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Topics in Combinatorics IV, Solutions 16 (Week 16)

16.1. Let ∆ be a root system, Π is a set of simple roots, αi ∈ Π.

(a) (⋆) Show that rαi
(∆+ \αi) = ∆+ \αi. In other words, rαi

takes all positive roots except
α to positive roots.
Hint: use Theorem 9.12.

(b) Let w ∈ W , α ∈ Π. Denote n(w) = #{β ∈ ∆+ | wβ ∈ ∆−}, i.e. the number of positive
roots taken by w to negative ones. Show that if wα ∈ ∆+ then n(wrα) = n(w)+ 1, and
if wα ∈ ∆− then n(wrα) = n(w)− 1. In particular, n(w) ≤ l(w).

(c) Let s1 . . . sk be a reduced expression for w, where si = rαi
are simple reflections. Show

that if n(w) < l(w) then there exist i < j such that si(si+1 . . . sj−1)αj = αi.

(d) Show that n(w) = l(w) for every w ∈ W .

Solution:

(a) Let β =
∑

cjαj ∈ ∆+, i.e. cj ≥ 0. Since β ̸= αi, there is j ̸= i such that cj > 0. Then
rαi(β) = β− cαi has a positive coefficient cj before αj (as it has not changed), and thus must
be positive.

(b) Let wα ∈ ∆+, and assume wrα(α
′) ∈ ∆− for some α′ ∈ ∆+. By (a), either α′ = α (and then

wrα(α
′) = wrα(α) = w(−α) = −wα ∈ ∆−), or α′′ := rα(α

′) ∈ ∆+, and thus α′ = ra(α
′′),

where α′′ ∈ ∆+ is taken by w to ∆−. Therefore, n(wrα) = n(w) + 1.

If wα ∈ ∆−, then wrαα ∈ ∆+, and, by the reasoning above, n(w) = n((wrα)rα) = n(wrα)+1.

As n(ws) ≤ n(w) + 1 for any simple reflection s, we see that n(w) ≤ l(w).

(c) Suppose that n(w) < l(w). Applying (b), we see that there is some index j such that
n((s1 . . . sj−1)sj) ̸= n(s1 . . . sj−1) + 1, which implies that (s1 . . . sj−1)αj ∈ ∆−. Now, find
the maximal i such that (si+1 . . . sj−1)αj ∈ ∆+ and si(si+1 . . . sj−1)αj ∈ ∆− (such i exists
since αj > 0). By (a), si+1 . . . sj−1αj = αi.

(d) By (b), n(w) ≤ l(w). If n(w) < l(w) then, by (c), si+1 . . . sj−1αj = αi, which implies
(si+1 . . . sj−1)sj(sj−1 . . . si+1) = si. Therefore, sisi+1 . . . sj−1sj = si+1 . . . sj1 , which means
that the word was not reduced, so we get a contradiction.

16.2. Let ∆ be a root system. Show that the highest root α̃0 is always long, i.e. (α̃0, α̃0) ≥ (α, α)
for any α ∈ ∆.

Solution:

Let C0 be the Weyl chamber. Take any α ∈ ∆. Since C0 is a fundamental domain for the action of
the Weyl group W , there exists w ∈ W such that w(α) = β ∈ C0. Thus, we can assume (β, αi) ≥ 0
for any i.

Now, since α̃0 is the highest root, we have α̃0−β =
∑

ciαi with all ci ≥ 0. This implies (α̃0−β, β) =
(
∑

ciαi, β) =
∑

ci(αi, β) ≥ 0, and (α̃0 − β, α̃0) = (
∑

ciαi, α̃0) =
∑

ci(αi, α̃0) ≥ 0. Therefore,

(α̃0, α̃0) ≥ (β, α̃0) ≥ (β, β) = (α, α)

1



16.3. Let (G,S) be a Coxeter system, let T ⊂ S, and let GT be a standard parabolic subgroup
(see HW 15.2). Define GT = {g ∈ G | l(gt) > l(g)∀t ∈ T}. Let g ∈ G.

(a) Let u0 ∈ gGT be a coset representative of minimal possible length across the whole
coset. Show that u0 ∈ GT and g = u0v0 for some v0 ∈ GT .

(b) Show that l(g) = l(u0) + l(v0).

(c) Show that every p ∈ gGT can be written as p = u0v for some v ∈ GT with l(p) =
l(u0) + l(v).

(d) Show that u0 is the unique element of gGT of minimal length.

(e) Show that there is a unique u ∈ GT and a unique v ∈ GT such that g = uv.

Solution:

(a) Since u0 ∈ gGT , we have u0 = gv for v ∈ GT , and thus u0v0 = g for v0 = v−1 ∈ GT .
Further, for t ∈ T , u0t = gvt = g(vt) ∈ gGT , so due to the minimality of length of u0 we have
l(u0t) > l(u0), and thus u0 ∈ GT .

(b) Let s1 . . . sk and t1 . . . tm be reduced expressions for u0 and v0 respectively. If l(g) < l(u0) +
l(v0), then the word s1 . . . skt1 . . . tm is not reduced, so, by the Deletion Condition, we can
remove two letters. If at least one of them is si, then we get s1 . . . ŝi . . . sk∼G gv′ for v′ ∈ GT

in contradiction with the minimality of u0. Therefore, g ∼G s1 . . . skt1 . . . t̂i . . . t̂j . . . tm, so
t1 . . . t̂i . . . t̂j . . . tm ∼G u−1

0 g = v0, which contradicts the fact t1 . . . tm is a reduced expression
for v0.

