Topics in Combinatorics IV, Solutions 17 (Week 17)

17.1. (\star) Draw the Hasse diagram of the root poset of root system A_{4}.

Solution: Every root $e_{i}-e_{j}$ for $i<j$ can be written as

$$
e_{i}-e_{j}=\sum_{k=i}^{j-1} e_{k}-e_{k+1}=\sum_{k=i}^{j-1} \alpha_{k}
$$

which implies that $e_{i}-e_{j} \geq e_{k}-e_{l}$ if and only if $i \leq k$ and $j \geq l$. We get the following Hasse diagram:

17.2. (\star) Let (W, S) be a Coxeter system. A subgroup H of W is a parabolic subgroup if it is conjugated to a standard parabolic subgroup W_{T} for some $T \subset S$ (see HW 15.2), i.e. $H=w^{-1} W_{T} w$ for some $w \in W$. Show that for any $p \in \mathbb{R}^{n}$ the stabilizer $\operatorname{Stab}_{W}(p)$ is a parabolic subgroup.

Solution: This follows from HW 16.4. Let C be the initial chamber of W. There exists $w \in W$ such that $w p \in \bar{C}$. By HW 16.4, the stabilizer of $w p$ is a standard parabolic subgroup W_{T}, where $s \in T$ if and only if $s(w p)=w p$. Therefore, the stabizer of p is precisely $w^{-1} W_{T} w$.
17.3. Let (W, S) be an irreducible Coxeter system. Denote $c_{n}=\#\{w \in W \mid l(w)=n\}$, and define the generating function

$$
W(q)=\sum_{n \geq 0} c_{n} q^{n}=\sum_{w \in W} q^{l(w)}
$$

which is called the Poincaré series of W. In the case when W is finite, $W(q)$ is called the Poincaré polynomial of W.
Recall that if $T \subset S$ then W_{T} denotes a standard parabolic subgroup, and $W^{T}=\{w \in W \mid$ $l(w t)>l(w) \forall t \in T\}$ (see HW 16.2).
For every $X \subset W$ denote also $X(q)=\sum_{w \in X} q^{l(w)}$.
(a) Show that if $T \subset S$ then $W(q)=W_{T}(q) W^{T}(q)$.
(b) Let $w \in W$, define $F=F(w)=\{s \in S \mid l(w s)>l(w)\}$. Show that $\sum_{T \subset F}(-1)^{|T|}=0$ unless W is finite and $w=w_{0}$ is the longest element of W.
(c) Show that

$$
\sum_{T \subset S}(-1)^{|T|} \frac{W(q)}{W_{T}(q)}=\sum_{T \subset S}(-1)^{|T|} W^{T}(q)= \begin{cases}0 & \text { if } W \text { is infinite } \\ q^{N} & \text { if } W \text { is finite }\end{cases}
$$

where N is the length of the longest element of W.
(d) Assume W is finite. Show that

$$
\sum_{T \subset S}(-1)^{|T|} \frac{|W|}{\left|W_{T}\right|}=1
$$

(e) Apply the formula from (d) to compute the order of the group H_{3}. Can you compute the order of H_{4} in this way?

Solution:

(a) This follows from HW 16.2: take any $w \in W$, then there are unique $u \in W_{T}$ and $v \in W^{T}$ such that $w=u v$. Since $l(w)=l(u)+l(v)$, we have $q^{l(w)}=q^{l(u)} q^{l(v)}$, so

$$
W(q)=\sum_{w \in W} q^{l(w)}=\sum_{u \in W_{T}, v \in W^{T}} q^{l(u)} q^{l(v)}=\sum_{u \in W_{T}} q^{l(u)} \sum_{v \in W^{T}} q^{l(v)}=W_{T}(q) W^{T}(q)
$$

(b) Suppose F is empty, then $l(w s)<l(w)$ for any $s \in S$, and thus W is finite and $w=w_{0}$. Otherwise, F is non-empty, and the statement claims that the alternating sum of binomial coefficients is zero, which follows from the identity $(1-1)^{|F|}=0$.
(c) The first equality follows from (a). To prove the second equality, write

$$
\sum_{T \subset S}(-1)^{|T|} W^{T}(q)=\sum_{T \subset S}(-1)^{|T|}\left(\sum_{w \in W^{T}} q^{l(w)}\right)
$$

and observe that $w \in W^{T}$ if and only if $T \subset F(w)$. Therefore, for a given w the coefficient of $q^{l(w)}$ is precisely $\sum_{T \subset F(w)}(-1)^{|T|}$, which vanishes for every $w \in W$ unless W is finite due to (b). If W is finite, then the only $w \in W$ such that $F(w)$ is empty is w_{0}, and thus the only non-zero term is $q^{l\left(w_{0}\right)}$.
(d) Plug in $q=1$ in (c).
(e) Let $H_{3}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2},\left(s_{1} s_{2}\right)^{3},\left(s_{2} s_{3}\right)^{5},\left(s_{1} s_{3}\right)^{2}\right\rangle$. Then we have the following subsets of S and the orders of the standard parabolic subgroups:

T	\emptyset	$\left\{s_{1}\right\}$	$\left\{s_{2}\right\}$	$\left\{s_{3}\right\}$	$\left\{s_{1}, s_{2}\right\}$	$\left\{s_{1}, s_{3}\right\}$	$\left\{s_{2}, s_{3}\right\}$	$\left\{s_{1}, s_{2}, s_{3}\right\}$
W_{T}	$\{e\}$	A_{1}	A_{1}	A_{1}	A_{2}	$A_{1} \times A_{1}$	$I_{2}(5)$	H_{3}
$\left\|W_{T}\right\|$	1	2	2	2	6	4	10	$\left\|W\left(H_{3}\right)\right\|$

Therefore, we have

$$
|W|\left(\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}+\frac{1}{6}+\frac{1}{4}+\frac{1}{10}\right)-1=1,
$$

which is equivalent to $\left|W\left(H_{3}\right)\right| \cdot \frac{2}{120}=2$, so we get $\left|W\left(H_{3}\right)\right|=120$.
The group $W\left(H_{4}\right)$ has rank 4 , which implies that the summand $\frac{|W|}{|W|}$ in the sum will have coefficient +1 . Therefore, the formula in (c) will become $|W| \cdot(\ldots)=0$, which cannot be used for computation of the order.

