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Topics in Combinatorics IV, Solutions 1 (Week 1)

1.1. (⋆) Compute the number of Dyck paths of length 2n which start with two steps up.

Solution: Let us compute the number of Dyck paths that do not have the required property.

Equivalently, we want to compute the number of Dyck paths whose second step is down. Then

there is a clear bijection between the set of such paths and the set of Dyck paths of length 2n− 2

(just consider the path from (2, 0) to (2n, 0)), so the answer is Cn − Cn−1.

1.2. (⋆)

(a) Let P be a Dyck path of length 2n, let a1, . . . , an be the positions of the steps “down”,
1 ≤ ai ≤ 2n. Show that ai ≥ 2i for every i ≤ n.

(b) Show that the number of strictly increasing sequences (a1, . . . , an) of integers satisfying
2i ≤ ai ≤ 2n is the n-th Catalan number Cn.

(c) Show that the number of strictly increasing sequences (a1, . . . , an−1) of integers satisfying
1 ≤ ai ≤ 2i is the n-th Catalan number Cn.

Solution:

(a) Before i-step down one must have i− 1 steps down and at least i steps up, so ai > 2i− 1 as
required.

(b) Consider a lattice path where on every ai-th place the paths goes down, and on the others it
goes up. The assumptions on the sequence guarantee that we obtain a Dyck path of length 2n:
the computation made in the proof of (a) says that for every place ai the number of steps up
before is is always larger than the number of steps down. Moreover, positions of steps down
define a Dyck path uniquely, so this is an injective map. The inverse is given by (a).

(c) The bijection with sequences in (b) can be constructed as follows: take the “complementary”
sequence, i.e the sequence of positions of steps up, remove the first entry (which is always 1),
and subtract 1 from each term.

1.3. Show explicitly that the number of triangulations of an (n + 2)-gon satisfies the Catalan
recursion (see Lemma 1.10 from lectures).

Solution: Denote the number of triangulations of an (n+2)-gon by Tn, put T0 = 1. Fix a vertex of
the (n+2)-gon, call it 0, and index vertices counterclockwise from 0 to n+1. Take any triangulation,
and consider the minimal k which is connected to 0 by a diagonal.

If there is no such vertex, then there is a triangle (0, 1, n+1), and the number of such triangulations
is equal to the number of all triangulations of the (n+ 1)-gon (1, . . . , n+ 1), i.e. Tn−1.
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Otherwise, the diagonal between 0 and k (note that 2 ≤ k ≤ n) divides the polygon into two, namely
a (k+1)-gon P1 = (0, 1, . . . , k) and an (n−k+3)-gon P2 = (k, k+1, . . . , n+1, 0). The triangulation of
the latter is arbitrary, so number of triangulations of P2 is Tn−k+1. The triangulation of the former
satisfies the following condition: it has no diagonals from 0. Thus, the number of triangulations of
P1 is equal to the number of triangulations of the k-gon (1, . . . , k), which is equal to Tk−2.

Therefore,

Tn = Tn−1 · 1 +
n∑

k=2

Tk−2 · Tn−k+1 = Tn−1 · T0 +

n−1∑
i=1

Ti−1 · Tn−i =

n∑
i=1

Ti−1 · Tn−i.

Alternatively, one can consider the triangle of a triangulation with side (0, n+ 1), denote the third

vertex by k+ 2 (here 2 ≤ k+ 2 ≤ n, so 0 ≤ k ≤ n− 2). It subdivides the polygon into (k+ 2)-gon,

a triangle, and a (n− k + 1)-gon, so the result follows.

1.4. Find a bijection between ballot sequences of length 2n and bracketings of n+ 1 variables.
Hint: assign to every +1 in the sequence an opening bracket.

Solution: Assign to every +1 in the sequence an opening bracket, and to every −1 a variable. Add
another variable at the end. We claim that there is a unique way to add n closing brackets to create
a bracketing.

Indeed, we can proceed by induction. The case n = 1 is obvious. Now let us go from left to right,
find the first two variables aiai+1 not separated by an opening bracket (note there is always a pair of
variables without an opening bracket between them: there are n+ 1 variables, n opening brackets,
and the very first symbol is an opening bracket). This means that there is an opening bracket
before ai, so we put a closing bracket after ai+1, and then substitute the expression (aiai+1) by a
new variable a′i, thus reducing the number of variables (and brackets) by one, so we can now use
the induction assumption.

The inverse map is obvious: assign +1 to every opening bracket, and −1 to every variable except

for the last one.

1.5. Given a ballot sequence ε1, . . . , ε2n, one can write a sequence of differences ai = εi+1 − εi,
1 ≤ i ≤ 2n− 1. Characterize all such sequences (and thus, get another definition of Catalan
numbers).

Solution: Observe first that a1 + · · · + ak = (ε2 − ε1) + · · · + (εk+1 − εk) = εk+1 − ε1 = εk+1 − 1.

Therefore, we can express εk+1 in terms of ai as εk+1 = 1 +
k∑

i=1
ai. We can now reformulate the

definition of the ballot sequences in terms of ai: the three conditions from Definition 1.1 become

(1) 1 +
k∑

i=1
ai = ±1, or, equivalently,

k∑
i=1

ai = 0 or −2 for every positive k ≤ 2n− 1;

(2) 1 +
2n−1∑
k=1

(
1 +

k∑
i=1

ai

)
= 0, or, equivalently,

2n−1∑
k=1

(
k∑

i=1
ai) = −2n;

(3) 1+
m∑
k=1

(
1 +

k∑
i=1

ai

)
≥ 0, or, equivalently,

m∑
k=1

(
k∑

i=1
ai) ≥ −1−m for every positive m ≤ 2n− 2.

Once we have a sequence satisfying the three properties above, we can always define ε1 = 1 and

εk+1 = 1 +
k∑

i=1
ai for k = 1, . . . , 2n− 1.
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