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Topics in Combinatorics IV, Solutions 11 (Week 11)

11.1. Let P be a cube in R3 with vertices (±1,±1,±1). A symmetry of P is a g ∈ O3(R) taking
P to itself.

(a) Show that symmetries of P compose a group, denote it by SymP .

(b) Show that SymP acts on the set of faces of P transitively.

(c) Show that SymP acts transitively on the set of triples (v, e, f), where v is a vertex of
P , e is an edge, f is a face, and v ∈ e ⊂ f .

(d) An element g ∈ O3(R) is orientation-preserving if det g = 1. Show that the subgroup of
Sym+P of SymP consisting of all orientation-preserving symmetries of P is isomorphic
to S4; what does it permute?

(e) Compute the order of SymP .

Solution:

(a) If g1, g2 ∈ O3(R) take P to itself, then so do g−1
i and g1g2.

(b) A rotation by π/2 around any coordinate axis belongs to SymP . Rotations around the z-
axis act transitively on vertical faces, and rotations around x-axis take some vertical faces to
horizontal ones.

(c) Let (v, e, f) and (v′, e′, f ′) be two triples (these are called flags). Using rotations around the
coordinate axis, we can take v to v′, let g1v = v′, g1 ∈ SymP . Denote e′′ = g1e, it is an edge
incident to v′. Now, SymP contains a rotation by 2π/3 with respect to the diagonal of P
going through v′ and −v′, powers of this rotation act transitively on all edges containing v′.
Thus, there is g2 ∈ SymP such that g2e

′′ = e′ and g2v
′ = v′. So, we have already taken v to

v′ and e to e′ by g2g1 ∈ SymP . Denote f ′′ = g2g1f , if f
′′ = f ′ then we are done. Otherwise,

observe that there are precisely two faces containing e′, and they are taken to each other by a
reflection in the plane passing through e′ and the opposite edge −e′. Applying this reflection,
we take f ′′ to f ′, preserving e′ and v′.

(d) Take four main diagonals of P (connecting a vertex with its opposite), SymP clearly permutes
them. As it was shown above, using rotations only any two diagonals can be taken to any
two. Rotating, if needed, the cube by π around the normal to the plane containing these two
diagonals, we permute the other two diagonals. Therefore, any permutation of 4 diagonals
can be done by orientation-preserving elements of SymP .

Further, let g ∈ Sym+P preserve all four diagonals. Choose two diagonals, then g preserves the
plane Π containing them. The restriction of g onto Π is a rotation preserving both diagonals,
so it is either trivial or a rotation by π. Since g ∈ SO3(R), it follows that g either is trivial
or is a rotation around the normal to Π (as every element of SO3(R) has an eigenvalue 1).
In the latter case g permuted two other diagonals, so we conclude g is trivial. Thus, Sym+P
provides all permutations of diagonals and does not fix any configuration, so it is isomorphic
to S4.
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(e) One way to prove this is to observe that the index of Sym+P in SymP is clearly equal to 2
(by the definition of left cosets), so |SymP | = 2|S4| = 48.

Alternatively, the number of flags is 8 · 3 · 2 = 48 (where 8 is the number of vertices, 3 is the
number of edges incident to a given vertex, and 2 is the number of faces containing a given
edge), the group SymP acts on the set of flags with a single orbit and trivial stabilizer of
every flag. Therefore, |SymP | = 48.

11.2. (a) Show that SymP is generated by reflections. How many of them do you need to
generate SymP?

(b) Show that SymP cannot be generated by two reflections.

Solution:

(a) We have shown above that to take any flag to any flag we need two types of rotations (with
respect to coordinate axes and with respect to normals to planes passing through two diago-
nals), and reflections with respect to planes passing through two diagonals (or, equivalently,
passing through a pair of opposite edges). Now, every rotation of two types above is a product
of two reflections. Indeed, SymP contains the reflections in the following mirrors:

� passing through a coordinate axis and a pair of opposite edges (there are six of these,
their equations are x = ±z, x = ±y and y = ±z);

� passing through two coordinate axes (there are three of them, their equations are x = 0,
y = 0 and z = 0).

The rotation around, say, x-axis is a product of the reflections in the plane z = 0 and in the
plane x = y, and similarly for rotations around other coordinate axes; the rotation around the
normal to the plane x = y is a product of the reflections in the plane z = 0 and in the plane
x = −y, and similarly for other rotations.

(b) If we assume that SymP is generated by two reflections rα and rβ, then the group would leave
the space {α, β}⊥ of positive dimension invariant. However, SymP is clearly irreducible.

Let v be a vertex of P , e ∋ v be an edge of P , and f ⊃ e be a face of P . Let p1 = v, denote
by p2 the center of e, by p3 the center of f , and by O the center of P (i.e., the origin of R3).
Let C be the cone over triangle p1p2p3 with apex O.

11.3. (⋆) Show that three reflections in the walls of C generate SymP . Write down the relations
among these generators (i.e., give a presentation of SymP by generators and relations, where
generators are the three reflections above).

Solution: Choose v = (1, 1, 1), e = P ∩ l for l = {(x, y, z) | x = y = 1}, f = P ∩Π for Π = {(x, y, z) |
x = 1}. Then p1 = v = (1, 1, 1), p2 = (1, 1, 0), p3 = (1, 0, 0). Then the planes of reflections are
0p2p3 = {z = 0}, 0p1p3 = {y = z}, 0p1p2 = {x = y}. Denote reflections in these planes by s1, s2
and s3 respectively.

The subgroup generated by s2 and s3 permutes coordinate axes, so conjugating the generators by
the elements of this subgroup we get reflections in planes x = 0, y = 0 and x = z (cf. Lemma 7.6).
Further, s1s2s1 is the reflection in the plane y = −z (check this!). Again, conjugating it by s3 and
s3s2s3 we get reflections in the planes x = −y and x = −z.

Therefore, we got all 9 reflections contained in SymP , which generate the group (see Q11.2).

Of course, one could apply Theorem 7.7 instead (but then one needs to argue why C is a chamber).
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We are left to find the relations, i.e. the orders of sisj . Reflections s1 and s2 generate a dihedral
group preserving f , so (s1s2)

4 = id. Reflections s2 and s3 generate a group permuting the coordinate
axes, so (s2s3)

3 = id. Finally, the reflections s1 and s3 commute (as the planes 0p1p2 and 0p2p3 are
orthogonal), so

SymP = ⟨s1, s2, s3 | s2i , (s1s2)4, (s2s3)3, (s1s3)2⟩.

Let G be a group acting on a set X. Recall that the stabilizer Stab G(x) of x ∈ X in G is
the set of elements of G fixing x, i.e. Stab G(x) = {g ∈ G | gx = x}. For a set U ⊂ X the
stabilizer Stab G(U) is defined as the intersection of stabilizers of all points of U .

11.4. Show that for every point p ∈ Rn the stabilizer Stab SymP (p) is generated by all reflections
r ∈ SymP such that rp = p.

Solution: For general solution see Exercise 12.1.

For SymP -specific proof one can take a look at the edges and faces of the chambers and see that the
statement is obviously true. For points that do not lie at the boundary of chambers the stabilizers
are trivial by Theorem 7.7.
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