Topics in Combinatorics IV, Homework 12 (Week 12)

Due date for starred problems: Monday, February 03, 12pm.

- **12.1.** Let G be a finite reflection group in \mathbb{R}^n . Recall that the *stabilizer* Stab_G(p) of $p \in \mathbb{R}^n$ in G is the set of elements of G fixing p, i.e. Stab_G(p) = { $g \in G \mid gp = p$ }. G is *irreducible* if it has no invariant subspaces (and *reducible* otherwise).
 - (a) Let p belong to the intersection of two closed chambers of G only (i.e., p belongs to precisely one mirror α^{\perp}). Show that $\operatorname{Stab}_{G}(p)$ has order 2 (and is generated by r_{α}).
 - (b) Let $p \in \mathbb{R}^n$ belong to at least one mirror of G, $p \neq 0$, and let Γ be the group generated by reflections of G fixing p. Show that Γ is a reducible finite reflection group.
 - (c) Show that every chamber of Γ is a union of chambers of G.
 - (d) Show that $\operatorname{Stab}_{G}(p)$ takes any chamber of Γ to another chamber of Γ (i.e., every $g \in \operatorname{Stab}_{G}(p)$ permutes chambers of Γ).
 - (e) Show that Γ acts transitively on all chambers C of G such that $p \in \overline{C}$.
 - (f) Show that $\operatorname{Stab}_G(p) = \Gamma$, i.e. the stabilizer of $p \in \mathbb{R}^n$ is generated by all reflections $r \in G$ such that rp = p.
- 12.2. (\star)
 - (a) Let $G = I_2(3)(= S_3) = \langle s_1, s_2 | s_1^2, s_2^2, (s_1s_2)^3 \rangle$. Show that all reflections of G are conjugated to each other in G.
 - (b) For $G = I_2(m) = \langle s_1, s_2 | s_1^2, s_2^2, (s_1s_2)^m \rangle$, is it true that all reflections in G are conjugated to each other?
 - (c) Same question for G = Sym P, where P is a 3-dimensional cube (see Exercise 11.3).
- **12.3.** Show that S_{n+1} has a presentation

$$S_{n+1} = \langle s_1, \dots, s_n \mid s_i^2, (s_i s_j)^3 \text{ for } |i-j| = 1, (s_i s_j)^2 \text{ for } |i-j| > 1 \rangle$$

- 12.4. (a) Let s_1, s_2, s_3 be the three reflections generating the symmetry group of a 3-dimensional cube constructed in Exercise 11.3. Consider all six elements of Sym P of type $s_i s_j s_k$ for all i, j, k distinct. Show that all six elements are conjugated to each other in Sym P.
 - (b) Compute the order of these six elements.