Durham University Pavel Tumarkin

Topics in Combinatorics IV, Solutions 18 (Week 18)

18.1. (*) Let Δ be a root system, $\Pi = \{\alpha_i\}$ are simple roots.

- (a) Let $\alpha, \beta \in \Delta^+$, $\alpha < \beta$ in the root poset, $\beta \alpha = \sum_{j \in J} c_j \alpha_j$ for some $J \subset [n]$, where $c_j > 0$ for all $j \in J$. Show that either $\beta - \alpha = \alpha_j$ (i.e. |J| = 1 and $c_j = 1$), or $(\beta - \alpha, \alpha_j) \leq 0$ for any $j \in J$. *Hint:* Use Exercise 9.15 from lectures.
- (b) Show that the root poset of a root system is ranked, where the rank of $\alpha = \sum c_i \alpha_i$ is $\sum c_i$ (this number is called the *height* of α and is denoted by $\operatorname{ht} \alpha$). *Hint:* Compute $(\beta - \alpha, \beta - \alpha)$ in (a).

Solution:

- (a) Suppose that $\beta \alpha \neq \alpha_j$ for any $j \in J$. Since $\alpha < \beta$, for any $j \in J$ we have $\alpha + \alpha_j \notin \Delta$ and $\beta - \alpha_j \notin \Delta$, which, by Exercise 9.15, implies $(\alpha, \alpha_j) \geq 0$ and $(\beta, \alpha_j) \leq 0$. Therefore, $(\beta - \alpha, \alpha_j) \leq 0$.
- (b) We need to prove that $\alpha < \beta$ implies $\operatorname{ht} \beta = \operatorname{ht} \alpha + 1$, which is equivalent to $\beta = \alpha + \alpha_j$ for some α_j (as $\alpha < \beta$).

Let $\beta - \alpha = \sum_{j \in J} c_j \alpha_j$ for some $J \subset [n]$. If we suppose that $\beta - \alpha \neq \alpha_j$ for any $j \in J$, then (a) implies that $(\beta - \alpha, \alpha_j) \leq 0$ for any $j \in J$. Following the hint, we compute

$$(\beta - \alpha, \beta - \alpha) = \left(\beta - \alpha, \sum_{j \in J} c_j \alpha_j\right) = \sum_{j \in J} c_j (\beta - \alpha, \alpha_j) \le 0,$$

which implies $\beta - \alpha = 0$, so we came to a contradiction with $\alpha < \beta$.

- **18.2.** Let Δ be a root system, $\Pi = \{\alpha_i\}$ are simple roots, W is the Weyl group, and Σ is the Dynkin diagram of Δ .
 - (a) Let $I \subset [n]$ be some index set such that $(\alpha_i, \alpha_j) = 0$ for all $i, j \in I$. Show that the standard parabolic subgroup W_I is isomorphic to $(\mathbb{Z}_2)^{|I|}$. *Hint:* use HW 15.2.
 - (b) Let $\alpha \in \Delta$, $\alpha = \sum c_i \alpha_i$. Define the support of α to be the set $I \subset [n]$ such that $i \in I$ if and only if $c_i \neq 0$. Show that if $(\alpha_i, \alpha_j) = 0$ for all $i, j \in I$ then $\alpha = \pm \alpha_i$ for some $i \in [n]$.
 - (c) Let $\alpha \in \Delta$, $\alpha = \sum c_i \alpha_i$, *I* is the support of α . Show that vertices of Σ corresponding to α_i , $i \in I$, form a connected subgraph of Σ .

Solution:

- (a) By HW 15.2, W_I is isomorphic to the Weyl group of the root system with Dynkin diagram spanned by vertices corresponding to $\alpha_i, i \in I$. This diagram consists of |I| vertices without any edges, so it is a direct product of |I| copies of $W(A_1) \simeq S_2 \simeq \mathbb{Z}_2$.
- (b) By (a), the only reflections in W_I are r_{α_i} .
- (c) Suppose the support I of α is disconnected, e.g. $I = I_1 \cup I_2$ and I_1 is not connected to I_2 in Σ . By HW 15.2, $W_I = W_{I_1} \times W_{I_2}$, so all reflections in W_I belong either to W_{I_1} or to W_{I_2} . Therefore, either $I \subset I_1$ or $I \subset I_2$.
- **18.3.** Let (W, S) be an irreducible Coxeter system. The goal of this exercise is to show that if there is a quadratic form Q on \mathbb{R}^n invariant under W, then Q(x) = c(x, x) for some $c \in \mathbb{R}$. Given a quadratic form Q, we will abuse notation by writing Q(x, y) instead of $\frac{1}{2}(Q(x+y)-Q(x)-Q(y))$.
 - (a) Let Q be a quadratic form invariant under W, i.e. Q(x,y) = Q(wx,wy) for every $w \in W$. Recall that Q(x,y) = (Ax,y) for some $A \in M_n(\mathbb{R})$. Show that w(Ax) = A(wx) for every $x \in \mathbb{R}^n, w \in W$.
 - (b) For $s_i \in S$ let $s_i = r_{\alpha_i}$, $\|\alpha_i\|^2 = 2$. Show that $r_{\alpha_i}(A\alpha_i) = -A\alpha_i$, and $A\alpha_i = c_i\alpha_i$ for some $c_i \in \mathbb{R}$.
 - (c) Let $(s_i s_j)^2 \neq e$. Show that $c_i = c_j$. Deduce from this that Q(x) = c(x, x). Hint: compute $As_i(\alpha_j)$ and $s_i(A\alpha_j)$.

Solution:

- (a) Since W is a subgroup of $O_n(\mathbb{R})$, Q(x,y) = (Ax,y) = (w(Ax), wy). On the other hand, Q(x,y) = Q(wx,wy) = (A(wx), wy). As wy can be an arbitrary vector, we conclude that w(Ax) = A(wx).
- (b) Due to (a), $r_{\alpha_i}(A\alpha_i) = A(r_{\alpha_i}(\alpha_i)) = A(-\alpha_i) = -\alpha_i$. A reflection in \mathbb{R}^n has eigenvalue -1 of multiplicity one and eigenvalue 1 of multiplicity n 1. Therefore, $A\alpha_i$ is proportional to the α_i which is an eigenvector with eigenvalue -1.
- (c) We have $As_i(\alpha_j) = A(\alpha_j (\alpha_i, \alpha_j)\alpha_i) = c_j\alpha_j (\alpha_i, \alpha_j)c_i\alpha_i$. Further, $s_i(A\alpha_j) = s_i(c_j\alpha_j) = c_js_i(\alpha_j) = c_j\alpha_j c_j(\alpha_i, \alpha_j)\alpha_i$. By (a), the obtained expressions are equal. Since $j(\alpha_i, \alpha_j) \neq 0$ by assumption, we get $c_i = c_j$. Finally, as W is irreducible, the Coxeter diagram is connected, so for any s_i and s_j there is a path $s_i = s_{i_1}, s_{i_2}, \ldots, s_{i_k} = s_j$ such that s_{i_l} and $s_{i_{l+1}}$ do not commute. Therefore, all $c_i = c$, so Ax = cx, and thus Q(x) = Q(x, x) = (Ax, x) = (cx, x) = c(x, x) for every $x \in \mathbb{R}^n$.