(c) This follows from the two steps above: we have only used that g ∈ gGT .

(d) Due to (c), for every u′0 ∈ gGT we have u′0 = u0v with l(u′0) = l(u0) + l(v). If u′0 is minimal,
then l(v) = 0 and thus u′0 = u0.

(e) Suppose there is u ∈ GT and v ∈ GT such that g = uv, u ̸= u0. Then u = gv−1 ∈ gGT .
By (c), we can write u = u0v

′, let v′ ∼G t1 . . . tm be a reduced expression. Then l(utm) ≤
l(u0) + (m− 1) < l(u), so we come to a contradiction.

16.4. (⋆) Let G be a finite Coxeter group, (G,S) is a Coxeter system.

(a) Show that there is a unique element g0 of maximal length. What is its length?

(b) Write down g0 for the group of type A3.

Solution:

(a) Length of an element g ∈ G is the number of reflections in its R-sequence appearing one time
only, or, equivalently, the number of mirrors of reflections separating the initial chamber C0

from gC0. There is only one chamber separated from C0 by mirrors of all reflections, this is
−C0. Therefore, g0C0 = −C0. In particular, l(g0) is the number of reflections in G.

(b) There are 6 reflections in A3 (e.g., S4 has six transpositions, or this can be seen by realizing
A3 as the symmetry group of a regular tetrahedron): these are

s1, s2, s3, s1s2s1, s2s3s2, s1s2s1s3s1s2s1(= s1s2s3s2s1).

We can arrange them as follows:

s1, (s1)s2(s1), (s1s2)s3(s2s1), (s1s2s3)s2(s3s2s1) = s1s3s1 = s3,

(s1s2s3s2)s1(s2s3s2s1) = s1s3s2s3s1s3s2s3s1 = s1s3s2s1s2s3s1 = s1s3s1s2s1s3s1 = s3s2s3,

(s1s2s3s2s1)s2(s1s2s3s2s1) = s1s2s3s1s3s2s1 = s1s2s1s2s1 = s2,

so g0 = s1s2s3s2s1s2. Of course, there are many ways to write down g0 leading to distinct
R-sequences.
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Alternatively, one can construct directly the element taking C0 to −C0. We know that
W (A3) = S4 acts on R4 ∩ H by permutations of coordinate axes, and that C0 = {x ∈
R4 | x1 > x2 > x3 > x4} ∩H, where H = {x ∈ R4 | x1 + x2 + x3 + x4 = 0}. Then −C0 will
be given by inequalities x1 < x2 < x3 < x4, and thus g0 =

(
1 2 3 4
4 3 2 1

)
∈ S4. We are left to write

g0 down as a product of transpositions si = (i i + 1). Observe that g0 = (14)(23), so we just
need to write down (14) as a product of simple reflections. Clearly, (14) = (13)(34)(13) =
((12)(23)(12))(34)((12)(23)(12)) = (12)(23)(34)(23)(12), so g0 = s1s2s3s2s1s2 works indeed.

16.5. Let (G,S) be a Coxeter system, C0 is the initial chamber, and v ∈ C0. Show that the
stabilizer of v in G is generated by simple reflections sαi

such that v ∈ α⊥
i .

Solution: According to HW 12.1, StabG(v) is generated by reflections whose mirrors contain v. Let
F be the face of C0 of minimal dimension containing v, so we can write F = ∩α⊥

i , i ∈ I, where I is
the corresponding index set. Let Γ0 be the subgroup of G generated by rαi , i ∈ I. We claim that
every reflection r ∈ StabG(v) is contained in Γ0. Observe that since v belongs to the interior of F ,
the mirror of r contains the whole F .

Denote the dimension of F by k. The group Γ0 is a reducible reflection group of rank n− k. Take
a small neighborhood U of v such that U ∩ C0 is bounded by the mirrors of rαi only, i ∈ I. The
copies of U ∩ C0 under action of Γ0 tessellate U . If r /∈ Γ0, then adding r to Γ0 we obtain a larger
group Γ (fixing F ). Therefore, U ∩C0 must be cut by mirrors of reflections of Γ into smaller pieces.
However, this implies that C0 is cut by some mirror, which leads to a contradiction.

Alternatively, one could avoid any geometry. We assume below that G is a Weyl group, but exactly
the same reasonings work for other finite Coxeter groups.

Let g ∈ StabG(v), we want to show that g is a product of simple reflections fixing v. We proceed
by induction on l(g) = n(g) (see Exercise 16.1). If n(g) = 0 then there is nothing to prove. If
n(g) > 0, then there exists si such that gαi ∈ ∆− (one set of simple roots cannot be positive with
respect to another – check this!). By Exercise 16.1, n(gsi) = n(g) − 1, and thus, by induction
assumption, gsi is a product of simple reflections fixing v. Since v ∈ C0, we have (v, gαi) ≤ 0.
However, (v, gαi) = (g−1v, αi) = (v, αi) ≥ 0. Therefore, (v, αi) = 0, and thus si ∈ Stab g(v), so
g = (gsi)si is also a product of simple reflections fixing v.
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