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Topics in Combinatorics IV, Solutions 17 (Week 17)

17.1. (⋆) Draw the Hasse diagram of the root poset of root system A4.

Solution: Every root ei − ej for i < j can be written as

ei − ej =

j−1∑
k=i

ek − ek+1 =

j−1∑
k=i

αk

which implies that ei − ej ≥ ek − el if and only if i ≤ k and j ≥ l. We get the following Hasse
diagram:

α1 α2 α3 α4

α1 + α2 α2 + α3 α3 + α4

α1 + α2 + α3 α2 + α3 + α4

α1 + α2 + α3 + α4

17.2. (⋆) Let (W,S) be a Coxeter system. A subgroup H of W is a parabolic subgroup if it
is conjugated to a standard parabolic subgroup WT for some T ⊂ S (see HW 15.2), i.e.
H = w−1WTw for some w ∈ W . Show that for any p ∈ Rn the stabilizer StabW (p) is a
parabolic subgroup.

Solution: This follows from HW 16.5. Let C be the initial chamber of W . There exists w ∈ W such
that wp ∈ C. By HW 16.5, the stabilizer of wp is a standard parabolic subgroup WT , where s ∈ T
if and only if s(wp) = wp. Therefore, the stabilizer of p is precisely w−1WTw.

17.3. Let (W,S) be an irreducible Coxeter system. Denote cn = #{w ∈ W | l(w) = n}, and
define the generating function

W (q) =
∑
n≥0

cnq
n =

∑
w∈W

ql(w),

which is called the Poincaré series of W . In the case when W is finite, W (q) is called the
Poincaré polynomial of W .

Recall that if T ⊂ S then WT denotes a standard parabolic subgroup, and W T = {w ∈ W |
l(wt) > l(w)∀t ∈ T} (see HW 16.2).

For every X ⊂ W denote also X(q) =
∑
w∈X

ql(w).
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(a) Show that if T ⊂ S then W (q) = WT (q)W
T (q).

(b) Let w ∈ W , define F = F (w) = {s ∈ S | l(ws) > l(w)}. Show that
∑
T⊂F

(−1)|T | = 0

unless W is finite and w = w0 is the longest element of W .

(c) Show that

∑
T⊂S

(−1)|T | W (q)

WT (q)
=

∑
T⊂S

(−1)|T |W T (q) =

{
0 if W is infinite,

qN if W is finite,

where N is the length of the longest element of W .

(d) Assume W is finite. Show that ∑
T⊂S

(−1)|T | |W |
|WT |

= 1

(e) Apply the formula from (d) to compute the order of the group H3. Can you compute
the order of H4 in this way?

Solution:

(a) This follows from HW 16.2: take any w ∈ W , then there are unique u ∈ WT and v ∈ W T such
that w = uv. Since l(w) = l(u) + l(v), we have ql(w) = ql(u)ql(v), so

W (q) =
∑
w∈W

ql(w) =
∑

u∈WT ,v∈WT

ql(u)ql(v) =
∑

u∈WT

ql(u)
∑

v∈WT

ql(v) = WT (q)W
T (q)

(b) Suppose F is empty, then l(ws) < l(w) for any s ∈ S, and thus W is finite and w = w0.
Otherwise, F is non-empty, and the statement claims that the alternating sum of binomial
coefficients is zero, which follows from the identity (1− 1)|F | = 0.

(c) The first equality follows from (a). To prove the second equality, write

∑
T⊂S

(−1)|T |W T (q) =
∑
T⊂S

(−1)|T |

 ∑
w∈WT

ql(w)


and observe that w ∈ W T if and only if T ⊂ F (w). Therefore, for a given w the coefficient
of ql(w) is precisely

∑
T⊂F (w)

(−1)|T |, which vanishes for every w ∈ W unless W is finite due to

(b). If W is finite, then the only w ∈ W such that F (w) is empty is w0, and thus the only
non-zero term is ql(w0).

(d) Plug in q = 1 in (c).

(e) Let H3 = ⟨s1, s2, s3 | s2i , (s1s2)3, (s2s3)5, (s1s3)2⟩. Then we have the following subsets of S and
the orders of the standard parabolic subgroups:

T ∅ {s1} {s2} {s3} {s1, s2} {s1, s3} {s2, s3} {s1, s2, s3}
WT {e} A1 A1 A1 A2 A1 ×A1 I2(5) H3

|WT | 1 2 2 2 6 4 10 |W (H3)|
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Therefore, we have

|W |
(
1

1
− 1

2
− 1

2
− 1

2
+

1

6
+

1

4
+

1

10

)
− 1 = 1,

which is equivalent to |W (H3)| · 2
120 = 2, so we get |W (H3)| = 120.

The group W (H4) has rank 4, which implies that the summand |W |
|W | in the sum will have

coefficient +1. Therefore, the formula in (c) will become |W | · (. . . ) = 0, which cannot be used
for computation of the order.

17.4. Let ∆ be a root system. Let (·, ·) be the dot product, and let ⟨α | β⟩ = 2(α, β)

(β, β)
for α, β ∈ ∆.

(a) Let α, β ∈ ∆ be non-collinear. Show that if (α, β) < 0 then α+β ∈ ∆, and if (α, β) > 0
then α− β ∈ ∆.

(b) Show that there exist integers p, q ≥ 0, such that the set I = {k ∈ Z | β + kα ∈ ∆} is
an interval [−q, p] ∩ Z.

(c) Let R = {β + kα | k ∈ I}. Show that rα(R) = R. Show that q − p = ⟨β | α⟩.

Solution.

(a) If (α, β) < 0, then either ⟨α | β⟩ = −1 or ⟨β | α⟩ = −1. In the former case rβ(α) = α − ⟨α |
β⟩β = α+ β, while in the latter case rα(β) = β − ⟨β | α⟩α = β + α.

Similarly, if (α, β) > 0, then either ⟨α | β⟩ = 1 or ⟨β | α⟩ = 1. In the former case rβ(α) =
α − ⟨α | β⟩β = α − β, while in the latter case rα(β) = β − ⟨β | α⟩α = β − α (and thus
−(β − α) = α− β ∈ ∆ as well).

(b) Denote by p and −q the maximal and minimal elements of I respectively (note that 0 ∈ I as
β ∈ ∆). Assume that there are some integers in the interval [−q, p] not belonging to I. Let
the gap contain a maximal interval [a+1, b− 1], where a, b ∈ I, b > a+1. By (a), this implies
(β + aα, α) ≥ 0 and (β + bα, α) ≤ 0. However,

(β + aα, α)− (β + bα, α) = ((a− b)α, α) = (a− b)(α, α) < 0,

so we get a contradiction.

(c) By definition, rα(β + kα) = β − ⟨β | α⟩α− kα = β + k′α, where k′ = −k − ⟨β | α⟩. Thus, rα
maps R to itself, and the map k 7→ k′ is decreasing on I, so rα(β + pα) = β − qα. Therefore,
−q = −p− ⟨β | α⟩, so q − p = ⟨β | α⟩ as required.
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