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Topics in Combinatorics IV, Solutions 12 (Week 12)

12.1. Let G be a finite reflection group in Rn. Recall that the stabilizer Stab G(p) of p ∈ Rn in G
is the set of elements of G fixing p, i.e. Stab G(p) = {g ∈ G | gp = p}. G is irreducible if it
has no invariant subspaces (and reducible otherwise).

(a) Let p belong to the intersection of two closed chambers of G only (i.e., p belongs to
precisely one mirror α⊥). Show that Stab G(p) has order 2 (and is generated by rα).

(b) Let p ∈ Rn belong to at least one mirror of G, p ̸= 0, and let Γ be the group generated
by reflections of G fixing p. Show that Γ is a reducible finite reflection group.

(c) Show that every chamber of Γ is a union of chambers of G.

(d) Show that Stab G(p) takes any chamber of Γ to another chamber of Γ (i.e., every g ∈
Stab G(p) permutes chambers of Γ).

(e) Show that Γ acts transitively on all chambers C of G such that p ∈ C.

(f) Show that Stab G(p) = Γ, i.e. the stabilizer of p ∈ Rn is generated by all reflections
r ∈ G such that rp = p.

Solution:

(a) Let C1 and C2 be chambers such that p ∈ C1 ∩C2. Then for every g ∈ StabG(p), g(C1) = C1

or g(C1) = C2. In other words, g = e or g = rα, as required.

(b) This holds by definition: Γ is generated by reflections and is finite as a subgroup of finite
group. It is reducible as it preserves the span of p.

(c) As Γ is a subgroup of G, every chamber of Γ is bounded by mirrors of G. Thus, every chamber
is composed of several chambers of G (the number is the index [G : Γ] = |G|/|Γ|).

(d) The group StabG(p) takes mirrors containing p to mirrors containing p. Therefore, StabG(p)
permutes the mirrors of Γ, and thus preserves the chamber structure of Γ.

(e) Consider a small neighborhood N of p not intersecting mirrors of G not containing p, N is
tessellated by chambers of Γ on which Γ acts transitively (see Theorem 7.7). At the same
time, as N does not intersect other mirrors of G, its intersection with any chamber of Γ is
contained in one chamber of G only. Thus, every chamber of Γ contains a unique chamber of
G whose closure contains p, and Γ acts on these chambers transitively.

(f) Take any g ∈ StabG(p), choose any chamber C of G such that p ∈ C. Then p ∈ gC as well.
As it was proved above, there exists an element of Γ taking C to gC, and thus g ∈ Γ.
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12.2. (⋆)

(a) Let G = I2(3)(= S3) = ⟨s1, s2 | s21, s
2
2, (s1s2)

3⟩. Show that all reflections of G are
conjugated to each other in G.

(b) For G = I2(m) = ⟨s1, s2 | s21, s22, (s1s2)m⟩, is it true that all reflections in G are conju-
gated to each other?

(c) Same question for G = SymP , where P is a 3-dimensional cube (see Exercise 11.3).

Solution:

(a) We know from the proof of Theorem 7.7 that every reflection is conjugated to one of si. Also,
s1 is conjugated to s2 as (s1s2)

3 = e is equivalent to (s1s2)s1(s2s1) = s2.

(b) This is true for m odd (the proof is as above) and false for m even. Namely, for m even, the
group contains an even number of mirrors, and they can be colored in two (alternating) colors
representing two conjugacy classes. It is easy to see that both s1 and s2 preserve the coloring,
so the whole group does.

If we consider the dihedral group as the group of symmetries of a regular m-gon, then for m
even one conjugacy class contains reflections whose mirrors pass through a pair of opposite
vertices, and the other contains reflections whose mirrors pass through a pair of midpoints of
opposite edges.

(c) The statement is false in this case as well. The reflections in coordinate planes are not con-
jugated to reflections in the planes passing through two opposite edges. Again, it is sufficient
to check that two classes are not mixed by the three generating reflections only.

