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Topics in Combinatorics IV, Solutions 2 (Week 2)

2.1. Let n be a positive integer, and let p be a prime.

(a) Show that the number of sequences of integers n1, . . . , np, where 1 ≤ ni ≤ n and at least
two ni’s are distinct, is equal to np − n.

(b) Show that all cyclic shifts of any sequence from (a) are distinct.

(c) Deduce that np − n is divisible by p.

Solution:

(a) The total number of all sequences in n letters is np, the number of constant sequences is n.

(b) Since p is prime, powers of any cyclic shift exhaust all cyclic shifts of a given sequence. Thus,
if any two cyclic shifts coincide, then all cyclic shifts of a given sequence coincide, and thus
the sequence is constant, which is not the case by the assumption.

(c) According to (b), the set of all sequences is subdivided into equivalence classes of size p, where
two sequences are equivalent if they are related by a cyclic shift. Therefore, np−n is divisible
by p.

2.2. Consider a Drunkard’s walk in the segment [0, n], i.e.:

· the walk starts at interger x = i, 0 ≤ i ≤ n;

· the probability of steps left and right is equal to 1/2;

· the walk ends when the drunkard reaches either x = 0 or x = n.

Denote by pi the probability the walk starting at x = i ends at point x = n.

(a) Show that pi =
1
2
pi−1 +

1
2
pi+1 for every i = 1, . . . , n− 1.

(b) Compute pi for every i.
Hint: you may need to recall some linear algebra.

(c) Deduce from (b) the result of Example 1.15 (Drunkard’s walk) from lectures.

Solution:

(a) The first step leads either to i+ 1 or to i− 1 with equal probability, so the result follows.

(b) After adding equations p0 = 0 and pn = 1, (a) leads to a system of n + 1 linear equations in
n+ 1 variables. Using Gaussian elimination, it is easy to see that pk+1/pk = (k + 1)/k for all
k > 0. Now, in view of pn = 1, we obtain pi = i/n.
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(c) The result of (b) can be understood as follows: the probability of the drunkard reaching 0
before n is equal 1 − i

n . Taking the limit as n → ∞, we see that the probability tends to 1
(note that in Example 1.15 we deduced this for i = 1 only).

2.3. Find a bijection between the set of non-decreasing sequences 1 ≤ a1 ≤ · · · ≤ an such that
ai ≤ i and lattice paths in the n×n square from (n, 0) to (0, n) lying above the main diagonal
(and thus, show that the number of such sequences is Cn).

Solution: A lattice path subdivides the square into two parts (“lower left” one and “upper right”
one), and is uniquely defined by this subdivision. The upper part, in its turn, is uniquely defined
by the height of all of its columns. Let ai be the height of the column between x = i− 1 and x = i
plus one. Then the sequence (ai) satisfies the assumptions.

Conversely, for every such sequence one can easily construct the corresponding lattice path, so we
get a bijection.

2.4. (⋆) We say that a Dyck path has a hill at point 2i+ 1 if it passes through points (2i, 0) and
(2i + 2, 0). Denote by Fk the number of hill-free Dyck paths of length 2k, i.e. Dyck paths
without hills.

(a) Compute Fk for k ≤ 5.

(b) Show that numbers Fk satisfy the following equation:

Cn = Fn +
n−1∑
k=0

FkCn−k−1,

where Ck are Catalan numbers.
Hint: consider the first hill from the left.

(c) Compute the generating function F (x) of the sequence (Fk). Show that

F (x) =
1

1− x2C(x)2
,

where C(x) is the generating function for Catalan numbers.

Solution:

(a) F1 = 0, F2 = 1, F3 = 2, F4 = 6: in all these cases the first two steps must go up, the last
two steps must go down, and between them one can take any lattice path, so the answer is
Fk =

(
2k−4
k−2

)
. For k = 5, the first two and last steps still leave some freedom: there is one

lattice path with a hill and one going below x-axis. Therefore, F5 =
(
6
3

)
− 2 = 18.

(b) The reasoning is very similar to the one proving the Catalan recurrence. If there are no hills,
we get Fn. Otherwise, considering the leftmost hill at point 2k+1, we see that is subdivides the
Dyck path into three parts: an arbitrary hill-free path of length 2k, the hill, and an arbitrary
Dyck path of length 2n − 2k − 2. Thus, the number of Dyck paths with the leftmost hill at
point 2k + 1 is equal to FkCn−k−1. Taking the sum over all k, we obtain

Cn = Fn +
n−1∑
k=0

FkCn−k−1

as required.
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(c) Again, we proceed as in the proof of Lemma 1.12.

Multiplying the equality in (b) by xn, we get

Cnx
n = Fnx

n +
n−1∑
k=0

FkCn−k−1x
n = Fnx

n + x
n−1∑
k=0

(Fkx
k)(Cn−k−1x

n−k−1).

Now, summing on n > 0, we get on the left C(x)− 1. On the right, we get

∞∑
n=1

(
Fnx

n + x

n−1∑
k=0

(Fkx
k)(Cn−k−1x

n−k−1)

)
=

= F (x)− 1 + x

∞∑
m=0

m∑
k=0

(Fkx
k)(Cm−kx

m−k) = F (x)− 1 + x · F (x) · C(x),

so we obtain the equation C(x) − 1 = F (x) − 1 + xF (x)C(x), which implies C(x) = F (x) +
xF (x)C(x), and thus

F (x) =
C(x)

1 + xC(x)
.

Multiplying both numerator and denominator by 1− xC(x), we obtain

F (x) =
C(x)(1− xC(x))

(1 + xC(x))(1− xC(x))
=

1

1− x2C(x)2

since C(x)(1− xC(x)) = 1.
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