Topics in Combinatorics IV, Homework 14 (Week 14)

Due date for starred problems: Monday, February 17, 12pm.

14.1. (\star) Let (G, S) be a Coxeter system.

- (a) Let u, v be words, and let r(w) denote the *R*-sequence of a word w. Show that $r(uv) = (r(u), ur(v)u^{-1})$.
- (b) Let $w = s_1 \dots s_k$ be a word. Show that there exists an increasing sequence of indices $1 \leq i_1 < i_2 < \dots < i_m \leq k$, such that $s_{i_1} \dots s_{i_m}$ is reduced and equivalent to w in G.
- (c) Show that the order of any finite Coxeter group is even.
- 14.2. Let G be any group with a finite generating set S. Assume also that S is symmetric, i.e. for any $s \in S$ the inverse s^{-1} is also contained in S. Let $g, g' \in G$, and let l(g) denote the shortest length of a reduced word representing g.
 - (a) Show that $|l(g) l(g')| \le l(g'g^{-1})$.
 - (b) Show that $d(g, g') = l(g'g^{-1})$ defines a metric on G.
- **14.3.** Let (G, S) be a Coxeter system. Given $s \in S$, denote by P_s the set of $g \in G$ such that l(sg) > l(g).
 - (a) Show that $\bigcap_{s \in S} P_s = \{e\}.$
 - (b) Show that for $s \in S$ and $g \in G$ either l(sg) > l(g) or l(sg) < l(g).
 - (c) Show that for every $s \in S$ the sets P_s and sP_s do not intersect, and their union is G (i.e., they form a *partition* of G).
 - (d) Let $s, t \in S, g \in G$. Show that if $g \in P_s$ and $gt \notin P_s$, then sg = gt.
- 14.4. Let G be a group with a finite generating set S consisting of involutions, and let $\{P_s\}_{s\in S}$ be a family of subsets of G satisfying the following properties:
 - (1) $e \in P_s$ for every $s \in S$;
 - (2) $P_s \cap sP_s = \emptyset$ for every $s \in S$;
 - (3) For every $s, t \in S$ and $g \in G$ such that $g \in P_s$ and $gt \notin P_s$, one has sg = gt.

Show that $P_s = \{g \in G \mid l(sg) > l(g)\}$, and (G, S) satisfies Exchange Condition (and thus is a Coxeter system).