3‘n/3 + On)
r3=bsrqy €0
Irs|=R
lra|l=2

< |P|5§n/2+12n/2+1/4 (En/S + 671) )

Taking the minimum of these two estimates and summing over g-adic intervals
for Z, we readily arrive at the statement of the lemma. 0

Recalling the definitions (9.2)), (9.3) of C and Y;, and applying Lemma
with g-adic ranges for R < Y7, our work so far shows that

~ ~ ~ n/3
’p’n+sy4/3—n/2—6@ Y R . n
EI,G(P) < J(@)n/271/675 J(@) + <Y|P| ‘](@)>

P|n—3y4/3-n/6-5Q| p|3
< P {| | P

J(©)n/6-1/6=5 + Yn/2+4/3_6@J(@)n/2+1/6+6} )

for a constant § > 0 depending only on n. Note that 4/3 —n/6 — ¢ < 0 for
n > 8. Hence, in view of ([7.12)), there exists 6’ > 0 such that the first term is

,0|P3 ,
L [P < | Pt 9.6
P Sy < 1P (96)
This is clearly satisfactory. Applying ([7.9)), the second term is seen to be

< |P|5@}7n/2+4/3—5 + ’P’3n/2+1/2+36+5én/2+7/6+5}/}n/2+4/3—5

|P|3n/2+1/2+36+€}//\'1/6725

< |P|€@n/2—2/3—5 + (9.7)

@n/2+7/6+5

< |P|3n/4_1_5l,

for an appropriate constant ¢’ > 0 depending on § and e. This is satisfactory
for n > 8.
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The contribution from |brs| > max{1,Y;}. Let us put Yo = max{1,Y;} to
ease notation. In this case we deduce from Lemma [B.1] that

Py
[bira] J(©)7/2
since VF*(c) # 0. Applying this bound in (9.1]) we obtain

’P’"+5Y(3 n)/2@ ‘ST2,M2JO2<C)’
Elvb(P) < n/2 Z Z Z |b/1|1/2’r2‘(”+3)/2'

(Y, 6) <

ceom” ro€0
*

E (c)7é0 w|b’ :>w€S Y2<|b1T2|<
le|< «C

Decomposing 1o as byrs, we find that

Z |S7“2,M2,b2 (C)| _ Z |Sb2vM§vb'2 (C>ST37M37b3 (C)’

’T2|(n+3)/2 |b27=3|(n+3)/2 )
N Tzeff N ATQZbQTgEﬁA
Y2<|b/17'2‘<Y Y2<|b/1b21‘3|§Y

for appropriate My, M3, b}, bs, Summlng this over the relevant c, we now apply

Lemma [9.1] for g-adic values of R in the interval Y5/|b\bs| < R < Y /|b,bs] to
conclude that

S, - cr
Z Z | 3’]‘(4:;;?;( )‘ < |P|5 Yn/3—1/6—6 4 — ]
73| (Ya/[bh b )16+

ceom™ N r3€ld N
F* (0)7’5\0 Y2<‘b'1b27”3|<Y
le|<C

The sums over b} and by are now easily estimated (with recourse to (9.4]) for
the latter). Hence, recalling (9.2)), we obtain

[Py G-m2e (o e i (Y|P| "1 J(©))"
Eyp(P) < J(©)n/2 Y /6t

2
’P’n?4/3—n/6—6 }/}n/2+3/2j(@)n/2
J@ypr T

(9.8)

< |P|E@){

for some § > 0. Note that 4/3 —n/6 —§ < 0 for n > 8, as before. Hence,
in view of ((7.12)), there exists ¢’ > 0 such that the first term is bounded by

, which is satisfactory. On the other hand, taking YoV = }A//J(@), the
second term is seen to be

< |P|s@?n/2+4/3—§ + |P|3n/2+1/2+35+6@n/2+7/6+55}n/2+4/3—6'

But this is satisfactory for n > 8, by (9.7 .
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9.2. Treatment of Ey(P). In this section we will assume that n > 8 (without
any assumption on the parity) and we will take S to be the set of primes
dividing ApMVE*(c). There are O(|P|?) choices for b] in (9.1). Applying
Lemma (8.1, we therefore obtain the bound

