Topics in Combinatorics IV, Solutions 14 (Week 14)

14.1. (\star) Let (G, S) be a Coxeter system.
(a) Let u, v be words, and let $r(w)$ denote the R-sequence of a word w. Show that $r(u v)=$ $\left(r(u), u r(v) u^{-1}\right)$.
(b) Let $w=s_{1} \ldots s_{k}$ be a word. Show that there exists an increasing sequence of indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k$, such that $s_{i_{1}} \ldots s_{i_{m}}$ is reduced and equivalent to w in G.
(c) Show that the order of any finite Coxeter group is even.

Solution:
(a) Let $u=s_{1} \ldots s_{k}, v=s_{k+1} \ldots s_{m}$. Then

$$
\begin{aligned}
& r(u v)=\left(s_{1}, s_{1} s_{2} s_{1}, \ldots,\left(s_{1} \ldots s_{k-1}\right) s_{k}\left(s_{k-1} \ldots s_{1}\right)\right. \\
& \left.\left(s_{1} \ldots s_{k}\right) s_{k+1}\left(s_{k} \ldots s_{1}\right),\left(s_{1} \ldots s_{k+1}\right) s_{k+2}\left(s_{k+1} \ldots s_{1}\right), \ldots,\left(s_{1} \ldots s_{m-1}\right) s_{m}\left(s_{m-1} \ldots s_{1}\right)\right)= \\
& =(\underbrace{\left(s_{1}, s_{1} s_{2} s_{1}, \ldots,\left(s_{1} \ldots s_{k-1}\right) s_{k}\left(s_{k-1} \ldots s_{1}\right)\right.}_{r(u)}, \\
& \underbrace{\left(s_{1} \ldots s_{k}\right) s_{k+1}\left(s_{k} \ldots s_{1}\right),\left(s_{1} \ldots s_{k}\right) s_{k+1} s_{k+2} s_{k+1}\left(s_{k} \ldots s_{1}\right), \ldots,\left(s_{1} \ldots s_{k}\right) s_{k+1} \ldots s_{m} \ldots s_{k+1}\left(s_{k} \ldots s_{1}\right)}_{u r(v) u^{-1}})
\end{aligned}
$$

(b) By Deletion Condition, if w is not reduced then $w \sim_{G} s_{1} \ldots \hat{s_{i}} \ldots \hat{s_{j}} \ldots s_{k}$ for some $i<j$. Applying Deletion Condition iteratively until the result is reduced, we get the required statement.
(c) All relations in a Coxeter group have even length. Therefore, the set of elements of even length is a normal subgroup of index two.
Alternatively, Lagrange's theorem says that the order of any subgroup divides the order of the group, which implies that the order of any element divides the order of the group. Now, any element of S has order two.
14.2. Let G be any group with a finite generating set S. Assume also that S is symmetric, i.e. for any $s \in S$ the inverse s^{-1} is also contained in S. Let $g, g^{\prime} \in G$, and let $l(g)$ denote the shortest length of a reduced word representing g.
(a) Show that $\left|l(g)-l\left(g^{\prime}\right)\right| \leq l\left(g^{\prime} g^{-1}\right)$.
(b) Show that $d\left(g, g^{\prime}\right)=l\left(g^{\prime} g^{-1}\right)$ defines a metric on G.

Solution:

(a) This follows from Lemma 8.3(1): as $g^{\prime}=\left(g^{\prime} g^{-1}\right) g$, we have $l\left(g^{\prime}\right) \leq l\left(g^{\prime} g^{-1}\right)+l(g)$, which is equivalent to the required inequality.
(b) We need to verify four conditions: non-negativity, symmetry, $d\left(g, g^{\prime}\right)=0 \Leftrightarrow g=g^{\prime}$, and the triangle inequality.
Non-negativity holds by definition of the length. Symmetry holds by Lemma 8.3(2):

$$
d\left(g, g^{\prime}\right)=l\left(g^{\prime} g^{-1}\right)=l\left(\left(g^{\prime} g^{-1}\right)^{-1}\right)=l\left(g g^{\prime-1}\right)=d\left(g^{\prime}, g\right)
$$

The equality $d\left(g, g^{\prime}\right)=0$ is equivalent to $l\left(g^{\prime} g^{-1}\right)=0$, which is the same as $g^{\prime} g^{-1}=e$, so $g=g^{\prime}$.
Finally, we need to prove that $d\left(g_{1}, g_{2}\right) \leq d\left(g_{1}, g\right)+d\left(g, g_{2}\right)$. Indeed,

$$
d\left(g_{1}, g\right)+d\left(g, g_{2}\right)=l\left(g g_{1}^{-1}\right)+l\left(g_{2} g^{-1}\right) \geq l\left(\left(g_{2} g^{-1}\right)\left(g g_{1}^{-1}\right)\right)=l\left(g_{2} g_{1}^{-1}\right)=d\left(g_{1}, g_{2}\right)
$$

by Lemma 8.3(1).
14.3. Let G be a group with a finite generating set S consisting of involutions, and let $\left\{P_{s}\right\}_{s \in S}$ be a family of subsets of G satisfying the following properties:
(1) $e \in P_{s}$ for every $s \in S$;
(2) $P_{s} \cap s P_{s}=\emptyset$ for every $s \in S$;
(3) For every $s, t \in S$ and $g \in G$ such that $g \in P_{s}$ and $g t \notin P_{s}$, one has $s g=g t$.

Show that $P_{s}=\{g \in G \mid l(s g)>l(g)\}$, and (G, S) satisfies Exchange Condition (and thus is a Coxeter system).

Solution:

Take any $g \in G$ and $s \in S$, then either $g \in P_{s}$ or not.
First, assume $g \notin P_{s}$. Let $w=s_{1} \ldots s_{k}$ be a reduced expression for g. Denote $g_{i}=s_{1} \ldots s_{i}$. There exists i such that $g_{i} \notin P_{s}$, but for all $j<i$ we have $g_{j} \in P_{s}$ (for $j=0$ we denote $g_{0}=e \in P_{s}$ by (1)).

Thus, we have $g_{i-1} \in P_{s}, g_{i}=g_{i-1} s_{i} \notin P_{s}$, and (3) implies $s g_{i-1}=g_{i-1} s_{i}$, or, equivalently, $g \sim_{G} s s_{1} \ldots \hat{s}_{i} \ldots s_{k}$. In particular, $l(s g)<l(g)$.
Next, assume $g \in P_{s}$. By (2), $g \notin s P_{S}$, i.e. $s g \notin P_{s}$. By the previous part, this implies $l(g)=$ $l(s(s g))<l(s g)$.
Therefore, we have proved that $g \in P_{s}$ if and only if $l(g)<l(s g)$, and if $l(s g)>l(g)$ (i.e., $g \notin P_{s}$) then the Exchange Condition holds.

