Topics in Combinatorics IV, Solutions 19 (Week 19)

Throughout the problem sheet Δ is a root system of rank n, $\Pi = \{\alpha_i\}$ are simple roots, $\tilde{\alpha}_0$ is the highest root, W is the Weyl group, h is the Coxeter number.

- 19.1. Compute the Coxeter number and exponents of the Weyl group of type
 - (a) C_4 ;
 - (b) C_n .

Solution: Let $\{e_i\}$ be an orthograml basis of \mathbb{R}^n , and let $s_i = r_{\alpha_i}$, where $\alpha_i = e_i - e_{i+1}$ for i < n and $\alpha_n = 2e_n$. Take $c = s_1 \dots s_{n-1}s_n = (s_1 \dots s_{n-1})s_n$, where $s_1 \dots s_{n-1}$ is a cyclic permutation of coordinates $1, \dots, n$, and s_n is the change of sign of n-th coordinate. Therefore, for n = 4 we have

$$c = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The characteristic polynomial of c is λ^4+1 , so the eigenvalues are $\exp(\frac{2\pi i}{8}+k\frac{2\pi i}{4})$, where k=0,1,2,3. Thus, the exponents are 1,3,5,7, and the Coxeter number is $h=\frac{2}{n}(m_1+m_2+m_3+m_4)=\frac{1}{2}(1+3+5+7)=8$.

For arbitrary n, the characteristic polynomial of c is $(-1)^n(\lambda^n+1)$, so the eigenvalues of c are $\exp(\frac{2\pi i}{2n}+k\frac{2\pi i}{n})$, where $k=0,\ldots,n-1$, and the corresponding exponents are 2k+1. The Coxeter number is $h=\frac{2}{n}(m_1+\cdots+m_n)=\frac{2}{n}(1+3+\cdots+(2n-1))=\frac{2}{n}(\frac{n}{2}\cdot 2n)=2n$.

- **19.2.** (a) Show that the Coxeter number of the Weyl group of type E_8 is equal to the Coxeter number of the Coxeter group of type H_4 .
 - (b) Show that the symmetric group S_{n+1} contains a subgroup isomorphic to the dihedral group $I_2(n+1)$.
 - (c) Let $W = \langle s_1, \ldots, s_4 \mid s_i^2, (s_2s_j)^3$ for $j \neq 2, (s_ks_l)^2$ for $k, l \neq 2 \rangle$ be the Weyl group of type D_4 . Show that the subgroup of W generated by s_1, s_2 and s_3s_4 is isomorphic to the Weyl group of type B_3 .

Solution:

- (a) By the construction of H_4 as a subgroup of E_8 , the generators of H_4 are $s_i t_i$ (see Section 10.3.1 of lecture notes), so a Coxeter element of H_4 is $s_1 t_1 \ldots s_4 t_4$. However, this is a Coxeter element of E_8 as well.
- (b) S_{n+1} is a Weyl group of type A_n , its Coxeter number is n+1. If we take a bipartite Coxeter element c = c'c'', then $c'^2 = c''^2 = c^{n+1} = e$, so c' and c'' generate a group Γ which is a quotient of $I_2(n+1)$. There are no more relations on c' and c'': Γ contains n+1 elements of type c^k , and also $c' \neq c^k$ for any k, so there are at least 2(n+1) elements.

(c) Let $\{e_i\}$ be an orthonormal basis of \mathbb{R}^4 , and let $s_i = r_{\alpha_i}$, where α_i are simple roots of D_4 , i.e.

$$\alpha_1 = e_1 - e_2, \ \alpha_2 = e_2 - e_3, \ \alpha_3 = e_3 - e_4, \ \alpha_4 = e_3 + e_4.$$

Then s_1, s_2 act on \mathbb{R}^4 by transpositions of coordinates, and s_3s_4 changes the signs of e_3 and e_4 simultaneously.

