Topics in Combinatorics IV, Homework 1 (Week 1)

Due date for starred problems: Friday, October 20, 6pm.

- **1.1.** (\star) Compute the number of Dyck paths of length 2n which start with two steps up.
- **1.2.** (*)
 - (a) Let P be a Dyck path of length 2n, let a_1, \ldots, a_n be the positions of the steps "down", $1 \le a_i \le 2n$. Show that $a_i \ge 2i$ for every $i \le n$.
 - (b) Show that the number of strictly increasing sequences (a_1, \ldots, a_n) of integers satisfying $2i \le a_i \le 2n$ is the *n*-th Catalan number C_n .
 - (c) Show that the number of strictly increasing sequences (a_1, \ldots, a_{n-1}) of integers satisfying $1 \le a_i \le 2i$ is the *n*-th Catalan number C_n .
- **1.3.** Show explicitly that the number of triangulations of an (n + 2)-gon satisfies the Catalan recursion (see Lemma 1.10 from lectures).
- **1.4.** Find a bijection between ballot sequences of length 2n and bracketings of n + 1 variables. *Hint*: assign to every +1 in the sequence an opening bracket.
- **1.5.** Given a ballot sequence $\varepsilon_1, \ldots, \varepsilon_{2n}$, one can write a sequence of differences $a_i = \varepsilon_{i+1} \varepsilon_i$, $1 \le i \le 2n 1$. Characterize all such sequences (and thus, get another definition of Catalan numbers).