Topics in Combinatorics IV, Homework 14 (Week 14)

Due date for starred problems: Friday, February 9, 6pm.

14.1. (\star) Let (G, S) be a Coxeter system.
(a) Let u, v be words, and let $r(w)$ denote the R-sequence of a word w. Show that $r(u v)=$ $\left(r(u), u r(v) u^{-1}\right)$.
(b) Let $w=s_{1} \ldots s_{k}$ be a word. Show that there exists an increasing sequence of indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k$, such that $s_{i_{1}} \ldots s_{i_{m}}$ is reduced and equivalent to w in G.
(c) Show that the order of any finite Coxeter group is even.
14.2. Let G be any group with a finite generating set S. Assume also that S is symmetric, i.e. for any $s \in S$ the inverse s^{-1} is also contained in S. Let $g, g^{\prime} \in G$, and let $l(g)$ denote the shortest length of a reduced word representing g.
(a) Show that $\left|l(g)-l\left(g^{\prime}\right)\right| \leq l\left(g^{\prime} g^{-1}\right)$.
(b) Show that $d\left(g, g^{\prime}\right)=l\left(g^{\prime} g^{-1}\right)$ defines a metric on G.
14.3. Let G be a group with a finite generating set S consisting of involutions, and let $\left\{P_{s}\right\}_{s \in S}$ be a family of subsets of G satisfying the following properties:
(1) $e \in P_{s}$ for every $s \in S$;
(2) $P_{s} \cap s P_{s}=\emptyset$ for every $s \in S$;
(3) For every $s, t \in S$ and $g \in G$ such that $g \in P_{s}$ and $g t \notin P_{s}$, one has $s g=g t$.

Show that $P_{s}=\{g \in G \mid l(s g)>l(g)\}$, and (G, S) satisfies Exchange Condition (and thus is a Coxeter system).

