Topics in Combinatorics IV, Homework 16 (Week 16)

Due date for starred problems: Monday, March 03, 12pm.

16.1. Let Δ be a root system, Π is a set of simple roots, $\alpha_i \in \Pi$.

- (a) (★) Show that r_{αi}(Δ⁺ \ α_i) = Δ⁺ \ α_i. In other words, r_{αi} takes all positive roots except α to positive roots.
 Hint: use Theorem 9.12.
- (b) Let $w \in W$, $\alpha \in \Pi$. Denote $n(w) = \#\{\beta \in \Delta^+ \mid w\beta \in \Delta^-\}$, i.e. the number of positive roots taken by w to negative ones. Show that if $w\alpha \in \Delta^+$ then $n(wr_\alpha) = n(w) + 1$, and if $w\alpha \in \Delta^-$ then $n(wr_\alpha) = n(w) 1$. In particular, $n(w) \leq l(w)$.
- (c) Let $s_1 \ldots s_k$ be a reduced expression for w, where $s_i = r_{\alpha_i}$ are simple reflections. Show that if n(w) < l(w) then there exist i < j such that $s_i(s_{i+1} \ldots s_{j-1})\alpha_j = \alpha_i$.
- (d) Show that n(w) = l(w) for every $w \in W$.
- **16.2.** Let Δ be a root system. Show that the highest root $\tilde{\alpha}_0$ is always long, i.e. $(\tilde{\alpha}_0, \tilde{\alpha}_0) \ge (\alpha, \alpha)$ for any $\alpha \in \Delta$.
- **16.3.** Let (G, S) be a Coxeter system, let $T \subset S$, and let G_T be a standard parabolic subgroup (see HW 15.2). Define $G^T = \{g \in G \mid l(gt) > l(g) \forall t \in T\}$. Let $g \in G$.
 - (a) Let $u_0 \in gG_T$ be a coset representative of minimal possible length across the whole coset. Show that $u_0 \in G^T$ and $g = u_0 v_0$ for some $v_0 \in G_T$.
 - (b) Show that $l(g) = l(u_0) + l(v_0)$.
 - (c) Show that every $p \in gG_T$ can be written as $p = u_0 v$ for some $v \in G_T$ with $l(p) = l(u_0) + l(v)$.
 - (d) Show that u_0 is the unique element of gG_T of minimal length.
 - (e) Show that there is a unique $u \in G^T$ and a unique $v \in G_T$ such that g = uv.
- **16.4.** (\star) Let G be a finite Coxeter group, (G, S) is a Coxeter system.
 - (a) Show that there is a unique element g_0 of maximal length. What is its length?
 - (b) Write down g_0 for the group of type A_3 .
- **16.5.** Let (G, S) be a Coxeter system, C_0 is the initial chamber, and $v \in \overline{C}_0$. Show that the stabilizer of v in G is generated by *simple* reflections s_{α_i} such that $v \in \alpha_i^{\perp}$.