Denote by Γ the subgroup of W generated by s_1, s_2, s_3s_4 . Let $L \subset \mathbb{R}^4$ be a 3-dimentional subspace spanned by e_1, e_2, e_3 , observe that the action of Γ on L is precisely the action of B_3 : s_1, s_2 act on \mathbb{R}^3 by transpositions of coordinates, and s_3s_4 changes the sign of e_3 . We are left to check that any element acting on L trivially acts on e_4 trivially as well. Indeed, all relations in B_3 involving r_{e_3} contain even number of it, so if an element of Γ acts trivially on L then it involves an even number of s_3s_4 , which implies that the sign of e_4 will be changed an even number of times, thus leaving e_4 intact.

- **19.3.** (a) Define $\gamma = \sum_{\beta \in \Delta^+} \frac{\beta}{(\beta,\beta)}$. Show that $r_{\alpha_i}(\gamma) = \gamma \frac{2\alpha_i}{(\alpha_i,\alpha_i)}$. Hint: use HW 16.1(a).
 - (b) Show that $\sum_{\beta \in \Delta^+} \frac{(\alpha_i, \beta)}{(\beta, \beta)} = 1$.
 - (c) Let $v \in \mathbb{R}^n$, $v = \sum c_i \alpha_i$. Show that $\sum c_i = \sum_{\beta \in \Delta^+} \frac{(v,\beta)}{(\beta,\beta)}$.
 - (d) Define quadratic from Q on \mathbb{R}^n by $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)}$. Show that Q is invariant with respect to W. Hint: $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(v,\beta)^2}{(\beta,\beta)}$.
 - (e) Let $\{e_i\}$ be an orthonormal basis of \mathbb{R}^n . Denote $N = |\Delta^+|$. Show that $\sum_{i=1}^n \sum_{\beta \in \Delta^+} \frac{(e_i, \beta)^2}{(\beta, \beta)} = N$.
 - (f) Show that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = (v,v)\frac{N}{n}$. Deduce from this that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(v,v)(\beta,\beta)} = \frac{N}{n}$. Hint: use HW 18.4.
 - (g) Let $\alpha, \beta \in \Delta$, and let $(\alpha, \alpha) \leq (\beta, \beta)$. Show that $\langle \alpha \mid \beta \rangle = 0$ or ± 1 .
 - (h) Show that $\langle \alpha \mid \tilde{\alpha}_0 \rangle = \langle \alpha \mid \tilde{\alpha}_0 \rangle^2$ for any positive root $\alpha \neq \tilde{\alpha}_0$.
 - (i) Show that $N = \frac{(\operatorname{ht} \tilde{\alpha}_0 + 1)n}{2}$. Deduce from this that $h = 1 + \operatorname{ht} \tilde{\alpha}_0$. Hint: write $\frac{(\tilde{\alpha}_0, \beta)}{(\beta, \beta)}$ as $\langle \beta \mid \tilde{\alpha}_0 \rangle \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\beta, \beta)}$ and use (c),(f) and (h).

Solution:

(a)

$$r_{\alpha_i}(\gamma) = \sum_{\beta \in \Delta^+} \frac{r_{\alpha_i}(\beta)}{(\beta, \beta)} = \frac{r_{\alpha_i}(\alpha_i)}{(\alpha_i, \alpha_i)} + \sum_{\substack{\beta \in \Delta^+ \\ \beta \neq \alpha_i}} \frac{r_{\alpha_i}(\beta)}{(\beta, \beta)} = -\frac{\alpha_i}{(\alpha_i, \alpha_i)} + \sum_{\substack{\beta' \in \Delta^+ \\ \beta' \neq \alpha_i}} \frac{\beta'}{(\beta', \beta')} = \gamma - \frac{2\alpha_i}{(\alpha_i, \alpha_i)}$$

Here we used that r_{α_i} takes $\Delta^+ \setminus \alpha_i$ to $\Delta^+ \setminus \alpha_i$ (HW 16.1(a)), and that $\beta' = r_{\alpha_i}(\beta)$ has the same length as β .