P[n+e@ S,
BiP) < 510 >y Puaenfl
Y (n=3)/2 ] (©)n/2 e o |79 | (™

F*(€)=0 |5y <V
VE*(c)#0

lc|<C

The argument used in (9.4) allows us to replace ro by r3 in the inner sum,
after adjusting the value of the parameter ¢ in the exponent of |P|. We will
need the following analogue of Lemma

Lemma 9.2. Let R > 1 and put § = ﬁ Then

‘STS M3 b3 | € ﬁn/?’ An—1/2—6 | D1/6An—3/2
> DL Tz < PP Fes TC +REC :

ce0™ rzel
F*(C)fo |T‘3|:R
le|<C

Proof. To estimate this we write r3 = bsry and we start by considering the
contribution to the inner sum from ry such that |ry| = Z, for a parameter

0 < Z < R to be defined in due course. The estimate (9.5)) gives

|P|e§n/2+4/3

Z Z |ST37M37b3 | < 2\1/12 <R + C ) .

r3= b37“4€ﬁ ceom”
lrs|=R F"(c)=0
ra|=7  lel<C

Alternatively, we invoke Lemma [6.2], which gives

Z 1S, vt be (€)] < Rn/2+4/3+e <|b3|n/3—2/32n/2—5/6 +6n—3/2>
P90
le|<C

_ pn/2+4/3+e (En/3—2/32n/6—1/6 I 611—3/2) ,
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for any r3 = bsry € O such that |rs] = R and |ry| = Z. There are clearly
O(R'3Z=112) such choices for r3. This therefore gives

Rn/2+5/3+e . Vs X R ,
Z Z |ST3,M3,b3 ‘ <L — <Rn/3_ /3Zn/6— /6 4 Cm—3/ )

1/12
r3= b37”4§ﬁ ceom” Z/
rs|=R " ()=0
Ira|=2 le|<C

< Rn/2+a/s+e <§n/371/32\n/671/4 4 351/367#3/2) .
Taking the minimum of these two estimates gives

Z Z |S7“3,M3,b3 | < |P| Rn/2+4/3 (A+B+ R1/3On 3/2)
r3=bars€0 ceO™

Irs|=R F*(c)=0

Ira|=2 le|<C

where

A— min{ﬁn/?ﬁl/BZ\n/Gfl/ 2\ 1/12R5n/3}

B = mln{R"/3 1/3Zn/6 1/4 ~ 1/12Cn}
We take min{X,Y} < X°Y'~? in both of these, with § = , to find that
A < RV3-9/3 and B < RY6C"~1/2-9, Summing over g-adic mtervals for Z, we
quickly arrive at the statement of the lemma. 0

~

Applying Lemma in our earlier bound for Fy(P), with 1 < R < }A/, we
are led to the conclusion that
| P|n+a@

Es5(P =
2(P) < Y (=32 J(©)n/?

(?n/371/676/3 L Gn1/2-6 }/}1/667173/2) ’

where 6 = 2(n—1_1) The first term here is equal to the first term in the estimate
for B 4(P), with a different value of §, and so makes a satisfactory overall

contribution for n > 8. Recalling the definition (9.2)) of C, the second term
contributes

|P|n+a@(y|P| 1]( ))n—1/2—<5
Y n— 3)/2J(@)n/2
_ |P|1/2+5+86Yn/2+1—5J(@)n/Q—l/Q—é

< |P|1/2+§+€@n/2—1—5 + |P|3n/2—1—25—}—6}/}71/2—&-1—5@71/2—&-1/2—5
< |P|3n/47176/2+€
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which is satisfactory for n > 8. Similarly, the contribution from the third term
is seen to be

IPI”“@(YIPI 'J(0)) 2
Yn/2 5/3J<@)n/2
_ |P|3/2+5@Yn/2+l/6t](@>n/2f3/2
< |P|3/2+a@n/2—11/6 + |P|3n/2—3+5}/}n/2+1/6@n/2—1/2

< |P‘3n/4_5/4+€,

which is also satisfactory for n > 8.

