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Topics in Combinatorics IV, Solutions 17 (Week 17)

(x) Draw the Hasse diagram of the root poset of root system Ay.

Solution: Every root e; — e; for ¢ < j can be written as

j-1 j-1
ei—ejzg 6k—6k+1=E Qg
k=i k=i

which implies that e; —e; > e — ¢; if and only if ¢ < k and j > [. We get the following Hasse
diagram:

Oél+042+043+0é4

Ot1+0t2+013 012+013+Ot4

ap + g Qs + oy
aq Q2 Q3 Qy

(x) Let (W,S) be a Coxeter system. A subgroup H of W is a parabolic subgroup if it
is conjugated to a standard parabolic subgroup Wr for some 7" C S (see HW 15.2), i.e.
H = w™'Wrw for some w € W. Show that for any p € R" the stabilizer Staby (p) is a
parabolic subgroup.

Solution: This follows from HW 16.5. Let C be the initial chamber of W. There exists w € W such
that wp € C. By HW 16.5, the stabilizer of wp is a standard parabolic subgroup W, where s € T
if and only if s(wp) = wp. Therefore, the stabilizer of p is precisely w™!Wrw.

Let (W,S) be an irreducible Coxeter system. Denote ¢, = #{w € W | l(w) = n}, and
define the generating function

Wi(q) = chqn = Z ql(w)’

n>0 weW
which is called the Poincaré series of W. In the case when W is finite, W (q) is called the
Poincaré polynomial of W.

Recall that if T C S then Wr denotes a standard parabolic subgroup, and W1 = {w € W |
l(wt) > l(w)Vt € T} (see HW 16.2).

For every X C W denote also X(q) = 5 ¢!®).
weX



(a) Show that if T C S then W(q) = Wr(q)W7(q).

(b) Let w € W, define F = F(w) = {s € S| l(ws) > l(w)}. Show that > (-=1)71 =0
TCF
unless W is finite and w = wy is the longest element of W.

(c¢) Show that

N W(g) _ S ()W) - {0 if T is infinite,

= Wr(q) = ¢V if W is finite,

where N is the length of the longest element of WW.
(d) Assume W is finite. Show that

S )T <1

TCS

(e) Apply the formula from (d) to compute the order of the group Hs. Can you compute
the order of Hy in this way?

Solution:

(a) This follows from HW 16.2: take any w € W, then there are unique u € Wy and v € W7 such
that w = wv. Since l(w) = I(u) + I(v), we have ¢®) = ¢!@Wglv) o

W)=Y ¢ = > ¢ =3¢t 3" ¢ =wir(q)W”(q)

weW ueWpveWT ueWr veWT

(b) Suppose F' is empty, then [(ws) < l(w) for any s € S, and thus W is finite and w = wy.
Otherwise, F' is non-empty, and the statement claims that the alternating sum of binomial
coefficients is zero, which follows from the identity (1 — 1)¥1 = 0.

(c¢) The first equality follows from (a). To prove the second equality, write

S DT () = 3o ()T ( > ql<w>>

TCS TCS weWT

and observe that w € W7 if and only if T C F(w). Therefore, for a given w the coefficient

of ¢"®) is precisely > (=1)I"l, which vanishes for every w € W unless W is finite due to
TCF(w)
(b). If W is finite, then the only w € W such that F(w) is empty is wo, and thus the only

non-zero term is /(o).
(d) Plugin ¢ =1 in (c).

(e) Let Hy = (s1, 82,53 | 87, (s152)%, (5253)°, (s183)%). Then we have the following subsets of S and
the orders of the standard parabolic subgroups:

T | 0 {si} {s2} {ss} {s1,s2} {s1,83} {s2,83} {s1,52,53}

WT {e} A1 A1 Al A2 A1 X Al 12(5) H3
Wl | 1 2 2 2 6 4 10 [W (Hs)|




17.4. Let A be a root system. Let (-, ) be the dot product, and let (o | 5) =

(a)
(b)
()

Therefore, we have

W] 1 1 1 1 n 1 n 1 n 1 1-1
1 2 2 2 6 4 10 -
which is equivalent to |W(Hs)| - 35 = 2, so we get |W (Hs)| = 120.

w]
W]
coefficient +1. Therefore, the formula in (¢) will become |[W|-(...) = 0, which cannot be used

for computation of the order.

The group W (H,) has rank 4, which implies that the summand in the sum will have

2(e, B)
(8,8)
Let a, 5 € A be non-collinear. Show that if (a, ) < 0 then a+f € A, and if (o, ) > 0
then o — 8 € A.

Show that there exist integers p,q > 0, such that the set I = {k € Z | B + ka € A} is
an interval [—q, p| N Z.

Let R={p + ka | k € I'}. Show that r,(R) = R. Show that ¢ —p = (0| «).

for a, g € A.

Solution.

(a)

If (o, B) < 0, then either (o | B) = —1 or (8 | @) = —1. In the former case 73(a) = a — (o |
B)B = a+ 3, while in the latter case ro(5) =8 — (B | a)a =+ .

Similarly, if (a, 8) > 0, then either (o | ) = 1 or (8 | o) = 1. In the former case r3(a) =
a— (o | B)B = a— B, while in the latter case ro(8) = 8 — (8 | a)a = f — a (and thus
—(B—a)=a—pF €A as well).

Denote by p and —¢ the maximal and minimal elements of I respectively (note that 0 € I as
B € A). Assume that there are some integers in the interval [—g, p] not belonging to I. Let
the gap contain a maximal interval [a+1,b— 1|, where a,b € I, b > a+ 1. By (a), this implies
(B+ aa,a) >0 and (8 + ba, «) < 0. However,

(B+ac,a) — (B+ba,a) = ((a—b)a,a) = (a — b)(o, ) <0,

so we get a contradiction.

By definition, ro (8 + ka) =  — (B | a)a — ka =  + K, where k' = —k — (8 | ). Thus, r,
maps R to itself, and the map k — £’ is decreasing on I, so 74(8 + pa) = 8 — qa. Therefore,
—q=-p—(B|a),soq—p=(B|a) as required.



