Topics in Combinatorics IV, Homework 16 (Week 16)

Due date for starred problems: Friday, February 23, 6pm.
16.1. Let Δ be a root system, Π is a set of simple roots, $\alpha_{i} \in \Pi$.
(a) (\star) Show that $r_{\alpha_{i}}\left(\Delta^{+} \backslash \alpha_{i}\right)=\Delta^{+} \backslash \alpha_{i}$. In other words, $r_{\alpha_{i}}$ takes all positive roots except α to positive roots.
Hint: use Theorem 9.12.
(b) Let $w \in W, \alpha \in \Pi$. Denote $n(w)=\#\left\{\beta \in \Delta^{+} \mid w \beta \in \Delta^{-}\right\}$, i.e. the number of positive roots taken by w to negative ones. Show that if $w \alpha \in \Delta^{+}$then $n\left(w r_{\alpha}\right)=n(w)+1$, and if $w \alpha \in \Delta^{-}$then $n\left(w r_{\alpha}\right)=n(w)-1$. In particular, $n(w) \leq l(w)$.
(c) Let $s_{1} \ldots s_{k}$ be a reduced expression for w, where $s_{i}=r_{\alpha_{i}}$ are simple reflections. Show that if $n(w)<l(w)$ then there exist $i<j$ such that $s_{i}\left(s_{i+1} \ldots s_{j-1}\right) \alpha_{j}=\alpha_{i}$.
(d) Show that $n(w)=l(w)$ for every $w \in W$.
16.2. Let Δ be a root system. Show that the highest root $\tilde{\alpha}_{0}$ is always long, i.e. $\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right) \geq(\alpha, \alpha)$ for any $\alpha \in \Delta$.
16.3. Let (G, S) be a Coxeter system, let $T \subset S$, and let G_{T} be a standard parabolic subgroup (see HW 15.2). Define $G^{T}=\{g \in G \mid l(g t)>l(g) \forall t \in T\}$. Let $g \in G$.
(a) Let $u_{0} \in g G_{T}$ be a coset representative of minimal possible length across the whole coset. Show that $u_{0} \in G^{T}$ and $g=u_{0} v_{0}$ for some $v_{0} \in G_{T}$.
(b) Show that $l(g)=l\left(u_{0}\right)+l\left(v_{0}\right)$.
(c) Show that every $p \in g G_{T}$ can be written as $p=u_{0} v$ for some $v \in G_{T}$ with $l(p)=$ $l\left(u_{0}\right)+l(v)$.
(d) Show that u_{0} is the unique element of $g G_{T}$ of minimal length.
(e) Show that there is a unique $u \in G^{T}$ and a unique $v \in G_{T}$ such that $g=u v$.
16.4. (\star) Let G be a finite Coxeter group, (G, S) is a Coxeter system.
(a) Show that there is a unique element g_{0} of maximal length. What is its length?
(b) Write down g_{0} for the group of type A_{3}.
16.5. Let (G, S) be a Coxeter system, C_{0} is the initial chamber, and $v \in \bar{C}_{0}$. Show that the stabilizer of v in G is generated by simple reflections $s_{\alpha_{i}}$ such that $v \in \alpha_{i}^{\perp}$.