(b) $\sum_{\beta \in \Delta^+} \frac{(\alpha_i, \beta)}{(\beta, \beta)} = (\alpha_i, \gamma)$, which is equal to 1 by (a).

- (c) This immediately follows from (b) by linearity.
- (d) It is sufficient to verify the statement for generators of W, i.e. for r_{α_i} . Following the hint, we have

$$Q(r_{\alpha_i}(v)) = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(r_{\alpha_i}(v), \beta)^2}{(\beta, \beta)} = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(v, r_{\alpha_i}(\beta))^2}{(r_{\alpha_i}(\beta), r_{\alpha_i}(\beta))} = \frac{1}{2} \sum_{\beta' \in \Delta} \frac{(v, \beta')^2}{(\beta', \beta')} = Q(v)$$

(e)
$$\sum_{i=1}^{n} \sum_{\beta \in \Delta^{+}} \frac{(e_{i}, \beta)^{2}}{(\beta, \beta)} = \sum_{\beta \in \Delta^{+}} \sum_{i=1}^{n} \frac{(e_{i}, \beta)^{2}}{(\beta, \beta)} = \sum_{\beta \in \Delta^{+}} \frac{\|\beta\|^{2}}{(\beta, \beta)} = \sum_{\beta \in \Delta^{+}} 1 = N$$

- (f) According to (d), the quadratic form $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)}$ is invariant with respect to W. By HW 18.4, this implies that Q(v) = c(v,v). By (e), we have $\sum_{i=1}^n Q(e_i) = N$. Therefore, $N = \sum_{i=1}^n Q(e_i) = \sum_{i=1}^n c(e_i,e_i) = nc$, and thus $c = \frac{N}{n}$.
- (g) This follows from Lemma 9.3: both $\langle \alpha \mid \beta \rangle$ and $\langle \beta \mid \alpha \rangle$ are integers and the modulus of their product does not exceed 3, so either both are zero or one of them must equal ± 1 .
- (h) Since $(\tilde{\alpha}_0, \alpha_i) \geq 0$, (a) and HW 18.3 imply that $\langle \alpha_i \mid \tilde{\alpha}_0 \rangle = 0$ or 1, and the statement follows.
- (i) Following the hint, we write

ht
$$\tilde{\alpha}_0 \stackrel{\text{by (c)}}{=} \sum_{\beta \in \Delta^+} \frac{(\tilde{\alpha}_0, \beta)}{(\beta, \beta)} = \sum_{\beta \in \Delta^+} \langle \beta \mid \tilde{\alpha}_0 \rangle \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\beta, \beta)} \stackrel{\text{by (h)}}{=}$$

$$\stackrel{\text{by (h)}}{=} \sum_{\beta \in \Delta^+} \langle \beta \mid \tilde{\alpha}_0 \rangle^2 \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\beta, \beta)} - \langle \tilde{\alpha}_0 \mid \tilde{\alpha}_0 \rangle^2 \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\tilde{\alpha}_0, \tilde{\alpha}_0)} + \langle \tilde{\alpha}_0 \mid \tilde{\alpha}_0 \rangle \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\tilde{\alpha}_0, \tilde{\alpha}_0)} =$$

$$= \sum_{\beta \in \Delta^+} \frac{4(\beta, \tilde{\alpha}_0)^2}{(\tilde{\alpha}_0, \tilde{\alpha}_0)^2} \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\beta, \beta)} - 2 + 1 = 2 \sum_{\beta \in \Delta^+} \frac{(\beta, \tilde{\alpha}_0)^2}{(\tilde{\alpha}_0, \tilde{\alpha}_0)(\beta, \beta)} - 1 \stackrel{\text{by (f)}}{=} 2 \frac{N}{n} - 1,$$

which implies $N = \frac{(\operatorname{ht} \tilde{\alpha}_0 + 1)n}{2}$. By Lemma 11.17(2), $N = \frac{hn}{2}$, so $h = \operatorname{ht} \tilde{\alpha}_0 + 1$.