9.3. Treatment of F3(P). In this section we will assume that n = 8 and we
take S to be the set of primes dividing ArM. We combine the second part of
Lemma with the argument used in (9.4]) to replace ry by 73, to get

|P|"+<6 D | Sy, M,bs (C)|
Eg(P)<< 3 3723
n n n/2+2 7
Y22 J(0)/? rs€6 _ ceom s/
|T3|<Y VF*(c)=0
0<|c|<«C

for appropriate M; | M and by mod Mj3. Our main tools to estimate the inner
sum over ¢ will be Lemma and its corollary (6.4)), together with Lemma .
We begin with the following result.

Lemma 9.3. Let n =8 and let A > 0. Then

|pteectA | pli-a/zte
Yn/2-2 J(@)n/2

— |P|n—3—A/2+a

Proof. Recalling the notation ({9.2)) for C , we take n = 8 and see that the left
hand side is

< ’P’2+A+s@i}4fAJ<@)2fA
< ’P’2+A+a@f/4—A + ’P’8—2A+aé3—Ai}4—A
< |P|5—A/2—1—67

as claimed. O

To begin with we dispatch the contribution from r5 for which |bs| > Y19,
for some small value of § > 0 to be determined below. In particular we must
have |ry] < Y? in the decomposition r3 = bsry. In this setting ((6.4]) gives the
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contribution
|P|n+s@ (an—S/Q s 152
< = E 75 + 3]l
yr2=2je)? L |03
3| <Y
|bs|>Y1 -0

|P|n+€©i}0(6) (On—5/2 o3/
}/}n/Q—QJ(@)n/Q y1/6 ’
since there are O(?l/ 3) available choices of r3. Assuming that § is sufficiently

small, the first term makes a satisfactory contribution, by Lemma On the
other hand, taking n = 8, the second term contributes

|P|n+sé/y\'71/3+0(5) B |P|”‘3+€ ((:)|P|3}71/3+O(5)>

< J(©)/2 J(©)/?

This too is satisfactory, if § is small enough, since Y > |P|/J(©).

We now turn to the contribution from |rs| < Y such that |bs| < yi-s,
There are clearly at most O(Y/3-9/12) choices for r5. In fact the only place we
will need to use this inequality is when dealing with the term |r3|>™/5*! that
appears in Lemma 6.1 Summing over the available r3 the effect of this term
is seen to be

P n—i—aé\) a P n—i—aé\)
An/|2|2 n/2 Z ’TS‘H/S < An/64|/3+|5/12 n/2’
yrizjepr % J(0)
[rs|<Y
|b3|3<?1—6

The exponent of Y is strictly positive for n = 8, which is enough to conclude
that this term makes a satisfactory overall contribution.

Applying Lemmas [6.3] and [6.1] the remaining contribution is found to be at
most

P|"+<©
= Lid (H, + H,),
Yn/?—?J(@)n/Q
where
f O |Galrs) O f O |Ga(rs)]
H, = min{ — , , Hy = ming — , ————= /.
! TS% {]r3| | g /242 2 7«32@6 rs| 7 |rg|n/2+2
‘Tg‘SY |T‘3|§Y

In the light of Lemma [9.3]it suffices to show the existence of positive constants
A1, Ay > 0 such that H; < C%2¢ for i = 1,2. Beginning with H;, we take



CUBIC HYPERSURFACES OVER F,(#) 63

min{X,Y} < XV/5-20/5y4/5+2/5 for a very small value of § > 0. Recalling
that n = 8 and then appealing to (6.2)), we therefore find that
5|9

1/5 (’bg|1/2’b4|3/8|b5|2/5|b6‘1/12’b7|5/14|T’8|1/4)4/5 '

Hl < 06—5
7'366/\ |T3|
[r3|<Y

This therefore gives H; < 56_‘5, as required, since the sum over r3 is absolutely
convergent if 9 is small enough. Turning to Hs, for a very small value of 6 > 0,
we take min{X, Y} < X3/4-0/8y1/4+9/8 This time we appeal to (6.3)), giving

1/4
73] (|bs]*/3]b4|[bs] 75| b |? b7 |2 [bs] /5| rg[>/2)
|T3|3/4 )

H2 < 6675 Z

7“360
|T3‘<Y

This therefore gives Hy < 66_5, as required, since the sum over r3 is absolutely
convergent if § is small enough.
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