12.3. Show that Sn+1 has a presentation

Sn+1 = ⟨s1, . . . , sn | s2i , (sisj)3 for |i− j| = 1, (sisj)
2 for |i− j| > 1⟩

Solution:

As we have seen at lectures, Sn+1 acts on the hyperplane
∑

xi = 0 in Rn+1 by permutations of
coordinate axes, and the transpositions (ij) are reflections in planes xi = xj . The group Sn+1

can be generated by n transpositions (i i+1), the corresponding mirrors form a polyhedral cone
C defined by xi − xi+1 < 0 for i = 1, . . . , n, or x1 < x2 < x3 < · · · < xn+1. The angle between
planes xi = xi+1 and xi+1 = xi+2 is π/3 (just compute the angle between the normals ei− ei+1 and
ei+1 − ei+2, where {ei} is the standard orthonormal basis, which is 2π/3), and the angle between
xi = xi+1 and xj = xj+1 is right if |i− j| > 1.

There are many ways to show that C is a chamber. The easiest way is to observe that no mirror
xi = xj intersects C – indeed, if i < j then xi < xj in C. Another way is to observe that Sn+1

acts on copies of C obtained by arranging xi’s in different order, and such cones do not overlap.
As there are (n+ 1)! such cones, C must be a fundamental domain for the action, and thus it is a
fundamental chamber.
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12.4. (a) Let s1, s2, s3 be the three reflections generating the symmetry group of a 3-dimensional
cube constructed in Exercise 11.3. Consider all six elements of SymP of type sisjsk for
all i, j, k distinct. Show that all six elements are conjugated to each other in SymP .

(b) Compute the order of these six elements.

Solution:

(a) As s1 and s3 commute, there are four distinct elements only to consider: s1s2s3, s3s2s1, s2s3s1
and s3s1s2. They all are “cyclically” conjugated: s2s3s1 = s2(s3s1s2)s2 = s1(s1s2s3)s1, while
s3s2s1 = s1(s1s3s2)s1 = s1(s3s1s2)s1.

(b) First, the order of all elements is the same (as they are conjugated), and it must be even (as
all relations in SymP have even length), so we need to look at the order of the square, so
consider, say, (s1s2s3)

2.

One (purely combinatorial) way to proceed is to use relations (see Exercise 11.3) to simplify
the product (s1s2s3)

2. We can write

(s1s2s3)
2 = s1s2s3s1s2s3 = s1s2s1s3s2s3 = s1s2s1s2s3s2 = s2s1s2s1s3s2 =

= s2(s1s2s1s3)s2 = s2(s1s2s3s1)s2 = (s2s1)s2s3(s1s2) = (s2s1)s2s3(s2s1)
−1

(where the blue subword is the one transformed at each step using the relations), so (s1s2s3)
2

is conjugated to s2s3. The order of s2s3 is 3 by the relations, and thus the order of s1s2s3 is
equal to 6.

Alternatively, one could observe how the element s1s2s3 acts on R3. For this, one could look
at the orbits of vertices of P . It takes v = (1, 1, 1) to (1, 1,−1), which is taken to (1,−1,−1),
which, in its turn, is taken to (−1,−1,−1). Thus, (s1s2s3)

3 takes v to −v, and therefore the
order of s1s2s3 is divisible by 6.

The orbit of v contains six vertices, all six return to their places after application of (s1s2s3)
6.

The remaining ones are opposite vertices (1,−1, 1) and (−1, 1,−1), s1s2s3 either permutes
them or leaves intact (actually, it does permute them, but this is not important) – in both
cases (s1s2s3)

6 leaves them intact. Therefore, (s1s2s3)
6 fixes all vertices of P , so it must be

an identity.

Alternatively, there is the most straightforward way to proceed: write down the matrices for
si in the standard basis, compute the eigenvalues of the product s1s2s3, and thus compute the
order (and much more!).

This is not as difficult as it may look like: the matrices for si are

s1 =

1 0 0
0 1 0
0 0 −1

 , s2 =

1 0 0
0 0 1
0 1 0

 , s3 =

0 1 0
1 0 0
0 0 1

 ,

so

s1s2s3 =

1 0 0
0 1 0
0 0 −1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

 =

1 0 0
0 1 0
0 0 −1

0 1 0
0 0 1
1 0 0

 =

 0 1 0
0 0 1
−1 0 0

 ,

its characteristic polynomial is −x3 − 1, which has roots −1 and two primitive cubic roots of
−1, so the result follows.
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